(58)【調査した分野】(Int.Cl.,DB名)
前記ビームスプリッタは、前記入力ポートで受けた前記赤外光を、前記第2および第3のカメラチップの一方のみに主に導くように構成される、請求項1に記載の手術用顕微鏡。
赤外光を実質的に阻止し、前記対象領域と前記ダイクロイックビームスプリッタの前記入力ポートとの間の撮像ビーム経路の内側および外側に選択的に位置決めされ得る第1のブロックフィルタをさらに備える、請求項1または2に記載の手術用顕微鏡。
前記第1および第2のブロックフィルタに結合され、所与の時間に前記第1および第2のブロックフィルタの一方のみが前記撮像ビーム経路内に位置決めされるように構成された作動システムをさらに備える、請求項3に記載の手術用顕微鏡。
前記第1および第3のブロックフィルタに結合され、所与の時間に前記第1および第3のブロックフィルタの一方のみが前記撮像ビーム経路内および前記照明システムの前記ビーム経路内にそれぞれ位置決めされるように構成された作動システムをさらに備える、請求項3と組合された請求項5に記載の手術用顕微鏡。
前記ダイクロイックビームスプリッタはさらに、前記第1のカメラチップに主に導かれる前記赤色光が前記ダイクロイックビームスプリッタの前記入力ポートに供給される場合、第1の検出器によって検出される光強度と、第2の検出器によって検出される光強度および第3の検出器によって検出される光強度の合計との比率が1.8、2.5および3.0のうちの1つよりも大きく、
前記ダイクロイックビームスプリッタはさらに、前記第2のカメラチップに主に導かれる前記緑色光が前記ダイクロイックビームスプリッタの前記入力ポートに供給される場合、前記第2の検出器によって検出される光強度と、前記第1の検出器によって検出される光強度および前記第3の検出器によって検出される光強度の合計との比率が1.8、2.5および3.0のうちの1つよりも大きく、
前記ダイクロイックビームスプリッタはさらに、前記第3のカメラチップに主に導かれる前記青色光が前記ダイクロイックビームスプリッタの前記入力ポートに供給される場合、前記第3の検出器によって検出される光強度と、前記第1の検出器によって検出される光強度および前記第2の検出器によって検出される光強度の合計との比率が1.8、2.5および3.0のうちの1つよりも大きい、請求項1から6のいずれか1項に記載の手術用顕微鏡。
【発明の概要】
【発明が解決しようとする課題】
【0005】
発明の要約
本発明は、上記の技術的課題を考慮して達成された。
【0006】
本発明の目的は、蛍光画像を検出可能な手術用顕微鏡検査方法を提供することである。
本発明のさらなる目的は、蛍光画像および標準の光画像を検出可能な顕微鏡検査方法を提供することである。
【課題を解決するための手段】
【0007】
実施例によると、カメラシステムは、入力ポート、ダイクロイックビームスプリッタ、ならびに第1、第2および第3のカメラチップを含み、ダイクロイックビームスプリッタは、入力ポートで受けた赤色光を、ビームスプリッタの第1の出力ポートを介して第1のカメラチップに主に導くように、かつ入力ポートで受けた緑色光を、ビームスプリッタの第2の出力ポートを介して第2のカメラチップに主に導くように、かつ入力ポートで受けた青色光を、ビームスプリッタの第3の出力ポートを介して第3のカメラチップに主に導くように、かつ入力ポートで受けた赤外光を、第1、第2および第3のカメラチップのうちの1つのみに主に導くように構成される。
【0008】
標準の光画像を得るための3つのチップを含む従来のカメラシステムは同様の構造を有するが、上記の構造とは異なる。従来のカメラは、赤色光、緑色光および青色光をそれぞれのカメラチップに導くように構成されたダイクロイックビームスプリッタを有する。従来のカメラはさらに、可視波長範囲外の赤外光を検出しないようにするための赤外ブロックフィルタを含む。従来のカメラのダイクロイックビームスプリッタの性質は、赤外光に
関して規定されない。
【0009】
しかし、上記の実施例では、ダイクロイックビームスプリッタの性質は、赤外光が3つのカメラチップのうちの1つのみに供給されるように規定される。赤外光がダイクロイックビームスプリッタを介して複数のカメラチップに供給される実施例と比較して、低強度の赤外光を検出する際に、赤外光を1つのカメラチップのみに供給することによって比較的良好な信号対ノイズ比が達成され得る。
【0010】
本願の文脈においては、特定の波長の光が1つの特定のカメラチップに「主に」供給されるという定義は、特定の波長の光のみがダイクロイックビームスプリッタの入力ポートに供給される状況において、その特定のカメラチップが、他の2つのカメラチップによって検出される特定の波長の強度を合わせたものよりも実質的に高い強度を検出することを意味する。たとえば、特定のカメラによって検出される強度は、他の2つのカメラによって検出される強度の合計よりも1.8倍高いか、または2.5倍もしくは3.0倍高い場合がある。
【0011】
ある実施例によると、ダイクロイックビームスプリッタは、赤外光が、赤色光が主に供給されないそれらのカメラチップのうちの1つに主に供給されるように構成される。本明細書中の例示的な実施例によると、赤外光は、緑色光も主に供給されるカメラチップに主に供給される。別の例示的な実施例によると、赤外光は、青色光も供給されるカメラチップに供給される。
【0012】
本願の文脈においては、青色光は、波長範囲が約440nmから約490nmの光であり、緑色光は、波長範囲が約520nmから約570nmの光であり、赤色光は、波長範囲が約625nmから約740nmの光であり、赤外光は、波長範囲が約800nmから約930nmの光である。
【0013】
実施例によると、手術用顕微鏡は、ダイクロイックビームスプリッタの上流で撮像ビーム経路内に選択的に配置され得る第1のブロックフィルタを含む。第1のブロックフィルタは、赤外光に対する透過率よりも、赤色光、緑色光および青色光に対する透過率のほうが実質的に高い。たとえば、赤色光、緑色光または青色光に対する透過率は、赤外光に対する透過率よりも10倍高い。赤外光は、第1のブロックフィルタによって実質的に阻止される。第1のブロックフィルタがビーム経路内に配置される第1の動作モードでは、カメラシステムは標準の光画像を得るのによく適しており、第1のブロックフィルがビーム経路内に配置されない第2の動作モードでは、カメラシステムは赤外画像を得るのに適している。
【0014】
実施例によると、カメラシステムは、ダイクロイックビームスプリッタの上流でビーム経路内に選択的に配置され得る第2のブロックフィルタを含む。第2のブロックフィルタは、赤外光も供給されるカメラチップに主に供給される光を実質的に阻止する。
【0015】
本明細書中の例示的な実施例では、手術用顕微鏡は、第1のブロックフィルタまたは第2のブロックフィルタのいずれか一方をビーム経路内に位置決めするように構成された作動システムを含む。第1のブロックフィルタがビーム経路内に位置決めされる第1の動作モードでは、カメラシステムは標準の光画像を得ることができ、第1のブロックフィルタがビーム経路内に配置されない第2の動作モードでは、カメラシステムは標準の光画像および赤外画像を同時に得ることができる。
【0016】
実施例によると、手術用顕微鏡は、カメラシステムの少なくとも1つのカメラチップ上に対象領域を光学的に撮像して対象領域の画像を生成するための顕微鏡光学部品と、画像
をユーザに表示するための表示システムと、少なくとも1本の照明光ビームを対象領域に供給するための照明システムとを含む。カメラシステムは上述のように構成され得る。顕微鏡光学部品は、可変拡大率および/または可変作動距離を提供する光学部品であり得る。顕微鏡光学部品はさらに、平面または立体のビーム経路を提供し得る。顕微鏡光学部品はさらに1つ以上の接眼レンズを含み得、ユーザはそれを覗いて対象領域の画像を知覚し得る。表示システムは、カメラシステムによって得られた画像を表示する。表示システムは、陰極線管、LCDディスプレイ、アクティブマトリクスディスプレイなどを含み得る。表示システムは、ユーザの頭に装着可能なヘッドマウントディスプレイであり得る。表示システムはさらに、顕微鏡光学部品の接眼レンズを介して画像を表示するように構成され得る。
【0017】
ある実施例によると、顕微鏡は、照明ビームのビーム経路内に選択的に位置決めされ得る第3のブロックフィルタを含む。第3のブロックフィルタは、赤外光も供給されるカメラチップに主に供給される光を阻止する。本明細書中の例示的な実施例では、第1のブロックフィルタを撮像ビーム経路内に位置決めするように、または第3のブロックフィルタを照明ビームのビーム経路内に位置決めするように構成される作動システムが設けられる。
【0018】
実施例によると、顕微鏡検査方法は、手術用顕微鏡を第1の動作モードおよび第2の動作モードで動作させるステップを含む。第1の動作モードでは、赤色光、緑色光および青色光を含む光が対象物に供給され、対象物から発する赤色光、緑色光および青色光が3つのカメラチップに供給されるため、3つのカメラチップはともに対象物の標準の光画像を得ることができる。ここで、赤外光を阻止するフィルタが光のビーム経路内に位置決めされ得るため、対象物から発する光に赤外光が含まれていたとしても、赤外光は3つのカメラチップのうちの1つに供給されない。
【0019】
第2の動作モードでは、波長範囲が約700nmから約790nmの光を含む光が対象物に供給され、対象物から発する赤外光が3つのカメラチップのうちの1つのみに主に供給される。赤外光を阻止するフィルタが第1の動作モードでビーム経路内に位置決めされている場合、このフィルタは第2の動作モードでビーム経路から取除かれる。
【0020】
例示的な実施例によると、第2の動作モードにおいて、波長が約700nmよりも大きく約805nmよりも小さい光が、3つのカメラチップの上流で阻止される。
【0021】
例示的な実施例によると、第2の動作モードにおいて、赤色光、緑色光および青色光のうちの1つが、3つのカメラチップの上流で阻止される。
【0022】
さらなる例示的な実施例によると、第2の動作モードにおいて、赤色光、緑色光および青色光のうち2つ以下のものが対象物に供給される。
【0023】
例示的な実施例によると、第2の動作モードにおいて、蛍光色素または蛍光色素の前駆体の蛍光が観察される。蛍光色素またはその前駆体は、インドシアニングリーン(ICB)を含み得る。
【0024】
さらなる例示的な実施例によると、第2の動作モードにおいて、対象物から発する赤外光が、第1の動作モードにおいて青色光または緑色光が供給されるカメラチップに供給される。
【0025】
さらなる例示的な実施例によると、顕微鏡検査方法は、第2の動作モードにおいてのみ実行される。
【0026】
さらなる例示的な実施例によると、赤色光、緑色光および青色光は第1の光源によって生成され得、波長範囲が約700nmから約805nmの光は、第1の光源とは異なる第2の光源によって生成され得る。第2の光源は、発光ダイオード(LED)またはレーザダイオードを含み得る。これによって、第1の光源から対象物に供給される光の強度、および第2の光源から対象物に供給される光の強度を個別に調節することが可能となり、状況に応じて相対強度を調節することが可能となる。
【0027】
以下の説明では、特別な実施例に関して添付の図面を参照して、本発明をより詳細に説明する。
【発明を実施するための形態】
【0029】
例示的な実施例の説明
以下に説明する例示的な実施例では、機能および構造が同様の構成部品はできる限り同様の参照番号で示す。
【0030】
図1は、光軸7を有する対物レンズ5を有する顕微鏡光学部品3を含む手術用顕微鏡1を概略的に示す。観察すべき対象物9は、対物レンズ5の対象領域内に位置決めされる。対象物9から発する光は対物レンズ5によって変形されて平行のビーム束11を形成し、この中に2つのズームレンズシステム12、13が光軸7から横方向の距離を置いて配置される。ズームレンズシステム12、13は、平行のビーム束11の部分的なビーム束14、15をそれぞれ取り込み、
図1には示されない偏光プリズムを介して部分的なビーム束13、14を接眼レンズ16および17に供給し、ユーザは左目18および右目19でこれを覗いて対象物9の拡大画像を知覚し得る。
【0031】
部分的なビーム束15内に部分的な透過ミラー21が配置されて、ビーム束15の光の一部を分岐させてビーム23を形成し、これがカメラシステム25に供給される。
【0032】
以下、
図2を参照してカメラシステム25をより詳細に説明する。ビーム23は、ダイクロイックビームスプリッタ33の入力ポート31に入射し、入射光の波長に応じて3つのカメラチップ35、36および37に供給される。各カメラチップ35、36、37は感光性素子(画素)の領域を含み、当該素子は、受けた光の強度に応じて電子信号を提供する。カメラチップは、たとえばCCD画像センサおよびCMOS画像センサなどのセンサのカメラチップを含み得る。
【0033】
図2において、参照番号39は赤色光の例示的なビームを示す。赤色光は、ダイクロイックビームスプリッタ33の出力ポート30を介してカメラチップ35に供給されるため、カメラチップ35は赤色光画像を検出することができる。
図2において、参照番号40は緑色光の例示的なビームを示し、これはダイクロイックビームスプリッタ33の出力ポート32を介してカメラチップ36に供給されるため、カメラチップ36は緑色光画像を検出することができる。
図2において、参照番号41は青色光の例示的なビームを示し、
これはビームスプリッタ33の出力ポート34を介してカメラチップ37に供給されるため、カメラチップ37は青色光画像を検出することができる。ダイクロイックビームスプリッタ33はさらに、
図2において例示的な赤外光ビーム42によって示されるように、赤外光をカメラチップ36に供給するように構成され、赤外光ビーム42はダイクロイックビームスプリッタ33の出力ポート32を介してカメラチップ36に供給されるため、カメラチップ36は赤外画像も検出することができる。
【0034】
図1に示されるように、手術用顕微鏡1は、第1のブロックフィルタ27を含むフィルタプレート26を有する。第1のブロックフィルタ27を含むフィルタプレート26は、両方向の矢印46によって示される方向にアクチュエータ45によって移動可能であるため、第1のブロックフィルタ27はビーム23の内側またはビーム23の外側のいずれか一方に位置決めされる。アクチュエータ45は、信号線123を介してコントローラ101によって制御される。図示される例では、第1のブロックフィルタは赤外光を阻止する。
【0035】
図1に示される手術用顕微鏡1の第1の動作モードにおいて、第1のブロックフィルタ27はビーム23内に位置決めされる。この第1の動作モードでは、手術用顕微鏡1は、カメラシステム25によって対象物9の標準の光画像を得るように構成される。ここで、対象物9は、赤、緑および青の色成分を含有する光である白色光で照明システム51によって照らされる。
【0036】
照明システム51は、たとえばハロゲンランプ、キセノンランプまたは何らかの他の好適なランプであり得る光源53を含む。照明システム51はさらに、反射器54およびコリメータ55を含み得、1つ以上のレンズ59によって光ファイバ束63の端61に供給される光の平行ビーム56を成形して、光源53によって生成された光をファイバ束63に結合させる。この光はファイバ束63によって対物レンズ5近傍に伝送され、ファイバ束63の端65から発し、平行化光学部品67によって平行にされて光ビーム69を形成し、これが検査中の対象物9に導かれる。
【0037】
照明システム51はさらに、互いに隣接して配置される2つのフィルタ73および75を含むフィルタプレート71を有する。2つのフィルタ73および75は、
図1の両方向の矢印79によって示される方向に沿ってアクチュエータ77によって移動可能であるため、フィルタ73またはフィルタ75のいずれか一方がビーム56内に位置決めされる。アクチュエータ77は、信号線125を介してコントローラ101によって制御される。フィルタ73は、手術用顕微鏡1の第1の動作モードにおいてビーム経路56内に位置決めされる。フィルタ73は、赤色光、緑色光および青色光を通すことができるため、対象物9は、ユーザによって実質的に白色光であると知覚される光で照らされる。
【0038】
対象物9から発する光はカメラシステム25によって検出され、カメラチップ35、36および37はそれぞれ赤色光、緑色光および青色光を検出する。カメラチップ35、36および37によって生成された画像信号は、線124を介してコントローラ101に供給される。コントローラ101は、供給された画像信号に基づいて合成色画像の画像データを生成する。これらの画像データがディスプレイに表示され得る。
【0039】
ディスプレイはたとえば、コントローラ101に接続されて対象物9の平面色画像を表示するモニタ103を含み得る。ディスプレイはたとえば、画像表示を生成するLCDディスプレイ104を含み得る。この表示は光学部品105によって伝送され、部分的な透過ミラー107を介して撮像光学部品3のビーム経路と重畳されるため、ユーザは接眼レンズ17を覗くことによって、ビーム15を介して対物レンズ5から接眼レンズ17に伝送された対象物9の光学画像と重畳された、ディスプレイ104に表示される画像を見る
ことができる。
【0040】
部分的な透過ミラー81またはプリズムがビーム14の光の一部を分岐させ、分岐した部分は次に第2のカメラシステム83に供給され、カメラシステム83は、ダイクロイックビームスプリッタ84と、ダイクロイックビームスプリッタ84によって赤色光、緑色光および青色光が供給される3つのカメラチップ85、86および87とを含む。赤外ブロックフィルタ88が、ダイクロイックビームスプリッタ84の入力ポートの上流でビーム経路内に恒久的に位置決めされる。カメラチップ85、86および87の出力信号は、信号線89を介してコントローラ101に伝送される。
【0041】
ディスプレイは、たとえばヘッドマウントディスプレイ113を含み得、これは、装着バンド111などによってユーザの頭に取付けることができ、ユーザの右目用のディスプレイ114およびユーザの左目用のディスプレイ115を含む。ヘッドマウントディスプレイは、信号線112を介してコントローラ101に接続される。コントローラ101は、カメラシステム25によって得られた画像データをディスプレイ114に供給し、カメラシステム83によって得られた画像データをディスプレイ115に供給するため、ユーザは、ディスプレイ113を介して対象物9の立体画像を知覚することができる。
【0042】
ユーザは、好適な指令によって、第1の動作モードから第2の動作モードに動作モードを変更するようコントローラ101に指示し得る。指令は、ボタン121、キーボードもしくは対応の音声信号を受信するマイクなどの入力装置または何らかの他の入力装置および方法を介して、コントローラ101に供給され得る。
【0043】
動作モードの所望の変更を指示する信号を受信すると、コントローラ101は線123を介してアクチュエータ45を制御して、第1のブロックフィルタ27をビーム23から取除く。図示される例では、第1のブロックフィルタは赤外光を阻止し、第2の動作モードにおいて第1のブロックフィルタがビームから取除かれると、カメラシステム25は赤外画像も得ることができる。
【0044】
さらに、コントローラ101は、第2のブロックフィルタ75がビーム23の内側に位置決めされ、かつフィルタ73がビーム56の外側に位置決めされるようにアクチュエータ77を制御する。図示される実施例では、ブロックフィルタ75は、予め選択された蛍光色素またはその前駆体の蛍光を励起可能な光のみを横切らせることができるように構成された、蛍光励起フィルタである。そのような励起光は、光源53によって生成される周波数スペクトルに含まれ、フィルタ75を横切って対象物9に供給され得る。蛍光色素またはその前駆体は、一例によると、インドシアニングリーン(ICG)を含み得る。蛍光色素によって生成される蛍光光は、赤外波長範囲の光を含み、顕微鏡光学部品3によってカメラシステム25のカメラチップ上に撮像される。図示される例では赤外ブロックフィルタであるフィルタ27は、第2の動作モードではビーム23から取除かれるため、カメラシステム25への赤外光の供給が妨げられず、したがってカメラシステムは対象物9の蛍光画像を検出することができる。
【0045】
上述のように、ダイクロイックビームスプリッタ33は赤外光を1つのカメラチップ36のみに供給するよう構成されるため、カメラチップ36は対象物9の蛍光画像を検出することができる。検出される蛍光画像は、生成された赤外蛍光光の強度が低くても比較的高い信号対ノイズ比を有し得る。
【0046】
蛍光画像は線124を介してコントローラ101に伝送され、ディスプレイ104を介して視像として表示され得るため、ユーザは接眼レンズ17で見たときにこの赤外画像を視像として知覚することができる。同様に、コントローラ101は赤外画像を、ディスプ
レイ103またはヘッドマウントディスプレイ113のディスプレイ114、115に表示し得る。赤外画像はグレースケール画像として表示され得、グレー値で明るいものほど、表わされる赤外強度が高い。たとえば、最大赤外強度は白色によって表わされ得る。これを反転させた赤外画像を表示することも可能であり、この場合グレー値で暗いものほど、表わされる赤外強度が高い。
【0047】
図3は、
図1に示される手術用顕微鏡の光学素子の波長に依存した性質の概略図である。
【0048】
図3の実線151は、任意の単位ごとの波長λに依存する蛍光色素ICGの励起効率を表わし、破線153は、任意の単位ごとの蛍光色素の蛍光スペクトルを表わす。
【0049】
図3の線154は、青色光を検出するカメラチップ37に向かう、入力ポート31から出力ポート34までのダイクロイックビームスプリッタ33の青色光に対する透過特性を非常に概略的に表わす。
図3の線155は、緑色光を検出するカメラチップ36に向かう、入力ポート31から出力ポート32までのダイクロイックビームスプリッタ33の緑色光に対する透過特性を非常に概略的に表わす。
図3の線156は、赤色光を検出するカメラチップ35に向かう、入力ポート31から出力ポート30までのダイクロイックビームスプリッタ33の赤色光に対する透過特性を非常に概略的に表わす。
【0050】
ダイクロイックビームスプリッタ33のこれらの透過特性は、互いに重なり合わないように
図3において線154、155および156によって非常に概略的に示される。したがって、赤色、緑色および青色は互いに異なる色であることが明確になっている。しかし実際には、ビームスプリッタは、特性154、155および156の波長範囲が部分的に重なり合うように構成され得る。これによって、たとえば、波長が450nmの光の主要部がカメラチップ37に入射する一方で、この波長の光のより小さな部分もカメラチップ36が受けるという効果が得られ得る。同様に、たとえば波長が600nmの光を、カメラチップ35および36の両方が等分に受け得る。
【0051】
図3において、線157は、第1の動作モードで照明光ビーム56内に位置決めされるフィルタ73の透過特性を非常に概略的に表わす。フィルタ73は青色光、緑色光および赤色光を通すことができるため、ユーザが知覚する対象物9の色の印象は、白色光に対応する色の印象である。しかし、フィルタ73は、たとえば約705nmよりも高い比較的長い波長の可視光は通ることができないように構成される。この光は、線156で表わされる特性によって示されるように、赤色光を受けるカメラチップ35によって検出され得る。照明光ビーム内の長波長の赤色光は対象物9を不必要に過熱し得るため、図示される例では、フィルタ73を用いてこの光を妨げる。
【0052】
図3において、線158は、第2の動作モードで蛍光を観察するために照明光ビーム56のビーム経路内に位置決めされるフィルタ75の透過特性を非常に概略的に表わす。フィルタ75は、青色光(特性154を参照)および緑色光(特性155を参照)を通さないが、波長範囲が約615nmから約790nmの赤色光はフィルタ75を通って対象物9に入射し、蛍光色素の蛍光を励起し得る。
【0053】
図3において、線159は、緑色光がビームスプリッタ33の入力ポート31に供給される場合は緑色光も受けるカメラチップ36に向かう、入力ポート31から出力ポート32までのダイクロイックビームスプリッタ33の赤外光に対する透過特性を非常に概略的に表わす。
【0054】
第2の動作モードではフィルタ75が照明ビーム経路内に存在するため、蛍光を検出す
るための第2の動作モードでは、緑色光は照明光に実質的に含有されない。このため、緑色光はカメラチップ36に実質的に供給されない。しかし、カメラチップ36は、蛍光によって生成される赤外光を検出し得るため、コントローラ101は、カメラシステム25によって対象物の赤外蛍光画像を得ることができる。赤外画像は、緑色光も検出するように配置されるカメラチップ36によって主に検出される。
【0055】
上述の実施例では、ダイクロイックビームスプリッタ33は、緑色光も供給されるカメラチップ36に赤外光を供給するように構成される。しかし、青色光も供給されるカメラチップ37に赤外光を供給するようにダイクロイックビームスプリッタ33を修正することも可能である。この結果、青色光は、ダイクロイックビームスプリッタ33の入力ポート31の上流でビーム経路23から、または対象物9の上流でビーム経路から取除かれる。
【0056】
図示される例では、第1のブロックフィルタ27は、カメラシステム25のダイクロイックビームスプリッタ33の入力ポート31の上流でビーム23内に位置決めされる。しかし、第1のブロックフィルタは、手術用顕微鏡の他の例では省略してもよい。
【0057】
図4は、さらなる実施例に係る手術用顕微鏡1のビーム経路を概略的に示す。
図4に示される手術用顕微鏡は、上述の
図1および
図3を参照して説明した手術用顕微鏡と同様の構成を有し、同様の機能を提供する。
図4の手術用顕微鏡は、カメラシステム25の上流でビーム経路内に配置されたフィルタプレート26が第1のブロックフィルタ27および第2のブロックフィルタ28を含むという点で、上述の手術用顕微鏡と主に異なる。第1のブロックフィルタ27は、赤外光がフィルタ27を通るのを阻止するように構成される。第1のフィルタ27は、対象物9の標準の光画像がカメラシステム25で検出される手術用顕微鏡1の第1の動作モードにおいて、対象物9をカメラチップ35、36および37上に撮像するビーム23内に位置決めされる。このため、第1のブロックフィルタ27は、カメラシステム25によって検出される画像の形成に赤外光が寄与しないように、赤外光を阻止する。
【0058】
第2のブロックフィルタ28は、赤外画像がカメラシステム25によって検出される第2の動作モードにおいて、ビーム23内に位置決めされる。
図1から
図3を参照して説明したように、カメラシステム25のダイクロイックビームスプリッタ33は、ダイクロイックビームスプリッタ33の入力ポートに入射する赤外光が、緑色光も供給されるカメラチップ36にダイクロイックビームスプリッタ33の出力ポートを介して供給されるような構成を有する。カメラチップ36は、第1の動作モードでは緑色画像を検出し、第2の動作モードでは赤外光画像を検出する。
【0059】
図4を参照して説明される実施例では、カメラチップ36によって赤外蛍光画像が検出される第2の動作モードにおいて、蛍光を励起するための光が対象物9に供給される。しかし、第2の動作モードでは白色光も対象物9に供給されるため、カメラシステム83などの好適なカメラによって、白色光画像も検出され得る。
図1を参照して説明される実施例とは別に、
図4に示される手術用顕微鏡1の第2の動作モードでは、第2のブロックフィルタ28がビーム23内に位置決めされる。第2のブロックフィルタ28は赤外光、赤色光および青色光を横切らせることができるため、カメラチップ35は対象物9の赤色光画像を検出することができ、カメラチップ37は対象物9の青色光画像を検出することができ、カメラチップ36は対象物の赤外光画像を検出することができ、緑色光のダイクロイックビームスプリッタ33の入力ポートへの供給は第2のブロックフィルタ28によって阻止されるため、緑色光は、この第2の動作モードでは赤外光画像を検出するカメラチップ36に入射しない。したがって、
図4に示されるカメラシステム25は、対象物9の赤色光画像および対象物9の不完全な標準の光画像を検出することができる。不完全な標
準の光画像は赤および青の2つの色成分のみから成り、緑色成分はこの不完全な標準の光画像から欠けている。しかしそのような不完全な標準の光画像であっても、3つのカメラチップ35、36および37を有するたった1つのカメラシステム25から赤外画像および不完全な標準の光画像の両方を受け得るユーザに価値のある情報が提供されることが見出されている。
【0060】
このカメラシステム25は、2つの異なる動作モードで使用可能である。ブロックフィルタ27がダイクロイックビームスプリッタ33の上流でビーム経路内に配置される第1の動作モードでは、カメラシステム25は(完全な)標準の光画像を検出し、ブロックフィルタ27は、赤外光がカメラチップ36に供給されないようにする。第2のブロックフィルタ28がダイクロイックビームスプリッタ33の上流でビーム経路内に配置される第2の動作モードでは、カメラシステム25は赤外画像および不完全な標準の光画像の両方を検出し、第2のブロックフィルタ28は、緑色光がカメラチップ36に供給されないようにする。
【0061】
図5は、赤外画像25および不完全な標準の光画像の両方が同一のカメラシステム25によって記録され得るという点で
図4を参照して説明した顕微鏡と同様の、手術用顕微鏡1のさらなる実施例を示す。カメラシステム25は3つのカメラチップを含み、カメラチップ35は対象物9の赤色光画像を検出するように配置され、カメラチップ37は対象物9の青色光画像を検出するように配置され、カメラチップ36は、手術用顕微鏡1の第1の動作モードでは緑色光画像を検出し、手術用顕微鏡1の第2の動作モードでは赤外光画像を検出するように配置される。
【0062】
手術用顕微鏡1は、信号線122を介してコントローラ101によって制御されるアクチュエータ78に接続されたフィルタ76を含む。アクチュエータ78は、コントローラ101の制御下で、フィルタ76を第1の動作モードでは照明ビーム56の外側に、第2の動作モードでは照明ビーム56の内側に位置決めするように構成される。フィルタ76は、緑色光を阻止し、かつ赤色光、青色光および蛍光を励起するのに好適な光を阻止しないように構成されるブロックフィルタである。
【0063】
第1の動作モードでは、フィルタ76はビーム56内に位置決めされないため、白色光が対象物に供給される。フィルタ27はカメラシステムの上流でビーム経路内に位置決めされ、赤外光がカメラチップ36によって検出されないようにする。したがって、第1の動作モードでは、3つのカメラチップ35、36および37は対象物9の(完全な)標準の光画像を検出する。
【0064】
第2の動作モードでは、フィルタ76がビーム56内に位置決めされるため、緑色光は対象物9に供給されない。この動作モードでは、緑色光は対象物9から実質的に発することなく、カメラシステム29に供給されるビーム23の光に実質的に含有されない。したがって、カメラチップ36は緑色光を実質的に全く受けない。カメラチップ36はその後、上述のように赤外画像を検出し得る。
【0065】
第2の動作モードにおいて標準の光画像を得るための、上記の
図1を参照して説明した実施例において用いられるカメラシステム83は、緑色光を阻止するフィルタをカメラシステムの上流でビーム経路内に、または照明光のビーム経路内に用いて得られた不完全な標準の光画像の質に満足できるのであれば、
図5に示されるような実施例では省略してもよい。
【0066】
上記の実施例において、第1の動作モードで緑色光画像を受けるカメラチップは、第2の動作モードで赤外画像を受けるカメラチップでもある。なお、第1の動作モードで青色
光を受けるカメラチップおよび第1の動作モードで赤色光を受けるカメラチップなどの他のカメラチップも、第2の動作モードで赤外光も受けるように配置してもよく、この場合、第1の動作モードで緑色光を受けるカメラチップは第2の動作モードで赤外光を受けない。
【0067】
以下、
図1から
図3を参照してさらなる実施例を説明する。本実施例に係る手術用顕微鏡は、上記の
図1から
図3を参照して説明した手術用顕微鏡と同様の構造を有する。
【0068】
本実施例によると、第2の動作モードで蛍光を励起するために照明システム51のビーム内に位置決めされたフィルタ75は、
図3の線158の透過特性とは異なる透過特性を有する。透過特性は、フィルタが波長範囲が約400nmから約780nmの光を通すことができるように構成されるため、蛍光を励起するための励起光および標準の光の両方が対象物9に供給される。したがって、ユーザは、接眼レンズ16および17を通して対象物の標準の光画像を知覚することができる。同様に、ビームスプリッタ84の入力ポートの上流でビーム経路内に赤外ブロックフィルタ88を有するカメラシステム83は、対象物の標準の光画像を検出し得、この画像はディスプレイ103、104、114および115または何らかの他のディスプレイに表示され得る。本実施例では、カメラシステム25のビームスプリッタ33の入力ポートの上流でビーム23内に位置決めされた第1のブロックフィルタ27は、
図3の線159によって示されるような透過特性を有するように構成される。そして、カメラシステム25は対象物の蛍光画像を得ることができ、この画像は白黒画像またはグレースケール画像としてディスプレイ103、104、114および115のうちの1つに表示され得る。標準の光画像に重畳された蛍光画像をディスプレイに表示することも可能である。さらに、蛍光画像は緑色などの1色で表示され得、この場合、蛍光光の強度が高いほど明るい緑色で表示され得、蛍光光の強度が低いほど暗い緑色で表示され、その逆の場合も同様である。
【0069】
これまで説明した実施例の文脈において、カメラのいくつかの画素、たとえば2つ、4つまたはそれ以上の画素をグループにまとめ、グループ化された画素によって検出される放射強度を蓄積して、検出された画像の画像素子の強度値を得ることも可能である。従来、このような処置は「ピクセルビニング」と称され、カメラチップの各個別画素が受ける光強度が低い場合に、画像全体においてより良好な信号対ノイズ比を得るように作用する。
【0070】
上記の実施例は、標準の照明光によって生成される光源とは異なる、たとえば発光ダイオード(LED)またはレーザダイオードなどの光源で蛍光色素を励起することによって修正してもよい。したがって、試験中の組織の蛍光部分および非蛍光部分の相対強度を互いに独立して制御することができ、ユーザの個別の要求に合わすことができる。
【0071】
本発明は、最も実際的で好ましい実施例と思われるものを参照して本明細書中に図示および説明されたが、多くの代替肢、修正および変形が当業者にとって明らかになるであろうことが認識される。したがって、本明細書中に記載された本発明の例示的な実施例は、例示的であり、決して限定的でないことが意図される。添付の請求項において定義されているような本発明の範囲および思想から逸脱することなく、さまざまな変更が可能である。