【実施例】
【0048】
以下、実施例によって本発明の具体例を示すが、以下の実施例は本発明の例示にすぎず、本発明は以下の実施例のみに限定されない。なお、実施例及び比較例の各種測定方法を以下で説明する。
【0049】
<重合転化率>
重合途中における粒子(以下、成長途上粒子という)に含まれるモノマー量の測定方法は、下記要領で測定されたものをいう。
即ち、成長途上粒子を分散液中から取り出し、表面に付着した水分をガーゼにより拭き取り除去する。成長途上粒子を0.08g採取し、この採取した成長途上粒子をトルエン40ミリリットル中に溶解させてトルエン溶液を作製する。次に、このトルエン溶液中に、ウイス試薬10ミリリットル、5質量%のヨウ化カリウム水溶液30ミリリットル及び1質量%のでんぷん水溶液30ミリリットルを加える。得られた溶液を、N/40チオ硫酸ナトリウム溶液で滴定した結果を試料の滴定数(ミリリットル)とする。なお、ウイス試薬は、氷酢酸2リットルにヨウ素8.7g及び三塩化ヨウ素7.9gを溶解してなるものである。一方、成長途上粒子を溶解させることなく、トルエン24ミリリットル中に、ウイス試薬10ミリリットル、5質量%のヨウ化カリウム水溶液30ミリリットル及び1質量%のでんぷん水溶液30ミリリットルを加える。得られた溶液を、N/40チオ硫酸ナトリウム溶液で滴定した結果をブランクの滴定数(ミリリットル)とする。
【0050】
得られた滴定数から、成長途上粒子中における未反応のモノマー量を下記式に基づいて算出する。
成長途上粒子中のモノマー量(質量%)=
0.1322×(ブランクの滴定数−試料の滴定数)/試料の滴定数
更に、重合転化率は下記の式で算出される。
重合転化率(%)=
100×(試料質量−成長途上粒子のモノマー量)/試料質量
【0051】
<スチレン系樹脂粒子内のフェノキシホスファゼン化合物含有量>
難燃性粒子を15mg精秤し、測定サンプルとする。次いで以下の方法で検量線を作成、含有量を測定する。ポリスチレンにフェノキシホスファーゼン化合物が1重量%、2重量%、3重量%、4重量%、5重量%となる量を混合し、クロロホルムに約0.1重量%となるように溶解し、孔径0.45μmのフィルターでろ過し測定資料とする。そして、ゲルパーエイミッションクロマトグラフィー(GPC)分析を行う。測定装置は日本分光社製、GULLIVER SYSTEM(AS−950、PU―980、CO―965)を用い、検出器はUV検出器(UV−970)とRI検出器(830−RI)を用いる。カラムはShodexK-802.5、K-805Lをつなぎ、30℃にて測定した。移動相クロロフォルムの流速は1.0ml/分で行う。UV検出器での検量線の相関係数は0.9984、RI検出器での検量線相関係数は0.9981である。これらの検量線を用いて精秤した試料の分析を行う。
【0052】
<スチレン系樹脂粒子内のフェノキシホスファゼン化合物分布>
スチレン系樹脂粒子を中心付近を通る面でスライスして試料を得る。得られたスライス面を顕微赤外分光光度計を用いて顕微透過イメージング法にて分析する。その結果からスチレン系樹脂成分由来ピーク1070cm
-1と、フェノキシホスファゼン化合物由来ピークである1180cm
-1の吸光比(1180cm
-1/1070cm
-1)を算出する。具体的には、以下の手順で測定する。
(a)測定試料の作製
無作為に選択した10個の粒子をプラスティック試料支持台(日新EM社製)に固定する。次いで、粒子をウルトラミクロトーム(ライカマイクロシステムズ製、LEICA ULTRACUT UCT)を用いてダイヤモンドナイフによって、ほぼ中心を通って約10μm厚みにスライスすることで、スライスサンプルを得る。得られたスライスサンプルを2枚のフッ化バリウム結晶(ピュアーオプテックス社製)で挟む。これを測定試料とする。スライスサンプルの画像を、下記測定装置付属のCCDで取り込む。画像の取り込みは、ウルトラミクロトームの刃の進行方向をY軸とし、それに対して垂直方向をX軸として行う。スライスサンプル中の粒子は、刃の進行方向に、極僅かに潰れが発生している。取り込まれる画像のY軸を刃の進行方向に合わせることで、測定される吸光度比がばらつくことを抑制する。
吸光度D1070及びD1180は、Perkin Elmer社から商品名「高速IRイメージングシステムSpectrum Spotlight 300」で販売されている装置を用いる。この装置を用いて、下記条件にて、スライスサンプル粒子断面の全吸光度イメージ画像を得、スライスサンプル粒子断面の各箇所における赤外吸収スペクトルを得る。
【0053】
(測定条件)
モード:顕微透過イメージング法
ピクセルサイズ:6.25μm
測定領域:4000cm
-1〜650cm
-1
検出器:MCT
分解能:8cm
-1
スキャン/ピクセル:2回
(バックグランド測定条件)
モード:顕微透過イメージング法
ピクセルサイズ:6.25μm
測定領域:4000cm
-1〜650cm
-1
検出器:MCT
分解能:8cm
-1
スキャン/ピクセル:60回
その他:試料の近傍の試料の無い部分のフッ化バリウム結晶を測定した赤外吸収スペクトルをバックグランドとして測定スペクトルに関与しない処理を実施する。
【0054】
取り込んだイメージ画像から、
図1に示すように、X座標値の最小値と最大値及びY軸のY座標値の最小値と最大値を線で結び、その線の交点を中心点Aとする。画像処理における、中心点のX、Y座標値設定は、中心点Aの±20μmの範囲内におさまるようにする。
次に、イメージ画像中に中心点Aを通り、X軸に平行な直線を引く。この直線が、粒子(樹脂)が存在する末端の位置(X軸の最大値)と交わる点を点Dとする。点Aと点Dを結ぶ線上の赤外吸収スペクトルをX座標値で12±2μmごとに抽出する。抽出した赤外吸収スペクトルから、吸光度D1070及びD1180をそれぞれ読み取り、中心部から表層部における吸光度比(D1180/D1070)を算出する。10個の粒子について算出した個別吸光度比の相加平均を吸光度比とする。
なお、赤外吸収スペクトルから得られる1180cm
-1での吸光度D1180は、フェノキシホスファゼン化合物に由来する吸収スペクトルに対応する吸光度である。この吸光度の測定では、1180cm
-1で他の吸収スペクトルが重なっている場合でもピーク分離は実施していない。吸光度D1180は、1130cm
-1と1230cm
-1を結ぶ直線をベースラインとして、1130cm
-1と1230cm
-1間の最大吸光度を意味する。また、赤外吸収スペクトルから得られる1070cm
-1での吸光度D1070は、スチレン系樹脂に含まれるベンゼン環の面内振動に由来する吸収スペクトルに対応する吸光度である。この吸光度の測定では、1070cm
-1で他の吸収スペクトルが重なっている場合でもピーク分離は実施していない。吸光度D1070は、1020cm
-1と1120cm
-1を結ぶ直線をベースラインとして、1020cm
-1と1120cm
-1間の最大吸光度を意味する。
【0055】
<予備発泡粒子の嵩密度>
予備発泡粒子の嵩密度は、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定する。具体的は、まず、予備発泡粒子を測定試料としてWg採取し、この測定試料をメスシリンダー内に自然落下させる。メスシリンダー内に落下させた測定試料の体積Vcm
3をJIS K6911に準拠した見掛け密度測定器を用いて測定する。Wg及びVcm
3を下記式に代入することで、予備発泡粒子の嵩密度を算出する。
予備発泡粒子の嵩密度(g/cm
3)=測定試料の質量(W)/測定試料の体積(V)
【0056】
<発泡成形体の密度>
発泡成形体(成形後、40℃で20時間以上乾燥させたもの)から切り出した試験片(例75×300×35mm)の質量(a)と体積(b)をそれぞれ有効数字3桁以上になるように測定し、式(a)/(b)により発泡成形体の密度(g/cm
3)を求める。
【0057】
<内部融着性>
75mm×300mm×35mmの試験片に一対の長辺の中心同士を結ぶ直線に沿ってカッターナイフで深さ約5mmの切り込み線を入れた後、この切り込み線に沿って試験片を手で二分割する。二分割により得られた破断面における発泡粒子100〜150個を含む任意の範囲について、全粒子数(A)と粒子内で破断している粒子数(B)を計数し、以下の式により融着率(%)を算出する。
融着率=(B)×100/(A)
融着率が:
70%以上を特に良好(◎)
50%以上、70%未満を良好(○)
50%未満を不良(×)
と評価する。
【0058】
<難燃性>
得られた発泡成形体から縦200mm×横25mm×高さ10mmの直方体形状の試験片5個をバーチカルカッターにて切り出す。切出物を60℃オーブンで1日間養生後、JIS A9511−2006の測定方法Aに準じて個別消炎時間の測定を行う。試験片5個の個別消炎時間の平均値を消炎時間とする。なお、消炎時間から難燃性を以下の基準で評価した。
不良(×) ・・・消炎時間が10秒以上
良好(○) ・・・消炎時間が5秒以上〜10秒未満
非常に良好(◎) ・・・消炎時間が5秒未満
【0059】
<総合評価>
内部融着性と難燃性の両方が◎の場合は◎、一方が◎で他方が○の場合は○、1つでも×がある場合は×とする。
【0060】
実施例1
内容量100リットルの攪拌機付き重合容器に、水40000質量部、懸濁安定剤としてピロリン酸マグネシウム50質量部及びアニオン界面活性剤としてドデシルベンゼンスルホン酸ナトリウム10.0質量部を供給し攪拌しながらスチレン40000質量部並びに重合開始剤としてベンゾイルパーオキサイド96.0質量部及びt−ブチルパーオキシベンゾエート28.0質量部を添加した上で90℃に昇温して重合した。そして、この温度で6時間保持し、更に、125℃に昇温してから2時間後に冷却してスチレン系樹脂粒子を得た。
スチレン系樹脂粒子を篩分けし、粒子径0.83〜1.3mmのスチレン系樹脂粒子を難燃性粒子製造用の原料粒子とした。
内容積が100Lの撹拌機付き重合容器に、水38000g、原料粒子36000g、ピロリン酸マグネシウム100g、アルキルベンゼンスルホン酸ナトリウム15gを供給して撹拌しつつ75℃に昇温し、粒子懸濁液を作製した。
【0061】
次に、ヘキサフェノキシシクロトリホスファゼン1200gをスチレン2000gに溶解させた溶液を、水4000g、ピロリン酸マグネシウム20g、アルキルベンゼンスルホン酸ナトリウム3gの懸濁液中であらかじめ微分散させた後に、重合容器を撹拌しつつ供給した。続いて、ベンゾイルパーオキサイド12.8g、t−ブチルパーオキシベンゾエート3.2gをスチレン2000gに溶解させた溶液を粒子懸濁液中に撹拌しつつ供給した後、75℃で1時間保持した。
しかる後、反応容器内の温度を125℃に上げ、2時間に亘って保持した後、オートクレーブ内の温度を25℃まで冷却し、生成された粒子を回収、脱水、乾燥を経て難燃性粒子を得た。
得られた難燃性粒子を中心を通る面でカットし、カット面を顕微FT-IR透過イメージング測定した。その結果、ヘキサフェノキシシクロトリホスファゼンは粒子中心付近に少なく、表層付近に存在していることを確認した。
図1に、IRイメージング図を示す。
図1において、表面から中心に向かって約140nmまでの深さの色の変化している領域が、ヘキサフェノキシシクロトリホスファゼンがリッチに存在する領域を意味する。
【0062】
次に内容量5リットルの攪拌機付き重合容器に水3000質量部、難燃性粒子1000質量部、懸濁安定剤としてピロリン酸マグネシウム6.0質量部及びドデシルベンゼンスルホン酸カルシウム1.5質量部を供給して攪拌しながら重合容器を密閉し100℃に昇温した。次に発泡剤としてn−ブタン90質量部を重合容器内に圧入して3時間保持した後、30℃以下まで冷却した上で重合容器内から取り出し乾燥させた上で13℃の恒温室内に5日間放置して発泡性粒子を得た。
【0063】
発泡性粒子の表面に、表面処理剤としてステアリン酸亜鉛及びヒドロキシステアリン酸トリグリセリドを被覆処理した上で、予備発泡装置にて嵩密度0.017g/cm
3に予備発泡した後に20℃で24時間熟成して難燃性予備発泡粒子を得た。
内寸300mm×400mm×30mmの直方体形状のキャビティを有する成形型を備えた発泡ビーズ自動成形機(積水工機製作所社製 商品名「エース3型」)のキャビティ内に難燃性予備発泡粒子を充填し、ゲージ圧0.07MPaの水蒸気で15秒間加熱成形を行った。次に、前記成形型のキャビティ内の発泡成形体を5秒間水冷した後、減圧下にて放冷(冷却工程)して、密度0.020g/cm
3の発泡成形体を得た。発泡成形体の内部融着率は90%と良好であった。また、発泡成形体の消炎時間は1秒であり非常に良好であった。
【0064】
実施例2
内容量100リットルの攪拌機付き重合容器に、水40000質量部、懸濁安定剤としてピロリン酸マグネシウム50質量部及びアニオン界面活性剤としてドデシルベンゼンスルホン酸ナトリウム10.0質量部を供給し攪拌しながらスチレン40000質量部並びに重合開始剤としてベンゾイルパーオキサイド96.0質量部及びt−ブチルパーオキシベンゾエート28.0質量部を添加した上で90℃に昇温して重合した。そして、この温度で6時間保持し、更に、125℃に昇温してから2時間後に冷却してスチレン系樹脂粒子を得た。
スチレン系樹脂粒子を篩分けし、粒子径0.83〜1.3mmのスチレン系樹脂粒子を難燃性粒子製造用の原料粒子とした。
【0065】
内容積が100Lの撹拌機付き重合容器に、水40000g、原料粒子40000g、ピロリン酸マグネシウム100g、アルキルベンゼンスルホン酸ナトリウム15gを供給して撹拌しつつ75℃に昇温し、粒子懸濁液を作製した。
次に、ヘキサフェノキシシクロトリホスファゼン1200gを添加し、反応容器内の温度を125℃に昇温し、30分間に亘って保持した後、オートクレーブ内の温度を25℃まで冷却して難燃性粒子を得た。得られた難燃性粒子を中心部を通る面でカットし、カット面を顕微FT−IR透過イメージング測定した結果、ヘキサフェノキシシクロトリホスファゼンは粒子中心付近に少なく、表層付近に存在していることを確認した。
これ以降、実施例1と同様にして発泡成形体を得た。発泡成形体の内部融着率は90%と良好であった。また、発泡成形体の消炎時間は1秒であり非常に良好であった。
【0066】
実施例3
ヘキサフェノキシシクロトリホスファゼンを200g添加した他は、実施例2と同様にして発泡成形体を得た。発泡成形体の内部融着率は95%と非常に良好であった。得られた発泡成形体の消炎時間は9秒であった。なお、得られた難燃性粒子を中心部を通る面でカットし、カット面を顕微IRイメージング測定した結果、ヘキサフェノキシシクロトリホスファゼンは粒子中心付近に少なく、表層付近に存在していることを確認した。
実施例4
ヘキサフェノキシシクロトリホスファゼンを4000g添加した他は、実施例2と同様にして発泡成形体を得た。発泡成形体の内部融着率は80%と良好であった。得られた発泡成形体の消炎時間は1秒であった。なお、得られた難燃性粒子を中心部を通る面でカットし、カット面を顕微FT−IR透過イメージング測定した結果、ヘキサフェノキシシクロトリホスファゼンは粒子中心付近に少なく、表層付近に存在していることを確認した。
【0067】
実施例5
内容量100リットルの攪拌機付き重合容器に、水40000質量部、懸濁安定剤としてピロリン酸マグネシウム50質量部及びアニオン界面活性剤としてドデシルベンゼンスルホン酸ナトリウム10.0質量部を供給し攪拌しながらスチレン40000質量部並びに重合開始剤としてベンゾイルパーオキサイド96.0質量部及びt−ブチルパーオキシベンゾエート28.0質量部を添加した上で90℃に昇温して重合した。そして、この温度で6時間保持し、更に、125℃に昇温してから2時間後に冷却してスチレン系樹脂粒子を得た。
スチレン系樹脂粒子を篩分けし、粒子径0.83〜1.3mmのスチレン系樹脂粒子を難燃性粒子製造用の原料粒子とした。
【0068】
内容積が100Lの撹拌機付き重合容器に、水38000g、原料粒子10000g、ピロリン酸マグネシウム100g、アルキルベンゼンスルホン酸ナトリウム15gを供給して撹拌しつつ75℃に昇温し、粒子懸濁液を作製した。
次に、ベンゾイルパーオキサイド108g、t−ブチルパーオキシベンゾエート24.0gをスチレン4000gに溶解させた溶液を粒子懸濁液中に撹拌しつつ供給した後、75℃で1時間保持した。次に反応液を90℃まで30分かけて昇温した。反応液を90℃に維持したまま、スチレン26000gを3時間かけて連続、または断続的に反応器内に供給し、原料粒子内で重合を行った。スチレン滴下開始後、この原料粒子の重合転化率を測定した結果88%であった。この時点でヘキサフェノキシシクロトリホスファゼン1200gを残りのスチレンに溶解させた溶液を継続して反応器内に供給した。スチレン投入終了後、応容器内の温度を125℃に上げ、2時間に亘って保持した後、オートクレーブ内の温度を25℃まで冷却し、生成された粒子を回収、脱水、乾燥を経て難燃性粒子を得た。
【0069】
得られた難燃性粒子を中心を通る面でカットし、カット面を顕微FT−IR透過イメージング測定した。その結果、ヘキサフェノキシシクロトリホスファゼンは粒子中心付近に少なく、表層付近に存在していることを確認した。
図1に、IRイメージング図を示す。
図1において、表面から中心に向かって色の変化している領域が、ヘキサフェノキシシクロトリホスファゼンがリッチに存在する領域を意味する。次に内容量5リットルの攪拌機付き重合容器に水3000質量部、難燃性粒子1000質量部、懸濁安定剤としてピロリン酸マグネシウム6.0質量部及びドデシルベンゼンスルホン酸カルシウム1.5質量部を供給して攪拌しながら重合容器を密閉し100℃に昇温した。次に発泡剤としてn−ブタン180質量部を重合容器内に圧入して3時間保持した後、30℃以下まで冷却した上で重合容器内から取り出し乾燥させた上で13℃の恒温室内に5日間放置して発泡性粒子を得た。
【0070】
発泡性粒子の表面に、表面処理剤としてステアリン酸亜鉛及びヒドロキシステアリン酸トリグリセリドを被覆処理した上で、予備発泡装置にて嵩密度0.017g/cm
3に予備発泡した後に20℃で24時間熟成して難燃性予備発泡粒子を得た。内寸300mm×400mm×30mmの直方体形状のキャビティを有する成形型を備えた発泡ビーズ自動成形機(積水工機製作所社製 商品名「エース3型」)のキャビティ内に難燃性予備発泡粒子を充填し、ゲージ圧0.07MPaの水蒸気で15秒間加熱成形を行った。次に、前記成形型のキャビティ内の発泡成形体を5秒間水冷した後、減圧下にて放冷(冷却工程)して、密度0.020g/cm
3の発泡成形体を得た。発泡成形体の内部融着率は90%と良好であった。また、発泡成形体の消炎時間は1秒であり非常に良好であった。
【0071】
比較例1
内容量100リットルの攪拌機付き重合容器に、水40000質量部、懸濁安定剤としてピロリン酸マグネシウム50質量部及びアニオン界面活性剤としてドデシルベンゼンスルホン酸ナトリウム10.0質量部を供給し攪拌しながらスチレン40000質量部並びに重合開始剤としてベンゾイルパーオキサイド96.0質量部及びt−ブチルパーオキシベンゾエート28.0質量部、ヘキサフェノキシシクロトリホスファゼン2000質量部添加した上で90℃に昇温して重合した。そして、この温度で6時間保持し、更に、125℃に昇温してから2時間後に冷却してスチレン系樹脂粒子を得た。前記スチレン系樹脂粒子を篩分けし、粒子径0.83〜1.3mmの難燃性粒子を得た。
【0072】
得られた難燃性粒子を中心部を通る面でカットし、カット面を顕微FT−IR透過イメージング測定した結果、ヘキサフェノキシシクロトリホスファゼンは粒子中に均一に分散していることを確認した。
図2に、IRイメージング図を示す。
これ以降、実施例1と同様にして発泡成形体を得た。発泡成形体の内部融着率は30%、消炎時間は3秒であり、難燃性は良好であった。
【0073】
比較例2
内容量100リットルの攪拌機付き重合容器に、水40000質量部、懸濁安定剤としてピロリン酸マグネシウム50質量部及びアニオン界面活性剤としてドデシルベンゼンスルホン酸ナトリウム10.0質量部を供給し攪拌しながらスチレン40000質量部並びに重合開始剤としてベンゾイルパーオキサイド96.0質量部及びt−ブチルパーオキシベンゾエート28.0質量部を添加した上で90℃に昇温して重合した。そして、この温度で6時間保持し、更に、125℃に昇温してから2時間後に冷却してスチレン系樹脂粒子を得た。
スチレン系樹脂粒子を篩分けし、粒子径0.83〜1.3mmの難燃性粒子製造用の原料粒子とした。
【0074】
次いで得られた原料粒子10000gとヘキサフェノキシシクロトリホスファゼン500gを2軸押出機内で溶融混練させた後、内径1mmの金型からストランド状に押出、冷却、カッティングすることで外径1.1mm、長さ1.5mmの円柱状の難燃性粒子を得た。
次に内容量5リットルの攪拌機付き重合容器に水3000質量部、難燃性粒子を1000質量部、懸濁安定剤としてピロリン酸マグネシウム6.0質量部及びドデシルベンゼンスルホン酸カルシウム1.5質量部を供給して攪拌しながら重合容器を密閉し100℃に昇温した。次に発泡剤としてn−ブタン180質量部を重合容器内に圧入して3時間保持した後、30℃以下まで冷却した上で重合容器内から取り出し乾燥させた上で13℃の恒温室内に5日間放置して略球状の発泡性粒子を得た。
得られた発泡性粒子を中心部を通る面でカットし、カット面を顕微FT−IR透過イメージング測定した結果、ヘキサフェノキシシクロトリホスファゼンは粒子内に均一に存在していることを確認した。
これ以降、実施例1と同様にして発泡成形体を得た。発泡成形体の内部融着率は20%であった。また、発泡成形体の消炎時間は3秒と良好であった。
【0075】
比較例3
口径90mm(L/D=35)の単軸押出機に造粒用ダイス、すなわち、直径0.6mm、ランド長さ3.0mmのノズルを25個もつ目皿(ノズルユニット)が8個樹脂吐出面の円周上に配置され、樹脂吐出面側にノズルユニットに通じる各樹脂流路を両側から挟むように8本のカートリッジヒーター(直径12mm)がヒーター深さ(樹脂吐出面からの距離)15mmの位置に前記円周を横切って放射状に配置され、表面中央部に断熱材を装着した造粒用ダイスを取り付け複数の測温体を配置し、ダイス本体の循環水流入側のヒーター4本と循環水流出側のヒーター4本とにエリアを2分割して制御して、ダイス本体を300℃に保持した(ダイス保持温度300℃)。
【0076】
スチレン樹脂(東洋スチレン社製、商品名「HRM10N」、ビカット軟化点温度102℃)100質量部に微粉末タルク0.3質量部、ヘキサフェノキシシクロトリホスファゼン5質量部を予めタンブラーミキサーにて均一に混合したものを、毎時130kgの割合で押出機内へ供給した。押出機内の最高温度を220℃に設定し、樹脂を溶融させた後、発泡剤として樹脂100質量部に対して6質量部のペンタン(イソペンタン/ノルマルペンタン=20/80混合物)を押出機途中より圧入した。そして、押出機内で樹脂と発泡剤を混練しつつ、発泡剤含有溶融樹脂をダイホルダ(押出機とダイス本体の連結部)に通して、300℃に保持した前記ダイス本体に輸送し、30℃の冷却水が循環するチャンバー内に押し出すと同時に、円周方向に10枚の刃を有する高速回転カッターをダイスに密着させて、毎分3300回転で切断し、脱水乾燥して球形の発泡性粒子を得た。この時のダイホルダでの溶融樹脂温度は180℃であり、発泡性粒子の吐出量は130kg/hであった。
【0077】
前記で得られた発泡性粒子を中心部を通る面でカットし、カット面を顕微FT−IR透過イメージング測定した結果、ヘキサフェノキシシクロトリホスファゼンは粒子内に均一に存在していることを確認した。
これ以降、実施例1と同様にして発泡成形体を得た。発泡成形体の内部融着率は20%であった。得られた発泡成形体の消炎時間は3秒であった。
【0078】
比較例4
スチレン樹脂60質量部に微粉末タルク0.3質量部、ヘキサフェノキシシクロトリホスファゼン40質量部使用した他は、比較例3と同様に発泡性粒子を得た。前記で得られた発泡性粒子中でヘキサフェノキシシクロトリホスファゼンは均一に存在していることを確認した。
発泡成形体の内部融着率は10%であった。消炎時間は1秒であり良好であった。
比較例5
ヘキサフェノキシシクロトリホスファゼンを添加しなかった他は、実施例2と同様にして発泡成形体を得た。発泡成形体の内部融着率は95%と非常に良好であったが、消炎しなかった。
【0079】
比較例6
スチレン樹脂50質量部に微粉末タルクを0.3質量部、ヘキサフェノキシシクロトリホスファゼンを50質量部使用した他は、比較例3と同様に発泡成形体を得た。なお、得られた難燃性粒子を中心部を通る面でカットし、カット面を顕微IRイメージング測定した結果、ヘキサフェノキシシクロトリホスファゼンは均一に存在していることを確認した。
しかし、発泡成形体の内部融着率は10%と良好なものは得られなかった。内部融着率が良好でないため、難燃性の試験は行わなかった。
評価結果を表1に示す。
【0080】
【表1】
【0081】
表1から、フェノキシホスファゼン化合物が、特定量含まれ、かつ難燃性粒子の表層に偏在していることで、内部融着性と難燃性とが高い次元で両立した発泡成形体を与える難燃性粒子を提供できる。