特許第6057477号(P6057477)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 学校法人加計学園 岡山理科大学の特許一覧 ▶ 古川 裕人の特許一覧

<>
  • 特許6057477-非接触給電装置 図000042
  • 特許6057477-非接触給電装置 図000043
  • 特許6057477-非接触給電装置 図000044
  • 特許6057477-非接触給電装置 図000045
  • 特許6057477-非接触給電装置 図000046
  • 特許6057477-非接触給電装置 図000047
  • 特許6057477-非接触給電装置 図000048
  • 特許6057477-非接触給電装置 図000049
  • 特許6057477-非接触給電装置 図000050
  • 特許6057477-非接触給電装置 図000051
  • 特許6057477-非接触給電装置 図000052
  • 特許6057477-非接触給電装置 図000053
  • 特許6057477-非接触給電装置 図000054
  • 特許6057477-非接触給電装置 図000055
  • 特許6057477-非接触給電装置 図000056
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6057477
(24)【登録日】2016年12月16日
(45)【発行日】2017年1月11日
(54)【発明の名称】非接触給電装置
(51)【国際特許分類】
   H02J 50/12 20160101AFI20161226BHJP
   H02J 7/00 20060101ALI20161226BHJP
【FI】
   H02J50/12
   H02J7/00 301D
【請求項の数】4
【全頁数】14
(21)【出願番号】特願2014-210680(P2014-210680)
(22)【出願日】2014年10月15日
(65)【公開番号】特開2016-82670(P2016-82670A)
(43)【公開日】2016年5月16日
【審査請求日】2015年2月6日
【新規性喪失の例外の表示】特許法第30条第2項適用 (1)ウェブサイトの掲載日:2014年5月22日,ウェブサイトのアドレス:http://www.ieee.org/publications_standards/pubications/rights/index.html,題目:「Wireless Power Transmission Through Concrete Using Circuits Resonating at Utility Frequency of 60 Hz」 (2)平成26年度電気関係学会北陸支部連合大会のプログラム,開催日:平成26年9月12日,題目:A62「コンクリート壁で隔たれた空間へのワイヤレス給電」
(73)【特許権者】
【識別番号】515336009
【氏名又は名称】学校法人加計学園 岡山理科大学
(73)【特許権者】
【識別番号】514262657
【氏名又は名称】古川 裕人
(74)【代理人】
【識別番号】100114074
【弁理士】
【氏名又は名称】大谷 嘉一
(72)【発明者】
【氏名】石田 弘樹
(72)【発明者】
【氏名】古川 裕人
【審査官】 猪瀬 隆広
(56)【参考文献】
【文献】 特開2013−038991(JP,A)
【文献】 特開2013−255349(JP,A)
【文献】 特開2012−135109(JP,A)
【文献】 特開2010−114964(JP,A)
【文献】 特開2012−143106(JP,A)
【文献】 特開2010−063245(JP,A)
【文献】 特開2013−215065(JP,A)
【文献】 再公表特許第2013/085030(JP,A1)
【文献】 特開2014−023262(JP,A)
【文献】 特開2012−191697(JP,A)
【文献】 特開2013−055835(JP,A)
【文献】 特開2013−066291(JP,A)
【文献】 特開2013−243431(JP,A)
【文献】 特開2007−149845(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 50/00− 50/90
H02J 7/00
(57)【特許請求の範囲】
【請求項1】
給電側の共振用コンデンサが接続された給電コイルと、
受電側の共振用コンデンサが接続された受電コイルとを磁界共鳴により結合してあり、
前記給電コイル及び前記受電コイルは、対向配置した一対の磁性コアの各々に巻線として巻かれており、
前記各磁性コアは対向する磁極の嶺部が先端部に向けて徐々に薄くなるシングルフレア形状をし、動作周波数が400Hz以下の低周波であることを特徴とする非接触給電装置。
【請求項2】
前記各磁性コアは略コ字形状であって、前記各磁性コアの中央部に給電コイル又は受電コイルが巻き廻されていることを特徴とする請求項1記載の非接触給電装置。
【請求項3】
前記動作周波数が50Hz又は60Hzの商用電源周波数であることを特徴とする請求項1又は2記載の非接触給電装置。
【請求項4】
バッテリーの充電又は電子・電気機器の電源用に用いることを特徴とする請求項1〜3のいずれかに記載の非接触給電装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、非接触型(ワイヤレス型)の給電装置に関する。
【背景技術】
【0002】
送電用のケーブルやワイヤー等を用いない給電方法としては、磁界共鳴方式,電磁誘導方式,マイクロ波方式等が知られている。
このうち、電磁誘導方式は伝送距離が短く、マイクロ波方式は伝送距離が長いものの、伝送効率が悪い欠点がある。
これらに対して、磁界共鳴方式は、例えば数百W〜数kWの比較的大きな電力を例えば数十cm〜数mの比較的長距離を伝送することができる。
磁界共鳴方式としては、2006年にマサチューセッツ工科大学のKurs氏らにより報告があり(非特許文献1)、特許文献1には電動車両及び車両用給電装置が提案されている。
しかし、これまでに提案された方法は、例えば10kHz以上の動作周波数によるものである。
これは、周波数を高くすると高い伝送効率が得られるからであるが、一般家庭に設置されている50Hz又は60Hzの商用電源を用いるとなると、次のように複雑なシステムにならざるを得ない。
まず、AC−DCコンバータ等にて商用電源の50Hz又は60Hzの交流を直流に変換し、次にDC−ACインバータ等にて直流を高周波に変換して給電コイルから受電コイル側に非接触送電し、受電コイル例では逆にAC−ACコンバータ等で高周波を直流に変換し、さらにDC−ACインバータ等にて商用交流に変換しなければ家電製品に使用できないシステム上の技術的課題がある。
なお、マトリックスコンバーター(株式会社安川電機)と称させるAC−AC直接変換装置も提案されているが、その場合も変換エネルギーロスが生じる。
また、特許文献1に開示するように電動車両の充電に用いる場合に、給電側の一次コイルと受電側の二次コイルとの間に、例えばコンクリート等の物体が介在すると電力がこのような介在物に吸収され、実質的に送電できなくなる問題がある。
また、例えば10kHz,50Wを超える電磁波の放射等、高周電磁波の場合に法律上の規制を受けることもある。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2009−106136号公報
【非特許文献】
【0004】
【非特許文献1】A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, pp. 83-86 (2007).
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明は、動作周波数として低周波を用いた磁界共鳴方式による非接触給電装置の提供を目的とする。
【課題を解決するための手段】
【0006】
本発明に係る非接触給電装置は、給電側の共振用コンデンサが接続された給電コイルと、受電側の共振用コンデンサが接続された受電コイルとを磁界共鳴により結合してあり、前記給電コイル及び前記受電コイルは、対向配置した一対の磁性コアの各々に巻線として巻かれており、前記各磁性コアは対向する磁極の嶺部が先端部に向けて徐々に薄くなるシングルフレア形状をし、動作周波数が400Hz以下の低周波であることを特徴とする。
本発明において、400Hz以下の低周波数を用いるのは、異形状の磁性コアを製作するのに珪素鋼板を用いた場合に、図15にその動作周波数と伝送効率のグラフを示すように400Hzを超えると伝送効率が急激に下がるからである。
ここで、動作周波数は商用電源周波数であってもよい。
動作周波数に50Hz又は60Hzを用いると、コンバータやインバータ等が不要になり、システムが簡単になる。
このような給電装置は、バッテリーの充電又は電子・電気機器の電源用に用いることができる。
【発明の効果】
【0007】
本発明に係る非接触給電装置は、動作周波数として400Hz以下の低周波を用いることができるので、例えばコンクリート,アスファルト,木材,プラスチック等の障害物があっても、それによる電力吸収を少なく抑えることができる。
また、例えば家庭内でワイヤレスにて電力を家電製品等に供給する場合にあっては、50Hz又は60Hz等の商用電源をそのまま動作周波数に用いることができるので、従来のコンバータ,インバータ等の周辺機器が不要になり、簡単な非接触給電システムを構築することができる。
【図面の簡単な説明】
【0008】
図1】実験回路図を示す。
図2】実験装置を示す。
図3】(a)は回路の例、(b)は等価回路図を示す。
図4】評価した磁性コアの仕様を示す。
図5】伝送距離δに対する伝送効率ηの理論式と実験値の比較(銅損と鉄損に加え漂遊負荷損も考慮した計算結果)を示す。
図6】伝送距離δに対する伝送電力Poutを示す。
図7】鉄筋入りコンクリートの配置図を示す。
図8】コンクリートブロックの影響の調査結果を示す。
図9】結合係数kと伝達距離δの関係(実験結果)を示す。
図10】FDTDシミュレーションで用いる二次元空間に配置した仮想的な格子を示す。
図11】FDTDシミュレーションを用いて、(a)はP1、(b)はP2、(c)はP3をシミュレーションした磁力線の分布を示す。上側が給電装置、下側が受電装置を示す。
図12】FDTDシミュレーションにより算出された結合係数と伝送距離の関係を示す。
図13】磁性コアP4の仕様を示す。
図14】(a)は伝送距離δと伝送効率ηの関係、(b)は伝送距離δと伝送電力Poutとの関係を示す。
図15】珪素鋼板を用いた磁性コアにおける動作周波数と伝送効率ηのグラフを示す。
【発明を実施するための形態】
【0009】
本発明に係る非接触給電装置の構造例を以下具体的に説明するが、本発明はこれに限定されない。
【0010】
非接触による電力の伝送効率は、コイルの結合係数kとクオリティファクタQとの積が大きい方がよくなる。
ここでQは周波数とコイルのインダクタンスに比例し、本発明においては低周波数を用いるのでコイルのインダクタンスを高くするためにコイルの巻線の中心にいわゆる鉄芯とも称される磁性コアを用いた。
磁石コアの材料として珪素約3%含有する厚さ0.35mmの方向性珪素鋼板を所定のコア形状に切り出して積層し、複数層に巻線を行い試作評価した。
【0011】
実験回路図を図1に示し、実験装置の概要を図2に示す。
給電側と受電側の伝送距離は、アクリル板で製作した台を用いて調整した。
コイルに共振用コンデンサを接続する方法としては、並列接続と直列接続する方法が公知である。
従って、給電コイルと受電コイルとの組み合せの場合に4つのパターンがある。
いずれのパターンでも問題がなく、本実施例では図3(a)に示す並列接続同士の組み合せを例に回路解析を行った。
なお、図3において、rは給電コイルの巻線抵抗、jxは給電コイルの漏れインダクタンス、−jxc1は給電コイルのコンデンサ、rは受電コイルの巻線抵抗、jxは受電コイルの漏れインダクタンス、−jxc2は受電コイルのコンデンサ、rは鉄損抵抗、rは漂遊負荷損抵抗、jxは相互インダクタンス、Rは負荷抵抗である。
【0012】
等価回路の解析について説明する。
共振周波数ωにおいて、xとxのインダクタンス成分をキャンセルするようなxcは次の式に従う。
【数1】
また、Cを接続する前の合成インピーダンスZは式(1)の条件を満たした状態では、式(2)として表現できる。
この時、抵抗成分であるr、r、r、rはリアクタンス成分に対して十分に小さいため無視した。
【数2】
を接続したときの全合成インピーダンスをZ’とすると、
【数3】
式(4)のCを満たすとき、Z’の虚数部はゼロになる。
よって、式(1)と式(4)が共鳴に必要なコンデンサの条件である。
【数4】
次に、電圧の関係について調べると、VとVの関係は、
【数5】
次にVIN=Vであり、且つ
【数6】
であるから、VとVINの関係は次式となる。
【数7】
つまり、VとVINの関係は式(7)で表される。
【数8】
次に回路に流れる各電流について考える。
とIの関係は式(7)の両辺をRで割ることで求められる。
【数9】
このとき、IとIは同相である。
とIの関係は、
【数10】
よって、Iの絶対値は次のように表現できる。
【数11】
また、IとIの位相差は式(10)で表される。
【数12】
であるから、
【数13】
とIとIの関係は、キルヒホッフの第一法則より
【数14】
銅損、鉄損、漂遊負荷損を考慮した伝送効率は式(12)である。
【数15】
式(12)に式(8)から式(11)の電流の式を代入すると次式になる。
【数16】
銅損が最小となる負荷抵抗の値は、式(13)の通りである。
【数17】
式(12)に式(13)を代入することによって鉄損、銅損、漂遊負荷損を考慮した最大伝送効率を式(14)のように求めることができる。
ただし、ここでの最大効率とは、銅損が最小となる条件での効率であり、鉄損、漂遊負荷損が最小になる条件ではない。
【数18】
ここで、kと2つのコイルのQおよびQは次のように定義される。
【数19】
このとき、Lは給電コイルの自己インダクタンス、Lは受電コイルの自己インダクタンス、Mは相互インダクタンスを表す。式(15)から次の式が導かれる。
【数20】
kとQを用いて式(14)を書き直すと、
【数21】
式(10)で示した位相差に銅損が最小となる条件、式(13)を代入する。
【数22】
式(18)を式(17)へ代入し、
【数23】
次に、式(20)は任意の条件で真であるため、式(21)のように式(19)を近似できる。
【数24】
とQが等しい場合は、
【数25】
が成り立つので式(21)は更に式(22)に近似できる。
【数26】
式(22)が60Hzのワイヤレス給電装置に適合していると考えられる伝送効率の理論式である。
なお、分母の各項はそれぞれ銅損、鉄損、漂遊負荷損を表している。
【数27】
【数28】
【数29】
【数30】
【0013】
図4に実験及び理論解析に用いた磁性コアの仕様を示し、図5に伝送距離δに対する理論式による値と実験結果を示す。
また、図6に伝送距離δに対する伝送電力Poutの実験結果と理論式による値を示す。
概ね、理論式が実験値と一致した。
この結果から磁性コアを用いることにより伝達距離100mmにて100W以上の電力を送伝することが確認でき、その理論式の確からしさが実証できた。
また、磁性コアの影響が大きいことも明らかになった。
図4において磁性コアP2は、P1の磁極面積を2倍にした仕様であり、P3はP2とほぼ同じ磁極面積であるが、コイル断面積を0.67倍にしたものである。
今回の評価では、P3が軽くて伝送電力の値が最も大きかった。
【0014】
次に給電コイルと受電コイルとの間にコンクリートブロックを介在させた時の影響を調査した。
図7(a)に示すようなコンクリートブロックを作成し、パターンAとBの配置を評価した。
鉄筋は直径5mm、ブロックの厚みは50mmと100mmのものを用いた。
磁性コアはP3のものである。
その結果を図8に示す。
このことから本発明に係る給電装置を用いると、コンクリートを介在させても高い伝送効率を示すことが分かる。
【0015】
次に磁性コアの形状について検討した。
先に述べたように伝送効率は、コイルのkとQの値が大きい方が高くなる。
このことは後述する式(26)からもわかる。
P1、P2、およびP3の磁性コアをもつ装置は、磁性コアを持たない場合のコイルの自己インダクタンスが同じ値になるように巻線が巻かれている。
図9に結合係数kと伝送距離δの関係を示す。
kの値は、3つの装置で異なることから磁性コアの寸法や形状に影響される値であることがわかる。
装置を設計するためには、kを理論予測できる磁性コアの寸法や形状を考慮した電磁界シミュレーションが必要になる。
kは、給電コイルで作られた全磁束をΦ、Φのうち受電コイルを鎖交した磁束Φとすれば、両者の比で定義できる。
【数31】
コンピューターシミュレーションには、装置およびその周囲の空間での磁界をシュミレーションし、式(24)からkを推測する機能が必要になる。
電磁界シミュレーションには、有限要素法、モーメント法、時間領域差分法(FDTD)などかある。
本実施例では時間領域差分法(FDTD)を用いた。
図10(a)は、FDTDシミュレーションに用いる二次元空間に仮想的に配置した格子の概念図である。
電界および磁界はこの上で時間および空間に対して変化する。
図10(b)は、任意の位置での一つの格子を抜き出したものである。
任意の時間t=nΔtを定義する。
ここで、nは整数、Δtは刻み時間幅である。
また、任意の座標(x=iΔx,y=jΔy)と定義する。
ここで、i、jは整数、Δx、Δyは、x方法およびy方向での一辺の格子長である。
任意の時間および座標でのz軸方向の電界Eは次式を表現すると
【数32】
Maxwell方程式に従えば、
【数33】
は、次式で表現できる。
【数34】
ここで、αおよびβは、以下の式で表される定数である。
【数35】
さらに、σは伝導率、σは誘電率、μは誘電率である。
次に式(26)で示した
【数36】
を基準の時刻および座標として、Δt/2進んだ時刻における、座標
【数37】
でのx方向の磁界、および座標
【数38】
のy方向の磁界は、Maxwell方程式に従い次式で表される。
【数39】
【数40】
式(26)、式(28)および式(29)より、ある時刻、ある座標における電界は、同じ座標におけるΔt前の時刻の電界と、その周囲のΔt/2前の時刻の磁界により求められる。
同様にある時刻、ある座標における磁界は、同じ座標におけるΔt前の時刻の磁界と、その周囲のΔt/2前の時刻の電界により求められる。
実施例として図11にP1、P2、P3のシミュレーション結果を示す。
ある時刻におけるx方向およびy方向の磁界[式(28)と(29)を指す。]からxy平面での磁界強度を求め、磁界強度を色の濃淡および等高線で表した二次元でのシミュレーション結果である。
このシミュレーション結果から求めたkと伝送距離δの関係を図12に示す。
図9の実験結果と図12のシミュレーション結果を比較すると、P1,P2及びP3の相対的な傾向は一致した。
【0016】
シミュレーションに基づいて改良設計した磁性コアの仕様を図13にP4として示す。
また、図14に伝送距離δに対する伝送効率ηと伝送電力Poutの実測値と理論式を用いた計算結果を示す。
P4は、P3に比較して軽く、伝送距離10cmのときにη=79%,Pout=190Wの大きな値を示した。
シミュレーション結果及び実験結果から軽量化を図りつつ、結合係数kを大きくするにはP2のように磁束が自身でループするのを抑え、磁束が通過しない外側の先端部は肉厚を薄くすることで軽量化を図るのがよい。
P4は磁極面積を大きくし且つ軽量化を図るのに、図13では磁性コアの形状を中央部に巻線をし、その両側を磁極とした略コ字形状にし、その両側の先端部が徐々に薄くなるようにシングルフレア形状としたものである。
また、コーナー角をR形状、例えばR=3mm以上に設定した。
これにより、P3よりも軽い10kgとなり伝送効率も向上した。
図1
図3
図8
図9
図12
図2
図4
図5
図6
図7
図10
図11
図13
図14
図15