【実施例】
【0071】
以下に本発明を実施例で詳細に説明するが、本発明は本実施例に限定されるものではない。
【0072】
尚、下記実施例においては、固体状メチルアルミノキサン組成物の乾燥は、通常、流動パラフィンを入れたシールポットを介し40℃において真空ポンプのフルバキューム下に実施し、シールポットに気泡が認められない時点を以って乾燥の終点とした。
【0073】
[試験方法]
(1) 溶解度
本発明の固体状メチルアルミノキサン組成物の25℃の温度に保持されたn-ヘキサンおよびトルエンに対する溶解する割合の測定は、特公平7-42301号公報に記載の方法に準じて実施した。具体的には、n-ヘキサンに対する溶解割合は25℃に保持された50mlのn-ヘキサンに固体状ポリメチルアルミノキサン組成物2gを加え、その後2時間の攪拌を行ない、次いでメンブレンフイルターを用いて溶液部を分離して、この濾液中のアルミニウム濃度を測定することにより求める。この方法で得られる溶解割合は、試料として用いた固体状ポリメチルアルミノキサン組成物2gに相当するアルミニウム原子の量に対する上記濾液中に存在するアルミニウム原子の割合として決定される。
【0074】
(2) アルミニウム含量
溶液状ポリメチルアルミノキサン組成物および固体状アルミノキサン組成物のアルミニウム含量は、基本的に0.5Nの硫酸水溶液で加水分解した溶液に過剰量のエチレンジアミン四酢酸二ナトリウムを加えた後に、ジチゾンを指示薬とし硫酸亜鉛で逆滴定することにより求めた。測定濃度が希薄な場合は、原子吸光分析法を用いて測定を行った。
【0075】
(3) 固体状アルミノキサン組成物の比表面積
固体状アルミノキサン組成物の比表面積は、BET吸着等温式を用い、固体表面におけるガスの吸着現象を利用して求めた。測定装置にはBEL JAPAN,INC.製のBELSORP mini IIを、測定ガスには窒素ガスを用いた。
【0076】
(4) 固体状アルミノキサン組成物の体積基準のメジアン径および粒度分布
固体状アルミノキサン組成物の体積基準のメジアン径および粒度分布はMalvern Instrument Ltd.のマスターサイザー2000 Hydro Sを利用し、乾燥窒素雰囲気下にレーザー回折・散乱法により求めた。分散媒には主に脱水・脱気したn-ヘキサンを、目的により一部には脱水・脱気したトルエンを用いた。触媒粒度分布の指標として、均一性は、下記の式で示される定義を用いた。
均一性 = ΣXi|d(0.5) - Di|/d(0.5)ΣXi
ここで、Xiは粒度分布のヒストグラムにおける固体状アルミノキサン組成物の粒子iの体積百分率、d(0.5)は前記ヒストグラムにおける体積基準のメジアン径、Diは前記ヒストグラムにおける粒子iの体積基準径を示す。
【0077】
(5) メチル基のモル分率
ポリメチルアルミノキサン組成物中のそれぞれの成分のモル分率は、ポリメチルアルミノキサン組成物の
1H-NMR測定により、それぞれの成分に帰属される面積比から求めた。以下にポリメチルアルミノキサン組成物の具体的なMe(PMAO), Me(TMAL)のモル分率の求め方を例示する。ポリメチルアルミノキサンに由来するメチル基のモル分率をMe(PMAO)と表す。トリメチルアルミニウムに由来するメチル基のモル分率をMe(TMAL)と表す。
【0078】
まず、重溶媒にはd
8-THFを用いてポリメチルアルミノキサン組成物の
1H-NMR測定を実施する。
1H-NMR測定は300MHz バリアン・テクノロジーズ・ジャパン・リミテッドのGemini 2000 NMR測定装置を用い、測定温度24℃で行った。
1H-NMRチャートの例を
図1に示す。
【0079】
(i) -0.3ppmから-1.2ppm程度に現われるトリメチルアルミノキサンを含むポリメチルアルミノキサンのMe基ピークの全体の積分値を求め、これをI(ポリメチルアルミノキサン)とする。
(ii) -1.1ppm付近のTMALに由来するMe基ピークを接線-1により切り出し、その積分値 I(TMAL-Me)を求める。
(iii) (ii)で求めたそれぞれの積分値を、(i)で求めた積分値 I(ポリメチルアルミノキサン)から引くと、トリメチルアルミニウムを含まないポリメチルアルミノキサンのみのMe-基の積分値I(PMAO-Me)を求めることができる。I(TMAL-Me)およびI(PMAO-Me)をI(ポリメチルアルミノキサン)で割って規格化すると、Me(PMAO), Me(TMAL)のモル分率を求めることが出来る。
【0080】
なお、それぞれのピークの切り出し方法としては、市販のカーブフィッティングプログラムを用いる方法やベースラインコレクションを用いる方法などにより簡便に行うことが出来る。
【0081】
また、溶液状ポリメチルアルミノキサン組成物の分析サンプルは、溶液状ポリメチルアルミノキサン組成物約0.05mlに対しd
8-THFを約0.5ml添加することにより調製した。固体状ポリメチルアルミノキサン組成物の分析サンプルは、溶液状ポリメチルアルミノキサン組成物10mgに対しd
8-THFを0.5ml添加することにより調製した。
【0082】
以下の反応は乾燥窒素ガス雰囲気下に行い、溶媒はすべて脱水および脱気したものを使用した。
【0083】
予備実験1 (安息香酸-Al/O=1.20)(1) 溶液状ポリメチルアルミノキサン組成物の合成
撹拌装置を有する内容積2Lのセパラブルフラスコに、トリメチルアルミニウム(TMAL) 240.8g(3.34mol)、トルエン600.5gを入れた。この溶液を15℃にまで冷却し、これに安息香酸145.7g(1.19mol)を溶液の温度が25℃以下になるような速度でゆっくりと添加した。その後50℃で加熱熟成を1時間行った。この時、TMALと安息香酸の酸素原子のモル比は、1.20であった。反応液を70℃で32時間加熱し、その後60℃で6時間加熱することにより、ポリメチルアルミノキサン組成物のトルエン溶液を得た。得られた溶液は、ゲル状物のない透明な液体であった。反応液回収後に行ったアルミニウム分析結果より、アルミニウム原子基準で示す反応収率は定量的なものであった。得られた反応液のアルミニウム濃度は、9.04wt%であった。得られた溶液状ポリメチルアルミノキサン組成物のMe(TMAL)量を
1H-NMRより求めたところ、14.0mol%であった。なお、本溶液状ポリメチルアルミノキサンは溶液状態のため、試験方法の項で記載した溶解度測定は出来なが、溶液の比重とアルミニウム濃度から計算で求めたトルエン中の濃度は約3.0mol/Lであった。
【0084】
(2) エチレン重合評価
ビス(シクロペンタジエニル)ジルコニウムジクロライドを用いた重合
磁気撹拌装置を持つ500mlの四つ口フラスコにトルエン250mlを導入し、34℃にまで加熱した。これにアルミニウム原子換算で0.16g(5.93mmol)のポリメチルアルミノキサンのトルエン溶液を加え、さらにAl/Zrのモル比が5000となるようにビス(シクロペンタジエニル)ジルコニウムジクロライド(Cp
2ZrCl
2)を加え、40℃に昇温しながらエチレンガスを吹き込んだ。10分後に、エチレンガスの供給を止め、メタノールを投入して触媒を失活させた。生成したポリエチレンを濾過乾燥し、重合活性を求めたところ39×10
6g-PE/mol-Zr・atm・hrであった。高温GPCにより求めた分子量は18万で、Mw/Mnは2.9であった。ポリマー形状は不定形で、重合器のファウリングが顕著であった。
【0085】
実施例1(1) 固体状ポリメチルアルミノキサン組成物の合成
撹拌装置を有する内容積5Lのセパラブルフラスコに予備実験1(Al/O=1.20)で調製したポリメチルアルミノキサン組成物のトルエン溶液 406.5g(1.361mol-Al)を入れ、挿入したディップチューブより乾燥窒素を吹込み、攪拌しながら窒素バブリング(250ml/min)を30min行った。その後、攪拌しながら100℃で8時間加熱した。加熱中に固体状ポリメチルアルミノキサン組成物が析出した。溶液を30℃以下にまで冷却した後に、洗浄のためにn-ヘキサン3.6Lを攪拌下に添加した。固体状ポリメチルアルミノキサン組成物をデカンテーションし、上澄み液を除去した後に、n-ヘキサン 3Lで2度のデカンテーションによる洗浄操作を行った。得られた固体を室温下に減圧乾燥することにより乾燥固体状ポリメチルアルミノキサン組成物を得た。乾燥固体状ポリメチルアルミノキサン組成物の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で97%であった。得られた固体状ポリメチルアルミノキサン組成物のMe(TMAL)量を
1H-NMRより求めたところ、9.2mol%であった。
【0086】
(2) 固体状ポリメチルアルミノキサン組成物の分析
(a) アルミニウム含量
乾燥固体状ポリメチルアルミノキサン組成物中のアルミニウム含量を測定したところ、39.3wt%-Alであった。
【0087】
(b) 形状評価
乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5) 3.1μm、均一性は0.290であった。
【0088】
(c) 比表面積測定
乾燥固体状ポリメチルアルミノキサン組成物の比表面積測定を行ったところ、アルミニウム原子 1mmol当りの比表面積は20.1m
2/mmol-Alであった。
【0089】
(d) 溶媒への溶解割合
乾燥固体状ポリメチルアルミノキサン組成物のn-ヘキサンとトルエンへの溶解割合を求めたところ、それぞれ0.1mol%、0.35mol%と極めて低い値であった。
【0090】
(3) エチレン重合評価
1. ビス(シクロペンタジエニル)ジルコニウムジクロライドを用いた重合
磁気撹拌装置を持つ500mlの四つ口フラスコにトルエン250mlを導入し、34℃にまで加熱した。これにアルミニウム原子換算で0.16g(5.93mmol)の固体状ポリメチルアルミノキサン組成物(Al/O=1.20)のトルエンスラリー溶液を加え、さらにAl/Zrのモル比が5000となるようにビス(シクロペンタジエニル)ジルコニウムジクロライド(Cp
2ZrCl
2)を加え、40℃に昇温しながらエチレンガスを吹き込んだ。10分後に、エチレンガスの供給を止め、メタノールを投入して触媒を失活させた。生成したポリエチレンを濾過乾燥し、重合活性を求めたところ68×10
6g-PE/mol-Zr・atm・hrであった。
得られたポリマーはさらさらした微粒子状で、重合後の反応器への付着がないものであった。また、高温GPCにより求めた分子量は17万で、Mw/Mnは2.6であった。
【0091】
実施例2(1) 固体状ポリメチルアルミノキサン組成物の合成
窒素バブリング(250ml/min)を60min行ったこと以外は、実施例1と同様に固体状ポリメチルアルミノキサン組成物を調製した。乾燥固体状ポリメチルアルミノキサン組成物の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で96.5%であった。得られた固体状ポリメチルアルミノキサン組成物のMe(TMAL)量を
1H-NMRより求めたところ、9.1mol%であった。
【0092】
(2) 固体状ポリメチルアルミノキサン組成物の分析
(a) アルミニウム含量
乾燥固体状ポリメチルアルミノキサン組成物中のアルミニウム含量を測定したところ、40.3wt%-Alであった。
【0093】
(b) 形状評価
乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5) 1.5μm、均一性は0.300であった。
【0094】
(c) 比表面積測定
乾燥固体状ポリメチルアルミノキサン組成物の比表面積測定を行ったところ、アルミニウム原子 1mmol当りの比表面積は21.1m
2/mmol-Alであった。
【0095】
(d) 溶媒への溶解割合
乾燥固体状ポリメチルアルミノキサン組成物のn-ヘキサンとトルエンへの溶解割合を求めたところ、それぞれ0.1mol%、0.35mol%と極めて低い値であった。
【0096】
(3) エチレン重合評価
1. ビス(シクロペンタジエニル)ジルコニウムジクロライドを用いた重合
上記で合成した固体状ポリメチルアルミノキサン組成物を用いたこと以外は実施例1の(3)1.と同様に重合評価を実施したところ、65×10
6g-PE/mol-Zr・atm・hrであった。
【0097】
得られたポリマーはさらさらした微粒子状で、重合後の反応器への付着がないものであった。また、高温GPCにより求めた分子量は17万で、Mw/Mnは2.5であった。
【0098】
実施例3(1) 固体状ポリメチルアルミノキサン組成物の合成
窒素バブリング(5ml/min)を加熱による固体化時に行ったこと以外は、実施例1と同様に固体状ポリメチルアルミノキサン組成物を調製した。乾燥固体状ポリメチルアルミノキサン組成物の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で97.5%であった。得られた固体状ポリメチルアルミノキサン組成物のMe(TMAL)量を
1H-NMRより求めたところ、8.8mol%であった。
【0099】
(2) 固体状ポリメチルアルミノキサン組成物の分析
(a) アルミニウム含量
乾燥固体状ポリメチルアルミノキサン組成物中のアルミニウム含量を測定したところ、40.3wt%-Alであった。
【0100】
(b) 形状評価
乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5) 0.9μm、均一性は0.310であった。
【0101】
(c) 比表面積測定
乾燥固体状ポリメチルアルミノキサン組成物の比表面積測定を行ったところ、アルミニウム原子 1mmol当りの比表面積は22.1m
2/mmol-Alであった。
【0102】
(d) 溶媒への溶解割合
乾燥固体状ポリメチルアルミノキサン組成物のn-ヘキサンとトルエンへの溶解割合を求めたところ、それぞれ0.1mol%、0.35mol%と極めて低い値であった。
【0103】
(3) エチレン重合評価
1. ビス(シクロペンタジエニル)ジルコニウムジクロライドを用いた重合
上記で合成した固体状ポリメチルアルミノキサン組成物を用いたこと以外は実施例1の(3)1.と同様に重合評価を実施したところ、66×10
6g-PE/mol-Zr・atm・hrであった。
得られたポリマーはさらさらした微粒子状で、重合後の反応器への付着がないものであった。また、高温GPCにより求めた分子量は17万で、Mw/Mnは2.5であった。
【0104】
実施例4(1) 固体状ポリメチルアルミノキサン組成物の合成
窒素バブリング(7.5ml/min)を加熱による固体化時に行ったこと以外は、実施例1と同様に固体状ポリメチルアルミノキサン組成物を調製した。乾燥固体状ポリメチルアルミノキサン組成物の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で98.5%であった。得られた固体状ポリメチルアルミノキサン組成物のMe(TMAL)量を
1H-NMRより求めたところ、8.2mol%であった。
【0105】
(2) 固体状ポリメチルアルミノキサン組成物の分析
(a) アルミニウム含量
乾燥固体状ポリメチルアルミノキサン組成物中のアルミニウム含量を測定したところ、42.1wt%-Alであった。
【0106】
(b) 形状評価
乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5) 0.7μm、均一性は0.300であった。
【0107】
(c) 比表面積測定
乾燥固体状ポリメチルアルミノキサン組成物の比表面積測定を行ったところ、アルミニウム原子 1mmol当りの比表面積は21.5m
2/mmol-Alであった。
【0108】
(d) 溶媒への溶解割合
乾燥固体状ポリメチルアルミノキサン組成物のn-ヘキサンとトルエンへの溶解割合を求めたところ、それぞれ0.1mol%、0.35mol%と極めて低い値であった。
【0109】
(3) エチレン重合評価
1. ビス(シクロペンタジエニル)ジルコニウムジクロライドを用いた重合
上記で合成した固体状ポリメチルアルミノキサン組成物を用いたこと以外は実施例1の(3)1.と同様に重合評価を実施したところ、72×10
6g-PE/mol-Zr・atm・hrであった。
【0110】
得られたポリマーはさらさらした微粒子状で、重合後の反応器への付着がないものであった。また、高温GPCにより求めた分子量は20万で、Mw/Mnは2.4であった。
【0111】
2.ビスインデニルジルコニウムジクロライドを用いた重合
攪拌機付ガラスフラスコに、上記で合成した固体状ポリメチルアルミノキサン組成物10g(155.9mmol-Al)を入れ、トルエンにてスラリー濃度15wt%に調整した。これにビスインデニルジルコニウムジクロライド(和光ケミカル社製、0.78mmol-Zr)のトルエン溶液を室温下に徐々に添加し、そのまま3時間、攪拌下に反応を行った。上澄みに若干の着色が見られなかったので、洗浄は実施しなかった。この調製触媒のトルエンスラリーを用いてエチレンの単独重合を行った。
【0112】
耐圧硝子製攪拌機、圧力計付SUSオートクレーブ(1500ml)にヘキサン800ml導入し、エチレン0.5MPa加圧脱圧を4回行うことによりにより系内の窒素ガスをパージした。その後、0.5mol/Lのトリエチルアルミニウムのヘキサン溶液を0.5ml添加した。内溶液をオイルバスにより65℃まで昇温した。上記調製触媒のトルエンスラリー(触媒固体として15mg)を加圧投入し、すぐさま、エチレンにて系内の圧力を0.7MPaまで加圧し、重合をスタートさせた。系内の圧力を0.7MPa、重合温度を70℃にキープし、1時間のスラリー重合を実施した。1時間の重合の後に、エチレンの供給を止め、系内のガスを放出することにより重合を止めた。更に、少量のジ-t-ブチルヒドロキシトルエン入りのメタノールを加え、ヌッチェによりポリマーをろ取した。得られたポリマーを50℃における減圧乾燥したところ、ポリマー重量は350gで、重合活性は約23300g-PE/g-cat・hrの非常な高活性であった。得られたポリマーはさらさらした微粒子状で、重合後の反応器への付着がないものであった。
【0113】
実施例5(3) エチレン重合評価
2.ビスインデニルジルコニウムジクロライドを用いた重合
実施例1で得られた固体状ポリメチルアルミノキサン組成物を用いたこと以外は実施例4の(3)2.記載の方法と同様に触媒調製し、得られた触媒の重合評価を行ったところ、250gのポリマーを得た。重合活性は約16700g-PE/g-cat・hrの非常な高活性であった。得られたポリマーはさらさらした微粒子状で、重合後の反応器への付着がないものであった。
【0114】
実施例6(3) エチレン重合評価
2.ビスインデニルジルコニウムジクロライドを用いた重合
実施例2で得られた固体状ポリメチルアルミノキサン組成物を用いたこと以外は実施例4の(3)2.記載の方法と同様に触媒調製し、得られた触媒の重合評価を行ったところ、285gのポリマーを得た。重合活性は19000g-PE/g-cat・hrの非常な高活性であった。得られたポリマーはさらさらした微粒子状で、重合後の反応器への付着がないものであった。
【0115】
実施例7(3) エチレン重合評価
2.ビスインデニルジルコニウムジクロライドを用いた重合
実施例3で得られた固体状ポリメチルアルミノキサン組成物を用いたこと以外は実施例4の(3)2.記載の方法と同様に触媒調製し、得られた触媒の重合評価を行ったところ、312gのポリマーを得た。重合活性は20800g-PE/g-cat・hrの非常な高活性であった。得られたポリマーはさらさらした微粒子状で、重合後の反応器への付着がないものであった。
【0116】
比較例1 本比較例は、特許文献7の実施例7の再現である。
【0117】
(1) 溶液状ポリメチルアルミノキサン組成物の合成
撹拌装置を有する内容積500mLのセパラブルフラスコに、トリメチルアルミニウム(TMAL) 68.39g(948.81mmol)、トルエン102.51gを入れた。この溶液を15℃にまで冷却し、これにアセトフェノン82.13g(683.56mmol)とトルエン19.35gの溶液を、フラスコ中の内部温度が25℃以下になるような速度でゆっくりと添加した。その後50℃で加熱熟成を1時間行った。この時、TMALとアセトフェノンの酸素原子のモル比は、1.39であった。反応液に予備実験1で調製したポリメチルアルミノキサン組成物のトルエン溶液を熱分解反応の活性化剤とし、アルミニウム原子基準で49.0mmolとなる量を一気に投入し、その後65℃で9時間加熱することにより、アセトフェノンを酸素源に用いたポリメチルアルミノキサン組成物のトルエン溶液を得た。得られた溶液は、ゲル状物のない薄黄色の透明な液体であった。反応液回収後に行ったアルミニウム濃度分析結果より、アルミニウム原子基準で示す反応収率は定量的なものであった。得られた反応液のアルミニウム濃度は9.15wt%であった。得られた溶液状ポリメチルアルミノキサン組成物のMe(TMAL)量を
1H-NMRより求めたところ、23.2mol%であった。なお、本溶液状ポリメチルアルミノキサン組成物は溶液状態のため、試験方法の項で記載した溶解度測定は出来なが、溶液の比重とアルミニウム濃度から計算で求めたトルエン中の濃度は約3.1mol/Lであった。
【0118】
(2) エチレン重合評価
重合評価は予備実験1の(2)1.に記載の方法と同様に実施したところ、重合活性は65×10
6g-PE/mol-Zr・atm・hrであった。ポリマー形状は不定形で、重合器のファウリングが顕著であった。
【0119】
(3) 固体状ポリメチルアルミノキサン組成物の合成
上記アセトフェノンを用いて調製した溶液状ポリメチルアルミノキサン組成物を用いたことおよび窒素バブリングを行わなかったこと以外は実施例1と同様に固体状ポリメチルアルミノキサン組成物を調製した。乾燥固体の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で54.8%であった。得られた固体状ポリメチルアルミノキサン組成物のMe(TMAL)量を
1H-NMRより求めたところ、11.8mol%であった。
【0120】
(4) 固体状ポリメチルアルミノキサン組成物の分析
(a) アルミニウム含量
乾燥固体状ポリメチルアルミノキサン組成物中のアルミニウム含量を測定したところ、40.1wt%-Alであった。
【0121】
(b) 形状評価
乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5) 6.2μm、均一性は0.300であった。
【0122】
(c) 比表面積測定
乾燥固体状ポリメチルアルミノキサン組成物の比表面積測定を行ったところ、アルミニウム原子 1mmol当りの比表面積は13.2m
2/mmol-Alであった。
【0123】
(5) エチレン重合評価
上記で合成した固体状ポリメチルアルミノキサン組成物を用いたこと以外は実施例1の(3)1.と同様に重合評価を実施したところ、重合活性は37×10
6g-PE/mol-Zr・atm・hrであった。得られたポリマーはさらさらした微粒子状で、重合後の反応器への付着がないものであった。
【0124】
2.ビスインデニルジルコニウムジクロライドを用いた重合
上記で得られた固体状ポリメチルアルミノキサン組成物を用いたこと以外は実施例4の(3)2.記載の方法と同様に触媒調製し、得られた触媒の重合評価を行ったところ、23gのポリマーを得た。重合活性は約1500g-PE/g-cat・hrの活性であった。得られたポリマーはさらさらした微粒子状で、重合後の反応器への付着がないものであった。
【0125】
比較例2
本比較例は、特許文献7の実施例1の再現である。
【0126】
(1) 固体状ポリメチルアルミノキサン組成物の合成
撹拌装置を有する内容積5Lのセパラブルフラスコに予備実験1(Al/O=1.20)で調製したポリメチルアルミノキサン組成物のトルエン溶液 406.5g(1.361mol-Al)を入れ、攪拌しながら100℃で8時間加熱した。加熱中に固体状ポリメチルアルミノキサン組成物が析出した。溶液を30℃以下にまで冷却した後に、洗浄のためにn-ヘキサン3.6Lを攪拌下に添加した。固体状ポリメチルアルミノキサン組成物をデカンテーションし、上澄み液を除去した後に、n-ヘキサン 3Lで2度のデカンテーションによる洗浄操作を行った。得られた固体を室温下に減圧乾燥することにより乾燥固体状ポリメチルアルミノキサン組成物を得た。乾燥固体状ポリメチルアルミノキサン組成物の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で96%であった。得られた固体状ポリメチルアルミノキサン組成物のMe(TMAL)量を
1H-NMRより求めたところ、9.0mol%であった。
【0127】
(2) 固体状ポリメチルアルミノキサン組成物の分析
(a) アルミニウム含量
乾燥固体状ポリメチルアルミノキサン組成物中のアルミニウム含量を測定したところ、37.3wt%-Alであった。
【0128】
(b) 形状評価
乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5) 9.4μm、均一性は0.296であった。
【0129】
(c) 比表面積測定
乾燥固体状ポリメチルアルミノキサン組成物の比表面積測定を行ったところ、アルミニウム原子 1mmol当りの比表面積は19.5m
2/mmol-Alであった。
【0130】
(d) 溶媒への溶解割合
乾燥固体状ポリメチルアルミノキサン組成物のn-ヘキサンとトルエンへの溶解割合を求めたところ、それぞれ0.1mol%、0.4mol%と極めて低い値であった。
【0131】
(3) エチレン重合評価
1. ビス(シクロペンタジエニル)ジルコニウムジクロライドを用いた重合
磁気撹拌装置を持つ500mlの四つ口フラスコにトルエン250mlを導入し、34℃にまで加熱した。これにアルミニウム原子換算で0.16g(5.93mmol)の固体状ポリメチルアルミノキサン組成物(Al/O=1.20)のトルエンスラリー溶液を加え、さらにAl/Zrのモル比が5000となるようにビス(シクロペンタジエニル)ジルコニウムジクロライド(Cp
2ZrCl
2)を加え、40℃に昇温しながらエチレンガスを吹き込んだ。10分後に、エチレンガスの供給を止め、メタノールを投入して触媒を失活させた。生成したポリエチレンを濾過乾燥し、重合活性を求めたところ64×10
6g-PE/mol-Zr・atm・hrであった。
得られたポリマーはさらさらした微粒子状で、重合後の反応器への付着がないものであった。また、高温GPCにより求めた分子量は16万で、Mw/Mnは2.7であった。
【0132】
2. ビスインデニルジルコニウムジクロライドを用いた重合
上記で得られた固体状ポリメチルアルミノキサン組成物を用いたこと以外は実施例4の(3)2.記載の方法と同様に触媒調製し、得られた触媒の重合評価を行ったところ、80gのポリマーを得た。重合活性は約5300g-PE/g-cat・hrであった。得られたポリマーはさらさらした微粒子状で、重合後の反応器への付着がないものであった。
【0133】
実施例1〜7及び比較例1〜2の結果をまとめて以下の票に示す。
【0134】
【表1】