(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【0001】
本発明は、リアクター、特に欧州特許出願公開第1839739号明細書で開示されるようなマイクロリアクターの製造方法、およびリアクターの集合体に関する。
【0002】
1.従来技術
リアクターの一例としてのマイクロリアクターが、欧州特許出願公開第1839739号明細書に開示される。リアクターは、一つ以上の反応物または抽出物(典型的には、二つ以上の反応物の混合を含む)の反応のために設けられ、そして加熱又は冷却を経る前記反応物の反応の制御のため、あるいは混合の前、その間、および/またはその後に前記反応物を熱的にバッファする(buffering)ためのある程度の大きさが設けられた反応装置である。小さな領域で化学反応を起こすための他のマイクロリアクターは、例えば欧州特許出願公開第0688242号明細書、欧州特許出願公開第1031375号明細書、国際公開第2004/045761号パンフレット、および米国特許出願公開第2004/0109798号明細書で既知である。
【0003】
リアクターで起こる化学反応は、様々な種類の反応に分類され得る。下記の本発明の方法によって作られるリアクターは、好ましくは、いわゆるタイプB反応を行うために設計される。タイプB反応、例えばウィッティヒ反応またはジケテンを用いる芳香族アミンのアセトアシル化は、典型的な反応時間が1秒〜10分である急速かつ温度に敏感な反応である。タイプB反応に重要なのは、反応温度または温度状況である。このため、混合および滞留区域の体積は、プロセス反応物(process reactant)が明確な条件、すなわち温度状況で、明確な時間に亘ってマイクロリアクターに残るような流速に適合されなければならない。
【0004】
マイクロリアクターのような適当なリアクターの開発において、第一に、そこで起こる化学反応、望ましい容積流量(volumetric flow-rate)、すなわちその(単位時間当たりの)出力、および(これらの要因の結果かもしれないが)リアクターの厳密な種類および本質の設計などが、決定されるに違いない。全ての要求を満たすリアクターが利用できない場合、要求に応じて特注され得る(またはされるに違いない)。望ましい容積流量目標を除いて全ての要求がすでに用いられているリアクターによって満たされる場合、望ましい目標容積流量を達成するための少なくとも三つの選択肢がある(なお、一般性を失うことなく、それは目標のリアクターによる「スケールアップ」とも呼ばれる容積流量の増加に適用される。しかし、発明の方法は、当然のことながら、「スケールダウン」と呼ばれる容積流量の減少にも適用できる)。
【0005】
(1)反応物の混合は拡大されても良い。しかし、この方法は、たとえば混合反応(mixing behaviour)、熱現像(heat development)、沈殿現象(sedimentation phenomena)、乳化などについては不都合である。(2)ナンバリングアップ(numbering-up)、またはパラレル化(parallelization)と呼ばれるように、リアクターの数は増やされても良い。しかし、全ての連結されたリアクターにおいて化学量論が正確に等しくはないため、不都合なことにパラレル化は、「反応流路」を物理的に分離させた個々のマイクロリアクターの反応パラメータのそれぞれの高度な制御を要する。その上、清掃作業がさらに大規模になり、個々のリアクターのそれぞれの清掃のタイミングはさらに複雑化し、さらなるリアクターを必要とする。(3)使用されるリアクターはサイズアップされても良い。しかし、これは、特にいわゆる混合区域における無秩序な状態のために、リアクター(すなわち、その流路系)の「延伸(stretching)」によっては簡単には行われ得ないから、これは流体力学の変化、そしてそのため、反応条件の変化を生じるだろう。その可能な容積流量、そして、その生産性を高める意図の語であるリアクターの「サイズアップ」(化学的および物理的な反応パラメータの適合の代わりの技術的解決法)の代わりに、上述の語「スケールアップ」は、本明細書で好んで用いられる。
【0006】
本発明の開示
本発明の目的は、同じ生成物を作るために設計されるが容積流量が目標の容積流量と異なる標準のリアクターから始まり、目標のリアクターの中に流れ込む複数の反応物または抽出物の目標のリアクターの内で進む化学反応によって、所望の生成物の目標の容積流量を達成する目標のリアクター、特にマイクロリアクターの製造方法を提供することである。
【0007】
上記の目的は、請求項1の特徴を備える方法によって解決される。その有益な変更は、従属請求項によって規定される。請求項5は、標準のリアクターと目標のリアクターとの集合体に係り、前記目標のリアクターは請求項1の方法によって製造される。
【0008】
本発明(請求項1)によれば、目標のリアクターの外に連続的に流れ出る生成物を目標の容積流量f
2とするように、目標のリアクターの中に連続的に流れ込む複数の反応物が混合されるとともに相互転換する流路系を有する目標のリアクターの製造方法において、目標のリアクターの最小の水力直径d
h2は、乱流のもしくは遷移性の乱流の流れにおいて、以下の関係に基いて計算される。
【数1】
…(1)
【0009】
同じ流体の種類の流路系を有する標準のリアクターの対応する最小の水力直径d
h1との間で、nは1>n≧0の非整数、f
1は同様の相互転換を行う標準のリアクターの標準の容積流量、そして、f
2は目標の容積流量である。前記最小の水力直径は、複数の反応物が混合される区域(以下、「混合区域」と呼ぶ)に存する。
【0010】
直列に連結された複数のプロセス板を備えるモジュール式のリアクターにおいて、「流路系」は、当然のこととして、以下で述べられるように適当な接続部によって相互連結されたそれぞれの個々のプロセス板の「補助流路系」の集合であり、
これらの補助流路系のうちの最初および最後のものは、一つ以上のポンプおよび受容器
に適当な接続部を介してそれぞれ接続される。
【0011】
上述の「流体の種類」は、以下の点を特徴とし得、または以下の特徴と結合し得る。(1)流路系は主に二次元で延びる。(2)流路系は、(a)少なくとも一つは
複数の反応物のうちの1つのためであり、複数の反応物を合体させる複数の供給
流路、(b)曲がりくねった流路、(c)
反応により生成された生成物を
流路から出すための少なくとも一つの放出流路、および(d)内部
並びに外部接続のための接続部(出入口)、すなわち、ポンプとマイクロリアクターの複数の供給路との間の入口
(外部接続)、プロセス板が一つより多い場合に対となっ
たプロセス板
相互の接続口
(内部接続)、およびマイクロリアクターの少なくとも一つの放出流路と生成物収集装置、すなわち容器または反応後滞留ボリュームとの間の出口
(外部接続)を備える。(3)
前記曲がりくねった流路の曲がりくねった構造の形状および大きさ
は、少なくとも二つの種類の区域と、複数の反応物の間の化学反応および渦巻きが主に乱流の流動様式(レイノルズ数が200〜2000の間)で起こるとともに最小の水力直
径(混合区域の特徴のようにみなされ
得る)
が規定される少なくとも一つの乱流混合区域と、少なくとも一つの
実質的な層流の滞留区域と、を備える。
前記滞留区域は、幅、高さ、および長さによって特徴づけられ、その主な仕事は混合(圧力降下)ではなく、
層流の流れでの熱交換である。なお、非常に小さい度合ではあるが、混合は滞留区域でも行われても良い。滞留区域でみられる混
合は、第2の混合とも呼ばれる。最後に、混合は、流路の湾曲部および端部において発生する複数の渦によって引き起こされる。なお、それぞれの
機能に見られる乱流混合区域および層流滞留区域のスケールアップの判定基準は異なっている。このため、乱流状態において、「混合のスケールアップの判定基準」は、単位容積あたりのエネルギー入力である。より高い流量において、このエネルギー入力に関する計算された水力直径は、方程式(1)で表される。増加されたエネルギーの消失は、より高い圧力降下によって得られる。圧力降下の支配的な要素は混合区域に起因し、これはマイクロリアクターを高い流量で作動させているときに注意されなければならない主要な区域である。例えば、流量が100ミリリットル/分から200ミリリットル/分にするのであれば、混合区域の水力直径は1.34倍に増加するべきである。滞留区域では状況が異なる。ここでは、
プロセス板
を同じ形状(幅×高さ)を保つことが可能であるが、長さが増加することは当業者には明らかである。上述のように、滞留区域の主な
機能は混合ではなく、熱交換である。このため、滞留区域のスケールアップの判定基準は、水力直径ではなく、流路形状を一定に(可能な限り長く)保つことである。しかし、高い容積流量での幾つかの状況において、流路の高さを増加させ、同じ流路の幅を保ち、例えば0.5×5平方ミリメートルから0.5×10平方ミリメートルにするに足る。熱交換が重要であるため、流路幅は、その区域において重要なスケールアップの要因であり、小さな
プロセス板から大きな
プロセス板まで一定に保たれる。
【0012】
このため、本発明の要点は、目標のリアクターが上述の標準のリアクターの物理量と、目標のリアクターが望ましく有するだろう目標の容積流量とに基づいて製造されるということである。上記のように、それは、一般性を失うことなく、目標のリアクターが標準のリアクターのスケールアップから生じる場合、すなわちf
2>f
1の場合に関する。発明の本質は、当然のこととして、f
1>f
2(スケールダウン)の場合にも等しく適用できる。本発明の要点は、言い換えると、容積流量が利用可能なまたは既知のリアクターのf
1から目標のリアクターのf
2に増大するものであるときに、複数のリアクターのパラレル化を避けるためのものである。上で仄めかすように、混合区域の流量および形状から得られる混合区域の入口と出口との間での圧力降下は、反応物の流れを進めるポンプによって与えられる入口圧力の絶対値よりも、それらの間の混合の効果を決定する重要な物理量である。実際に、この圧力降下は電子回路の電気抵抗における電圧降下と(専門用語として、そして物理的に)同様であり、系、ここでは反応物の流体に移されたエネルギー、およびそのため、混合効果についての基準である。具体的にいえば、本発明に係る反応物の混合へのエネルギー移動は、約70%である。滞留区域の対応する値は、約25%以下である。エネルギーの残りの部分は接続部(取付部品)に移される。好都合に、流れに沿う本質の区域、すなわち混合区域での圧力降下は容易に測定できる。
【0013】
さらに、上記の流路系を除いて、本発明によれば、標準のリアクターの種類がモジュール式か非モジュール式かについて限定されない。モジュール式のリアクターの場合、前記流路系は、欧州特許出願公開第1839739号明細書に開示されるマイクロリアクターの板状のプロセスモジュールで形成されても良い。
【0014】
以後、方程式(1)の簡単な展開が与えられる。
【0015】
流れがほとんど完全に層流である長い直線状の流路区域(すなわち滞留区域)、および流れが完全に近い乱流である短い流路区域(すなわち混合区域)において、流通系での圧力損失は、運動エネルギーの条件を含むとともに位置エネルギーを無視するベルヌーイの方程式で示される。なお、専門用語の点で、断続的に配置されてそれぞれの長さL
iを有するここでの流路は、混合区域と層流区域とに分けられる。流路におけるそれぞれの混合区域は、繋ぎ合わされた真珠のようなひとつながりの混合要素(渦の位置)である。重要で有効な水力直径d
hは、混合要素の中の流路の部分(以下「混合要素の中の流路」と略す)に存する。水力直径d
h,iが混合および渦の発生とそれに結び付けられたエネルギー損失の原因となるので、層流区域が無視される近似式がある程度作られる。
【0016】
それぞれの長さL
i、およびそれぞれの水力直径d
h,iを有するN個の混合要素の全体の圧力損失は、次の式で与えられる。
【数2】
…(2)
【0017】
w
iは、i番目の混合要素の中の特有の流体速度、C
fは摩擦係数、そしてReはべき指数nが累乗されるレイノルズ数である。
【0018】
それぞれの混合要素は、その特有の水力直径d
hおよびその長さLによって特徴づけられ得る。同様の混合時間において同様の混合効果を生じる同様の流れの状態および系への同様のエネルギー入力を達成するため、スケールアップまたはスケールダウンの間で長さの縮尺の比は二つとも一定に保たれるべきであることを我々は発見した。混合区域の中の流路については、圧力損失は以下の方程式で表され得る。
【数3】
…(3)
【0019】
分母におけるレイノルズ数Reのべき指数nは、混合区域の流路における流動様式に依存する。完全に層流または完全に乱流であるならば、nはそれぞれ1、0である。複雑な混合要素において、しばしば0〜1の間の値である非整数nを導く、直線状層流と完全な乱流との間の遷移流が主になる。特に0近く(大部分が乱流またはほぼ完全に乱流)での偏りの許容値は1近くの領域(大部分が層流)よりも高い。T型の混合区域においてReが100〜1000である流動様式であると、我々はべき指数が約1/3となることを発見した。
【0020】
方程式2および3を合体させ、近似式f=d
h2w(水力直径[m]×平均流速[ms
−1])[m
3s
−1]およびその結果であるd
h=(f/w)
1/2、およびRe=d
hw/ν=f/νd
hと方程式3とを用いれば、水力直径d
hは次のようになる。
【数4】
…(4)
【0021】
νは動粘性率[m
2s
−3]を意味し、fは容積流量[m
3s
−1]を意味し、ρは密度[kgm
−3]を意味する。
【0022】
本発明の発明者は、混合効率は局所的なエネルギーの消散率、すなわち、少なくとも二つの流れが混合する間に転化した圧力エネルギーの損失および流路の形状に強く依存することを発見した。流路は流れを導くとともに流れの偏りを生じる。せん断力に加えて、新しい流れの垂直力が、流れに作用するとともに、第2の流れ構造、渦、および再循環区域を生じさせる。疑義を回避するために、第1の流れ構造は、微細流路のリアクターの構成要素の外に出る、ハードコードされた(hard coded)流れ構造である。交互に並ぶ混合要素、または繰り返される偏った流れによるそのような第2の流れの渦のような急速な変化は、有効な流れの混合を生じさせる。これらの第2の流れ構造および渦を生じさせるために、流体はその流体の圧力から消費される力学的エネルギーを要する。このため、我々は単位容積あたりの圧力降下を混合の基準として用い、以下のエネルギー散逸率εで表す。
【数5】
…(5)
【0023】
圧力損失が生じる効果的な流路の長さΔLの近似式の使用は、全ての混合要素の合計の長さに等しい。ΔLをΔL=N
iL
iと規定する。さらなるエネルギーが混合流路で消失し、より短い方は、より小さい第2の流体構造(すなわち渦および再循環区域)のため、種類の拡散が混合の最後の基準として生じる混合時間である。種類の拡散、すなわち混合時間t
m[s]はシュミット数Sc、動粘性率ν[m
2s
−3]と主要な種類の拡散率との比で示され得る。
【数6】
…(6)
【0024】
混合係数Cmはボーン(J.R.ボーン、オーガニック・プロセス・リサーチ&デベロップメント第7巻、2003年、471〜508ページ)において吸込み率17.3として与えられている。水力直径は容積流量および典型的な混合時間に直ちに対応し得る。
【数7】
…(7)
【0025】
マイクロリアクターへの多くの産業上の利用のため、典型的な圧力損失は1.0、5.0、および20バールで、そして混合時間は0.1、0.01、および0.001秒であるのが適切な範囲である。
【0026】
産業上の利用のためのマイクロリアクターにおけるべき指数nの適切な値は、0(完全な乱流)から約1/4(遷移および低乱流)を越して約1/3(層渦流)までである。べき指数nが1である完全な層流は、混合効率が小さいためここでは考慮しない。
【0027】
以下の水力直径および圧力降下の相互関係を使うことで、
【数8】
…(10)
【0028】
圧力降下を補うために求められるポンプ力は次のように表され得る。
【数9】
…(11)
【0029】
このため、同様の混合時間を得るために、直径と容積流量の比は、上に示したような以下の方程式1のようになるべきである。
【数10】
…(1)
【0030】
適切な流動様式、
即ち、流れの状態(乱流(n=0)および遷移性の乱流(n=1/4および1/3))におけるべき指数(3−n)/(7−n)の例は、それぞれ、3/7=0.4286(最適)、および11/27=0.4074あるいは2/5=0.4(両方とも静止した許容可能な物理パラメータを生じる)である。それと比較すると、完全な層流流動様式、
即ち、層流(n=1、すなわちマイクロリアクターにおける効率の悪い混合)でのべき指数は、2/6=0.3333である。このため、許容可能かつ比較可能な混合時間と、許容可能な圧力降下(すなわち必要とされるポンプ力)およびエネルギー消失(すなわち、流れへのエネルギー入力)の点から表現された有効性とを達成するために、べき指数
は、0.4286
ないし0.4の狭い範囲に収まるべきである。
【0031】
不適切な比である
n=1と比べ適切な乱流/遷移流比、例えば
n=1/4および1/3において、流れ
(流量)が10倍に増加したときの最適な要求水力直径の結果は、好ましいnの範囲から外れたときに劇的な変化を
示す。
【0032】
nの好ましい範囲から外れたときに必要なポンプ力の結果もまた、劇的である。10倍に増加された流量のために、おおよそ7%小さい水量直径は、乱流流動様式において同様の混合時間を達成するために二倍近いポンプ力を要する。33%小さい水力直径は、おおよそ10倍のポンプ力を要する。乱流における方程式1の値に比べて22%大きい直径における10倍の流量の増加は、2倍長い混合時間に対応する。
【0033】
このため、小さすぎる直径は大きすぎるポンプ力を要し、大きすぎる直径は遅すぎる混合を生ずる。
【0034】
流路形状、流動様式(レイノルズ数によって決定され、(流量×水力直径)と100より大きいべきで好ましくは300より大きい動粘性率との比)、および圧力降下。流路の水力のまたは球形と同等の直径d
hは、一般的にd
h=4A/Uとして規定される。Aは断面積であり、Uは流路の断面の濡れ辺長である。上述のレイノルズ数Reへの橋は、Re=ρfd
h/μという定義なしで掛けられ得る。d
hは前記水力直径である。他の量は流体の密度ρ、流量f、および動粘性率μである。なお、方程式1は乱流においてのみ確かであって、欧州特許出願公開第1839739号明細書に開示されるマイクロリアクターおよびその変形における重大な混合区域のスケールアップは制限される。
【0035】
本質的な設計は標準のリアクターと目標のリアクターとの間で変わらないが、当業者にとって既知の幾つかの物理変数は標準のリアクターから目標のリアクターへの容積流量の変化に適切に適合される。本発明によれば、与えられた大きさから次の大きさへの、例えば、ドイツ工業規格のA5サイズと同等のプロセス板からドイツ工業規格のA4サイズと同等のプロセス板へのスケールアップに最も好ましいのは、混合区域の幅および高さが1.3倍から1.4倍に増加するときに、混合領域における1/3〜1/7倍の圧力降下の変化が生じることである。一般的に、スケールアッププロセスにおいて切りつめられるべきではない最小の滞留時間が存在する。さらに変更可能なものは、曲がりくねった構造の「曲り」の数、幅および高さと同じであるこれらの曲りの「広さ」、たとえば、容積流量の増加の結果として拡大される滞留区域の容積である。なお、滞留区域の変化について言えば、入口からの圧力降下への寄与のため、圧力降下の減少は、滞留区域の拡大に対して一時関数的ではない。
【0036】
本発明の好ましい形態によれば、目標のリアクターはマイクロリアクターである。なお、ここでのマイクロリアクターは、複数の混合要素を有する少なくとも一つの混合区域を備える。上記のように、それぞれの混合要素中での反応物の混合の経過中、エネルギー損失が生じる。
【0037】
本発明の第2の好ましい形態によれば、標準のリアクターと目標のリアクターとの集合体が標準のリアクターに基づいて製造され得、上述の方法は標準のリアクターの化学反応の性質を維持するものである。
【0038】
なお、本発明の方法および製造されるリアクターは、好ましくはもっぱら医薬開発の臨床フェーズI〜IIIに用いられるものではないが、フェーズIからフェーズIIIにおいて試験で求められる人の数、そのうえ試験される医薬品の量が向上する。
【図面の簡単な説明】
【0039】
さらなる目的、利点、および特徴は、従属請求項および開示された本発明の実施例から導き出されるかもしれない。それに加えて、
【
図1】
図1は、既知のマイクロリアクターシステムの組立品の立体図を示す。
【
図2】
図2は、180°回転させられた
図1のマイクロリアクターシステムの組立品の立体図を示す。
【
図3】
図3は、
図1のマイクロリアクターシステムの縦断面図を示す。
【
図4】
図4は、
図1のマイクロリアクターシステムの組立品の温度調整モジュールの正面の断面図を示す。
【
図5】
図5は、
図4の温度調整モジュールを左から見た図を示す。
【
図6】
図6は、
図1のマイクロリアクターシステムの組立品の混合モジュールの正面の断面図を示す。
【
図7】
図7は、
図6にXで示される上方の左角部の拡大図を示す。
【
図8A】
図8Aは、サイズ2の標準のリアクターのプロセス/混合モジュールの例を示す。
【
図8B】
図8Bは、スケールアップされたサイズ3の目標のリアクターの例を示す。
【
図9】
図9は、標準のリアクター、スケールダウンされた目標のリアクター、およびスケールアップした目標のリアクターのプロセスモジュールの三つの異なる形状の流路部を示す。
【
図10】
図10は、本発明に適用される異なる混合器形状の概略図を示す。
【0040】
以下に、標準のリアクターの一例として、同じ出願人の欧州特許出願公開第1839739号明細書に開示されるマイクロリアクターを参照して本発明に関する方法が開示されるだろう。勿論、本発明に係る方法は他のリアクターにも適用され得る。当該他のリアクターの流体力学は、上で引用されたマイクロリアクターと同じパラメータによって決定され得る。
【0041】
一般的に、標準のリアクターは、少なくとも一つの乱流流動様式および少なくとも一つの層流流動様式を有し、所望の生成物を生み出す既に利用可能なリアクターかもしれないが、所望の生成物の容積流量が大きいまたは小さいという違いを有する。あるいは、標準のリアクターは、所望の生成物を作るための開発の目標に適応されたプロセスを生じ得る。その開発のプロセスは本発明の方法の最初のステップを構成し得る。そのような開発の目標に適応されたプロセスは、所望の生成物を作るための最初の目標から始まり得る。そのため、最初のリアクター試作品から所望の品質および特有の化学的特徴の生成物を生み出せる最後のリアクター試作品への種々の段階を通る適切な(標準の)リアクターの設計および構成の典型的な工学的プロセスを含み得る。言い換えると、そのような目標に適応されたプロセスの主要な一面は、生成物の特有の目標の容積流量を生ずるというよりも、所望の化学生成物を作れるようにするとともに標準のリアクターとして用いられ得るリアクター試作品に至るためのものである。
【0042】
本発明によれば、所望の生成物の所望の目標の容積流量を達成する目標のリアクターは、少なくとも一つの乱流流動様式と、少なくとも一つの層流流動様式と、を備える標準のリアクターを用いて作られ、一例として、どれほどでも所望の生成物を作れる。言い換えると、本発明に係る方法は、同じ品質および同じ化学的特徴の所望の生成物を作れる適切な標準のリアクターから始まるが、容積流量が所望の目標の容積流量と調和しない。
【0043】
本発明の出願人によって開発されたタイプBの化学反応のための標準のリアクターの一例は、欧州特許出願公開第1839739号明細書に開示されたようなマイクロリアクターである。欧州特許出願公開第1839739号明細書の
図1,2、および17に対応する
図1〜3は、この既知のマイクロリアクターの全体的なモジュール式の構造を示す。欧州特許出願公開第1839739号明細書の
図3〜6に対応する
図4〜7は、この既知のマイクロリアクターの種々のプロセスモジュールの例として、温度調整モジュール1および混合モジュール2を示す。
【0044】
図1,2、および3に示されるマイクロリアクターは、第1のフレーム手段10、第1の熱交換モジュール7、プロセスモジュールとしての温度調整モジュール1、第2の熱交換モジュール8、さらなるプロセスモジュールとしての混合モジュール2、他の第1の熱交換モジュール7、さらなるプロセスモジュールとしての滞留モジュール3、他の第2の熱交換モジュール8、二つの熱交換モジュール7,8と第2のフレーム手段9との間にそれぞれ挟まれているさらなる滞留モジュール4,5、および6、をこの順番で備えている。そのため、第1または第2の熱交換器7,8およびプロセスモジュール1〜6を互い違いにする前記第1および第2のフレーム手段10,9が設けられる。
図1,2に示されるように、二つの結合ロッド13は、第1および第2のフレーム手段10,9を互いに向けて押し、それにより、積み重ねられた熱交換器7,8およびプロセスモジュール1〜6を他方に対して押す。マイクロリアクターシステムの組立品の外周に結合ロッド13を配置し、熱交換モジュール7,8に接するフレーム手段10,9の表面の中央に孔(
図3参照)を設けることで、マイクロリアクターシステムの組立品の外周に高圧が得られる。
【0045】
図5および6に示される温度調整モジュール1は、第1のプロセスモジュールとして設けられる。前記温度調整モジュール1は、第1の反応流体入口1Cおよび第1の反応流体出口1Fに通じる第1の反応流体通路1A、第2の反応流体入口1Dおよび第2の反応流体出口1Eに通じる第2の反応流体通路1Bを備える。第1の反応流体は、第1の反応流体入口1Cを通って第1の反応流体通路1Aに供給される。第2の反応流体は、第2の反応流体入口1Dを通って第2の反応流体通路1Bに供給される。さらに、前記温度調整モジュール1は、はんだ付けなどによって互いに接合される第1および第2の板1M,1N(
図6)を備える。第1および/または第2の板1M,1Nの接触面に、正弦曲線状の反応流体通路1A,1Bがエッチング、またはフライス切削などによって削られる。流れが前記第1の反応物流体通路1Aを前記第1の反応物流体出口1Fに向かって通るうちに、前記第1の反応物流体の温度は、前記温度調整モジュール1を挟む二つの熱交換モジュール7,8によって調整される。それに対して、前記熱交換モジュール7,8を通る熱交換流体の流れは、前記温度調整モジュールの板1M,1Nに接する熱交換モジュールの板7N,8Nを通る熱伝動によって前記第1の反応物流体に熱を供給しまたは除く。
【0046】
図6および
図7に示す混合モジュール2は、第2のプロセスモジュールとして設けられる。詳細は示されないが、前記混合モジュール2は、上述の温度調整モジュール1と同様の第1および第2の板を備える。前記混合モジュールにおいて、反応流体通路2Aは、混合部2Gおよび第1の滞留部2Iを有して設けられる。前記反応流体通路2Aに通じる第1の反応流体入口2Cは、外部の接続(図示しない)によって温度調整モジュール1の第1の反応流体出口1Fに接続されている。反応流体通路2Aに接続されている第2の反応流体入口2Dは、同様に、温度調整モジュール1の第2の反応流体出口1Eに接続されている。そのため、第1および第2の反応流体はそれぞれ、前記温度調整モジュール1を通った後に、混合モジュール2内の通路2Aの混合部2Gに流れ込む。前記反応流体は、互いに混合される。
図7に拡大して示すような混合部2Gの形状は、最適の方法で反応流体を適切に混合するために選択され得る。混合された後、プロセスの結果生じる流体は、基本的に平坦な流路として形成される反応流体通路2Aの第1の滞留部2Iに流入する。そのため、実質的にプロセス流体の層流が生じる。混合部2Gおよび第1の滞留部2Iでの混合および滞留の間、化学反応は前記混合モジュール2を挟む二つの熱交換モジュール8,7によって温度管理される。
【0047】
反応流体出口2Eを通って反応流体通路2Aを出たプロセス流体は、種々の滞留モジュール3〜6に入る。温度調整モジュール1および混合モジュール2として前に述べられたように、この滞留モジュール3〜6で、プロセス流体はそれぞれの滞留モジュールに隣接する二つの熱交換モジュール7,8によって温度管理される。このように、反応流体は、最後のプロセスモジュールの出口6Dを通ってマイクロリアクターシステムの組立品から出る前に、全ての後の滞留モジュール4〜6に流れ得る。
【0048】
それぞれの滞留モジュール3〜6での滞留時間は滞留容積、すなわち、プロセス流体を収容する通路3A〜6Aの断面(幅×高さ)×長さを流量で割ったものによって規定される。このため、単一の通路の幅、長さ、および/または高さを変えることによって、異なる滞留時間が得られる。異なる形状の通路を有する異なる滞留モジュールを組み合わせることによって、滞留時間はほぼ任意に選択され得る。
【0049】
プロセスモジュール1〜6の反応流体通路は、エッチング、または切削などによって微細構造化される。熱交換モジュール7,8が別々に製造されるため、これらは微細構造化されずに製造でき、コストが削減される。さらに、前記熱交換モジュール7,8は反応物に接触しないため、これらは耐蝕性または耐圧性が不要であり、そのため熱伝達に最適化された(optimised)材料を用い得る。
【0050】
上述のマイクロリアクターは、そのモジュール式の構造のために高い柔軟性を提供し、複数の異なる混合流路形状を複数の異なる滞留モジュールと組み合わせ得る。そのため、特にタイプB反応のため、任意に選択された滞留時間を提供する。それぞれの前記プロセスモジュール1〜6は、二つの隣接した熱交換モジュール7,8によって温度管理される。熱交換モジュール7,8の板1M〜8M、1N〜8N、およびプロセスモジュール1〜6を通して熱伝導によって熱伝達だけが実現されるため、シーリングなどは不要である。さらに有益なことに、プロセスモジュール1〜6はその中に収容した反応物に対して、例えば、耐食性および/または耐圧性を有するなど最適化でき、同時に、熱交換モジュール7,8が反応物と接触せず、特有な熱伝達および/またはシーリングに関して最適化され得る。
【0051】
例えば流量が100ミリリットル/分、プロセスモジュールの通路の長さが約1844ミリメートル、通路の高さが10ミリメートル、通路の幅が0.5〜2ミリメートルのドイツ工業規格のA5サイズのマイクロリアクター、すなわちドイツ工業規格のA5におおよそ一致したその板の表面領域を有するマイクロリアクターについて、実験では滞留時間がモジュールごとに6〜22秒となった。このため、全滞留時間は合計で30分となり得る。ちなみに、流路系を形成し混合区域の寸法を変える切削によって、ドイツ工業規格のA4サイズのマイクロリアクターが、本来の、すなわち縁の長さが未修正のドイツ工業規格のA5サイズのマイクロリアクターを模しても良い。
【0052】
上述のマイクロリアクターの構造および運転方法に関する他の技術的細部は、欧州特許出願公開第1839739号明細書で述べられる。
【0053】
一般的に、上述のように、所望の生成物の目標の容積流量を達成する目標のリアクターを製造するための起点として用いられる標準のリアクターは、標準のリアクターに連続して流れる複数の反応物が標準のリアクターの外に連続して流れ出る所望の生成物の容積の測定流量f
1を作るために混合され相互転換する流路系を有する。(最大の)容積流量f
1は、流路系の幾つかの流れの関係の特徴(最小の水力直径、流路系の長さ、圧力、温度状況)と、反応物(粘性、反応性)とに依存する。欧州特許出願公開第1839739号明細書に開示されるようなマイクロリアクターについて、そのような流路系はたとえば、
図4および5に示す温度調整モジュール1の流体通路1Aおよび1Bと、
図6および7に示す混合モジュール2の流体通路2G,2A,および2Iとを含む。
【0054】
目標の容積流量f
2と異なる容積流量f
1となるが所望の品質および所望の特徴を有する生成物を生み出すような標準のリアクターから始まることで、目標のリアクターは同じ生成物の目標の容積流量f
2を生み出せるように製造されるだろう。標準のリアクターの容積流量f
1は、例えば、測定または計算によって決定され得る。もし標準のリアクターが、例えば、欧州特許出願公開第1839739号明細書で公開されたような、それぞれ補助流路系を含む幾つかのプロセスモジュールの組み合わせで形成されるモジュール式のリアクターであるなら、本発明に係る方法は完全な流路系におけるただ一つの最小の水力直径がある補助流路系の集合である完全な流路系に適応しなければならないだろう。
【0055】
本発明に係る方法は、例えば、測定または計算によって決定される標準のリアクターの流路系の最小の水力直径d
h1(最小の標準水力直径)と、標準のリアクターの最小水力直径d
h1、標準のリアクターの標準の容積流量f
1、および目標のリアクターの目標の容積流量f
2の間の明確な関係に基づいて計算される目標のリアクターの対応する最小水力直径d
h2(最小目標水力直径)とを定める。
【0056】
上述のように、本発明によれば、好ましくは下記の方程式が適用できる。
【数11】
…(1)
【0057】
計算されたd
h2を得ることで、長さ、形状などのような目標のリアクターの流路系の残る設計パラメータは、当業者によってそれぞれの必要に応じて容易に規定されるとともに適応される。流路系の残る設計パラメータを規定するとともに適応することで、目標のリアクターの外形寸法は標準のリアクターに比べて変わり得る。
【0058】
図8Aおよび8Bは、本発明に係る方法の基礎的なアイデアを反映する。特に、
図8Aおよび8Bは、標準のリアクターおよび目標のリアクターの板状のプロセスモジュールの例として、異なるサイズ(外形寸法)かつ基本的に互いに、例えば、コースおよび長さが異なる、対応する流路系およびそれらのそれぞれのスケールアップまたはスケールダウンの形状の二つの混合モジュールを示す。
図8Aに示される混合モジュールが標準のリアクターに相当するとみなされるであろう。一方、
図8Bに示される混合モジュールは目標のリアクターに相当するとみなされるであろう。対応する流路系の形状および板状のプロセスモジュールの外形寸法の相違にもかかわらず、これらのプロセスモジュールの基本的な構成の一般的な原則は同じである。
図4〜6を参照して上で述べられるように、
図8Aおよび8Bに示されるそれぞれのモジュールは、それに組み込まれた流路系(または上の用語における「補助流路系」)を有する二つの板部材によって形成される。
図8Aおよび8Bは、(例えばモジュール式のリアクターの場合)対応するモジュールが広がる平面かもしれない投影図の平面で広げられて示される曲がりくねった構造を示す。
図8Aおよび8Bに示される混合モジュールは、上記の混合モジュール1の代わりに、欧州特許出願公開第1839739号明細書に開示されたような構造のマイクロリアクターに組み込まれ得る。
【0059】
図8Aおよび8Bは、正しい寸法関係にあるサイズ2およびサイズ3のマイクロリアクターをそれぞれ示す(しかし、おおよそドイツ工業規格6:ドイツ工業規格5の縮尺と同等の面積ではない)。乱流混合区域10および層流滞留区域20が、それぞれの場合で明確に示される。見て解るように、乱流混合区域10および層流滞留区域20を備える流路系の本質の設計は、全く同じである。しかし、曲り30の数および曲がりくねった構造の振幅40の大きさが異なる。構造の詳細それ自体については、欧州特許出願公開第1839739号明細書で述べられる。
【0060】
図9は、異なる複数の補助流路系の混合区域の一部を示す。それぞれの場合の丸はターボ状の(turboid)混合装置の断面である。第1の列の例は、ターボ状のものだけの混合要素を有する。第2の列の例は、ターボ状のものとSL混合要素
との混合流路を有する。そして最後の列の例は、ターボ状のもの
とSZ混合要素
との混合流路を有する。「SL」および「SZ」の語は、現象学的性質の対応する大文字の組み合わせに似て見えるそのそれぞれの構造である。他の混合
流路の形状は
図10に示される。図のa)〜f)はそれぞれT連絡部(T-contacter)、Y連絡部(Y-contacter)、接線混合器、曲り目、SZ混合器、およびLZ混合器と呼ばれ
る。図9は一つ目から四つ目の行におい
て、それぞれサイズ1、サイズ2、サイズ3、およびサイズ4の種々のマイクロリアクターのプロセスモジュールの流路部の構造例を示す。サイズ3は標準のリアクターを表し、サイズ1およびサイズ2はスケールダウンした目標のリアクターを表し、そしてサイズ4はスケールアップした目標のリアクターを表すものとみなされるだろう。したがって、サイズ2が標準のリアクターを表すとみなされるときは、サイズ1はスケールダウンした目標のリアクターを表したものとみなされるであろうし、サイズ3およびサイズ4はスケールアップした目標のリアクターを表したものとみなされるだろう。その他の場合も同様である。
【0061】
上述のように、目標のリアクターの流路系を特徴づける最小の水力直径d
h2が計算されると、目標のリアクターは、構造の全ての本質に関連する一例としての標準のリアクターを用いて製造されることができる。特有の最小水力直径に基づく目標のリアクターは、標準のリアクターとは、混合区域の形状においてのみ基本的に異なり、滞留区域の形状は適合させられるかもしれない。
図8Aおよび8B、または
図9に見られるように、標準のリアクターから始まる目標のリアクターを製造するとき、構造の基本原則は同一のままだが、水力直径が変わるだけでなく流路系の長さも変わるだろう。目標のリアクターの目標の容積流れが、標準のリアクターの標準の容積流れと比べてより大きいまたは小さい点を考慮すると、目標のリアクターの流路系の長さ、曲りの数、最小水力直径を除く全ての他の直径などのような他の構造のパラメータは、目標のリアクターに特有な適切な流れを確立するために規定および適応されるだろう。目標のリアクターの大きさである最後の外形寸法は、目標のリアクターの流路系の全ての設計の特徴の定義および適応の結果である。