特許第6066077号(P6066077)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アリババ・グループ・ホールディング・リミテッドの特許一覧

特許6066077更新パラメータを生成および相関するキーワードを表示するための方法および装置
<>
  • 特許6066077-更新パラメータを生成および相関するキーワードを表示するための方法および装置 図000010
  • 特許6066077-更新パラメータを生成および相関するキーワードを表示するための方法および装置 図000011
  • 特許6066077-更新パラメータを生成および相関するキーワードを表示するための方法および装置 図000012
  • 特許6066077-更新パラメータを生成および相関するキーワードを表示するための方法および装置 図000013
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6066077
(24)【登録日】2017年1月6日
(45)【発行日】2017年1月25日
(54)【発明の名称】更新パラメータを生成および相関するキーワードを表示するための方法および装置
(51)【国際特許分類】
   G06F 17/30 20060101AFI20170116BHJP
【FI】
   G06F17/30 340B
   G06F17/30 320D
【請求項の数】9
【全頁数】17
(21)【出願番号】特願2013-76189(P2013-76189)
(22)【出願日】2013年4月1日
(62)【分割の表示】特願2010-502405(P2010-502405)の分割
【原出願日】2007年8月28日
(65)【公開番号】特開2013-152744(P2013-152744A)
(43)【公開日】2013年8月8日
【審査請求日】2013年4月30日
【審判番号】不服2015-21620(P2015-21620/J1)
【審判請求日】2015年12月4日
(31)【優先権主張番号】200710095848.7
(32)【優先日】2007年4月10日
(33)【優先権主張国】CN
(73)【特許権者】
【識別番号】510330264
【氏名又は名称】アリババ・グループ・ホールディング・リミテッド
【氏名又は名称原語表記】ALIBABA GROUP HOLDING LIMITED
(74)【代理人】
【識別番号】110001243
【氏名又は名称】特許業務法人 谷・阿部特許事務所
(72)【発明者】
【氏名】パン レイ
(72)【発明者】
【氏名】ヤオ ユアンフ
(72)【発明者】
【氏名】ヤン ツェン
(72)【発明者】
【氏名】チャン ティアンジ
【合議体】
【審判長】 金子 幸一
【審判官】 野崎 大進
【審判官】 石川 正二
(56)【参考文献】
【文献】 特開平9−319767(JP,A)
【文献】 特開平7−56948(JP,A)
【文献】 大久保 雅且,WWW検索ログに基づく情報ニーズの抽出,情報処理学会論文誌,日本,社団法人情報処理学会,1998年7月15日,第39巻、第7号,2250−2258ページ
(58)【調査した分野】(Int.Cl.,DB名)
G06F17/30
(57)【特許請求の範囲】
【請求項1】
所定の期間内に1または複数のユーザにより検索された複数の単語を取得するステップと、
前記複数の単語の主キーワードおよび主頻度を判定するステップであって、前記主頻度は前記主キーワードが単独で検索された単独検索頻度であって、
前記主キーワードに関連付けられる1または複数の関連キーワードと、関連頻度とを判定するステップであって、前記関連頻度は、前記1または複数の関連キーワードのうちの前記関連キーワードと前記主キーワードとが一緒に検索された連携検索頻度であるステップと、
前記関連キーワードに関連付けられる特徴値を、少なくとも前記主頻度前記関連頻度とを別々に重み付けすることによって算定するステップと、
前記主キーワードを含む検索要求の受信に対応して、少なくとも1つの前記関連キーワードであって、前記主キーワードに対応する前記関連キーワードを、少なくとも前記特徴値に基づいて提示するために提供するステップと
を備えたことを特徴とするコンピュータ実行方法。
【請求項2】
1または複数の前記関連キーワードをテーブルに格納するステップをさらに備え、前記テーブルは、複数の主キーワード、複数の前記主キーワードにそれぞれ対応する少なくとも1つの前記関連キーワード、および少なくとも1つの前記関連キーワードそれぞれに対応する1つ以上の特徴値を含むことを特徴とする請求項1に記載のコンピュータ実行方法。
【請求項3】
所定の値以下の第1の特徴値を有する第1の関連キーワードを、前記テーブルから削除するステップと、
所定の値より大きい第2の特徴値を有する第2の関連キーワードを、前記テーブルに追加するステップと
をさらに備えたことを特徴とする請求項2に記載のコンピュータ実行方法。
【請求項4】
前記テーブルを、予め定められた期間内に更新するステップをさらに備えたことを特徴とする請求項2に記載のコンピュータ実行方法。
【請求項5】
前記複数の単語の主キーワードを判定することは、前記主キーワードを、アプリオリアルゴリズムを用いて判定することを含むことを特徴とする請求項1に記載のコンピュータ実行方法。
【請求項6】
前記特徴値を算定するステップは、
前記主キーワードおよび前記各関連キーワードの相関度を、少なくとも前記関連頻度に基づいて算定するステップと、
前記特徴値を、前記相関度にさらに基づいて算定するステップと
を含むことを特徴とする請求項1に記載のコンピュータ実行方法。
【請求項7】
前記検索要求を提出したユーザーのタイプを判別するステップを含み、前記少なくとも1つの関連キーワードは前記検索要求を提出したユーザーの前記ユーザーのタイプと類似または同じユーザーのタイプを有する他のユーザーによって検索されたものである
ことを特徴とする請求項1に記載のコンピュータ実行方法。
【請求項8】
前記特徴値は、少なくとも1つの前記関連キーワードとして、前記1または複数の関連キーワードを常に又は順番に提示するかどうか決定するためのパラメーターとしての役割を有する
ことを特徴とする請求項1に記載のコンピュータ実行方法。
【請求項9】
1つ以上のプロセッサと、実行可能命令を有するメモリを有するシステムであって、前記実行可能命令は、前記1つ以上のプロセッサに請求項1ないし8いずれか1項に記載の方法におけるステップを実施させる
ことを特徴とするシステム。
【発明の詳細な説明】
【技術分野】
【0001】
この出願は、中国特許庁に2007年4月10日付けで出願された、「更新パラメータを生成する方法および装置、ならびに関連キーワードを表示する方法および装置」という名称の中国特許出願第200710095848.7号に基づく優先権を主張しており、この中国特許出願の全内容を参照によって組み込むものである。
【0002】
本発明はデータ処理の分野に関し、詳しくは、更新パラメータを生成する方法および装置ならびに関連キーワードを表示する方法および装置に関する。
【背景技術】
【0003】
インターネットなどのデータネットワークやデータシステム上でテキストやマルチメディアを使用する機会が急速に増えるにつれて、ユーザーが必要な情報を見つけ出すためにキーボードベースの検索ツールに頼ることが益々多くなってきた。通常ユーザーは、探したい情報文書のキーワードを検索ツールや検索エンジンに入力する。すると検索ツールまたはエンジンは、インデックス付きのデータベースにて検索を行い、検索結果をユーザーに示す。一般的に、既存の検索ツールまたはエンジンは、現ウェブページ上または現検索結果ページ上に、ユーザーの入力したキーワード(つまり主キーワード)に対応する関連キーワードも1つ以上表示することができる。
【0004】
周知のように、殆どのユーザーは、検索エンジンでオンライン情報検索を開始し、キーワードを入力して必要な情報を検索するのが一般的である。社会の急速な変化と文化の継続的な発展に伴い、多くの固定的キーワードではユーザーの多様なニーズに応えられなくなってきている。特に、爆発的に増えた情報量ゆえに、既存のキーワード検索方法は、もはやユーザーの多様なニーズに応えられなくなっている。キーワードの記録は固定されており、かなり以前に作られ、まれにしか更新されないこともあるので、変化するオンラインコンテンツの要求を満たせなくなっている。例えば「衣類」というキーワードが主キーワードである場合を例に取ると、通常は、この主キーワードの関連キーワードとして既存の技術で得られる単語は、「活動着」とか「ダウンコート」などである。しかし季節の変化とともに、ユーザーが本当に欲しい関連キーワードは、「春のファッション」であったり「夏のファッション」であったり「Tシャツ」であったりするかもしれない。しかし既存の技術では、得られるキーワードをユーザーの使用傾向に適応させられない。
【0005】
このように、現行技術によるキーワード検索は、殊に、使用されるキーワードをユーザーの使用傾向に適応させられないという点で、ユーザーのニーズを満たせない。
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、使用するキーワードをユーザーの使用傾向に適応するよう更新するパラメータを生成する方法および装置を提供することを目的とする。
【0007】
これに対応して、本発明の他の目的は、ユーザーが関連キーワードを簡単且つ包括的に得ることを確実にする関連キーワード表示方法および装置を提供することにある。
【課題を解決するための手段】
【0008】
上記目的を達成するために、本発明の実施例は、更新パラメータ生成方法を開示する。この方法では、所定の期間内にユーザーが使った検索キーワードを収集し、これらの検索キーワードをカウントして、主キーワード、関連キーワード、各主キーワードとその関連キーワードのそれぞれとが一緒に検索された連携検索頻度、および各主キーワードが単独で検索された検索頻度を求め、主キーワードが単独で検索された検索頻度に基づいて第1特徴値を算定し、これらの第1特徴値および主キーワードとそれぞれの関連キーワードとの連携検索頻度に基づいて第2特徴値を算定する。そして、これらの第2特徴値を関連キーワードの表示モードを決定するための更新パラメータとして使用する。
【0009】
前記方法において、更に主キーワードと関連キーワードと第2特徴値を記録することでキーワード情報テーブルを作成することが望ましい。
【0010】
検索キーワードの計数と、第1特徴値の算定と、第2特徴値の算定とを、マルチスレッド方式で同時に実行することが望ましい。
【0011】
前記方法が、第1特徴値を算定する前に、フィルタリング規則に合う検索キーワードを除外するステップを更に含むことが望ましい。
【0012】
前記方法において、第2特徴値を算定するために、各主キーワードとその関連キーワードのそれぞれとの相関度を、これらが一緒に検索された頻度に基づき算定し、キャッシュメモリから第1特徴値を取り出して、これらの第1特徴値および相関度に基づいて第2特徴値を算定することが望ましい。
【0013】
前記キーワード情報テーブルに、主キーワードに対応する第1特徴値も記録されていることが望ましい。
【0014】
検索キーワードには、検索側ユーザーによって使われる検索キーワードと、広告側ユーザーによって掲示される広告キーワードとが含まれることが望ましい。
【0015】
本発明の実施例は、更に更新パラメータ生成装置を開示している。この装置において、取得ユニットは、所定の期間内にユーザーが使った検索キーワードを取得するためのものであり、統計ユニットは、各検索キーワードをカウントして、主キーワードと、関連キーワードと、各主キーワードとそれぞれの関連キーワードが共に検索された連携検索頻度と、各主キーワードが単独で検索された単独検索頻度とを算定するためのものであり、第1計算ユニットは、主キーワードの単独検索頻度に基づいて第1特徴値を算定するためのものであり、第2計算ユニットは、これらの第1特徴値と、各主キーワードとそれぞれの関連キーワードの連携検索頻度とに基づいて、第2特徴値を算定するためのものである。これらの第2特徴値が、関連キーワードの表示モードを決定する更新パラメータとして用いられる。
【0016】
前記装置は、更に、主キーワードと関連キーワードと第2特徴値を記録することでキーワード情報テーブルを作成する記録ユニットを備えていることが望ましい。
【0017】
前記装置は、更に、統計ユニットに接続された、フィルタリング規則に当てはまる検索キーワードを除外するためのフィルタリングユニットを備えていることが望ましい。
【0018】
前記第2計算ユニットは、各主キーワードと関連キーワードのそれぞれとが一緒に検索された頻度に基づき各々の相関度を算定する相関度計算部と、キャッシュメモリから第1特徴値を読み出して、これらの第1特徴値および相関度に基づいて第2特徴値を算定する取得/計算部とを備えていることが望ましい。
【0019】
前記装置は、記録ユニットに接続された、第1特徴値をキーワード情報テーブルに記録するために用いられる追加ユニットを更に備えていることが望ましい。
【0020】
本発明の実施例は、更に、関連キーワード表示方法を開示している。この方法では、ユーザーにより入力された主キーワードに対応する関連キーワードの取得要求を行う。この要求に基づき、第2特徴値が閾値以上の関連キーワードが取得される。第2特徴値は、第1特徴値と、主キーワードが関連キーワードと一緒に検索された連携検索頻度とに基づいて算定され、第1特徴値は主キーワードの単独検索頻度に基づいて算定される。主キーワードと関連キーワードの連携検索頻度および主キーワードの単独検索頻度は、検索キーワードをカウントすることによって求められる。こうして取得された関連キーワードが表示される。
【0021】
この方法において、閾値未満の第2特徴値を有する関連キーワードも表示することが望ましい。
【0022】
第2特徴値が閾値以上の関連キーワードは、主キーワードと関連キーワードと第2特徴値とを保有するキーワード情報テーブルから取得することが望ましい。
【0023】
本発明の実施例は、更に、関連キーワード表示装置を開示している。この装置は、ユーザーにより入力された主キーワードに対応する関連キーワードの取得要求を行うためのインターフェースユニットを備えている。また、この要求に応じて閾値以上の第2特徴値を有する関連キーワードを取得するための関連キーワード取得ユニットを備えている。第2特徴値は、第1特徴値と、主キーワードが関連キーワードと一緒に検索された連携検索頻度とに基づいて求められ、第1特徴値は主キーワードの単独検索頻度に基づいて求められる。主キーワードと関連キーワードの連携検索頻度および主キーワードの単独検索頻度は、検索キーワードをカウントすることにより求められる。この装置は、更に、取得された関連キーワードを表示するための第1表示ユニットを備えている。
【0024】
前記表示装置が、閾値未満の第2特徴値を有する関連キーワードを表示するための第2表示ユニットを更に備えていることが望ましい。
【発明の効果】
【0025】
このように、本発明の実施例では、キーワードを常に時流に乗ったものにするために、所定の期間内にユーザーが使用した検索キーワードの統計分析を行う。第2特徴値を関連キーワードの表示モード決定のためのパラメータとして用いることで、最近の使用傾向に合った関連キーワードが優先的にユーザーに提供されるので、ユーザーが満足できる検索結果が得られるようになる。
【図面の簡単な説明】
【0026】
図1】本発明による更新パラメータ生成方法の実施例のフローチャートを示す図である。
図2】本発明による更新パラメータ生成装置の実施例の構造を示す図である。
図3】本発明による関連キーワード表示方法の実施例のフローチャートを示す図である。
図4】本発明による関連キーワード表示装置の実施例の構造を示す図である。
【発明を実施するための形態】
【0027】
本発明の目的、特徴および利点をより明確かつ容易に理解するために、以下の実施例で本発明を更に詳細に説明する。
【0028】
本発明の実施例は、主キーワードとこれに対応する関連キーワードとの間の相関パラメータを更新すること、および更新された相関パラメータに従って各関連キーワードのアウトプットを制御することによって、ユーザーの検索要求をより満足させる関連キーワードを提供する。
【0029】
図1は、本発明による更新パラメータの生成方法の実施例のフローチャートを示す。この方法は、以下に述べる手順を含む。
【0030】
ブロック101では、所定の期間内にユーザーが使った検索キーワードを取得する。
【0031】
所定の期間は、当業者が必要に応じて予め定めてよい。例えば、ショッピング用ウェブサイトで、ユーザーの最近の使用傾向に合った関連製品のキーワードを得るためには、上記所定の期間を一週間から一ヶ月位に設定するとよい。検索キーワードは、データベース、スクリプトプログラム、ローカルプログラム、ユーザーの入力履歴、ユーザーのクライアント端末、サーバーまたは他の装置の記憶装置などから取り込むことができる。つまり本発明は、この方法を限定するものではない。
【0032】
ブロック102では、検索キーワードをカウントして、主キーワードと関連キーワードを求め、各主キーワードとその関連キーワードのそれぞれとが一緒に検索された連携検索頻度および各主キーワードが単独で検索された単独検索頻度を算定する。
【0033】
現行技術において、キーワードは固定されており、かなり以前に作られ、まれにしか更新されないので、これらの技術は、アクティブなオンラインコンテンツの即時的更新と使用には適しておらず、したがってユーザーの要求を満たせなくなっている。ここに提供する解決法は、主キーワードと関連キーワードの統計分析を用いて、変化する使用傾向に合った関連キーワードをユーザーが確実に得られるようにするものである。実施に当たり、主キーワードと関連キーワードを求め、各主キーワードとそれぞれの関連キーワードが一緒に検索された連携検索頻度と、各主キーワードが単独で検索された単独検索頻度とを算定する方法としては、利用可能であればどのような方法を用いてもよい。例えば、1つの検索キーワードを主キーワードとみなし、この主キーワードと共に検索されたキーワードを、この主キーワードの関連キーワードとみなす。それから、各主キーワードとその関連キーワードのそれぞれが一緒に検索された連携検索頻度と、各主キーワードが単独で検索された頻度とを別々に算定する。
【0034】
以下に述べる算定方法は、アプリオリアルゴリズムに基づいており、一例として説明するものである。アプリオリアルゴリズムは基本的に次のようなプロセスを含む:(1)トランザクション型データベースを走査して、最低支持レベル以上の支持のある全ての項目を見つけ出し、高頻度項目セットL1を作り、(2)L1の項目をリンク付けし、(3)L1の項目のフィルタリングによりトランザクション型データベースを走査して、別の最低支持レベル以上の支持のある項目のセットL2を取り出し、(4)L2の項目をリンク付けし、(5)L2の項目のフィルタリングによりトランザクション型データベースを走査して、さらに別の最低支持レベル以上の支持のある項目のセットL3を取り出す、といったプロセスを繰り返す。表1は、この方法を用いて取得した検索キーワードを示す。表2は、主キーワードと、これらの主キーワードが単独で検索された各単独検索頻度を示す。表3は、主キーワードと共に検索された各関連キーワードの総計と、それぞれの連携検索頻度を示す。
【0035】
【表1】
【0036】
【表2】
【0037】
【表3】
【0038】
このように、上記の頻度計数規則を用いて、主キーワードと関連キーワード、各主キーワードとそれぞれの関連キーワードの連携検索頻度、各主キーワードの単独検索頻度を検出することができる。
【0039】
なお上記の方法は、本発明を説明するための一例にすぎず、経験や必要に応じて、相関ルールマイニングのような別の方法を用いることもできる。つまり本発明は、上記の方法に限定されるものではない。
【0040】
本発明の好ましい実施例では、更に、フィルタリング規則に当てはまる検索用語を取り除く作業が行なわれる。フィルタリング規則は、当業者が経験や必要に基づいて予め定めることができる。例えば、表4に、一緒に検索された頻度が2回より少ない主キーワードと関連キーワードの項目を取り除くというフィルタリング規則を適用した場合に得られる結果を示す。
【0041】
【表4】
【0042】
あるいは、フィルタリング規則として、無効ないし不正なキーワードである検索キーワードや、無効ないし不正な記号や語句を含んだ検索キーワードを除去する設定をしてもよい。すなわち、本発明は、このやり方についても限定しない。
【0043】
ブロック103では、主キーワードの単独検索頻度に基づいて第1特徴値を算定する。
【0044】
キーワードの使用傾向をユーザーの検索需要を更に満足させるものに合わせる目的で、第1特徴値は、各キーワードの人気を表すものとして求められる。このため、第1特徴値は、主キーワードの単独検索頻度と所定の人気度との比較によって求められる。したがって、第1特徴値の算定式の一例は次のようになる:
第1特徴値=主キーワードの単独検索頻度/所定の人気度基準値
【0045】
表5に一例を示す。
【0046】
【表5】
【0047】
上の表において、所定の人気度基準値が20とすると、「バイク」についての第1特徴値は2/20=0.1となり、「Eバイク」についての第1特徴値は1/20=0.05となる。人気度基準値は、主キーワードの単独検索頻度の中央値とすることが望ましい。例えば、主キーワードの10%がそれぞれ単独で10回検索され、主キーワードの80%がそれぞれ単独で20回検索され、主キーワードの10%がそれぞれ単独で50回検索された場合、20という値が、人気度基準値として用いられる。人気度基準値は、予め経験や必要に基づいて決めてもよく、本発明は、このやり方について限定するものではない。
【0048】
第1特徴値とその算定方法を、経験や必要に基づいて決めてもよい。つまり、上記の方法は、本発明を説明するためだけのものであり、本発明は、この方法に限定されるものではない。
【0049】
ブロック104では、第1特徴値と、各主キーワードがそれぞれの関連キーワードと共に検索された頻度である連携検索頻度とに基づいて第2特徴値を算定する。第2特徴値は、関連キーワードの表示モードを決定する更新パラメータとして用いられる。
【0050】
上記の実施例から、実際に適用する当たり、主キーワードと関連キーワードとの間の相関パラメータを求める必要があることが分かる。この実施例においては、第1特徴値と、各主キーワードとそれぞれの関連キーワードの連携検索頻度とに基づいて求められる第2特徴値が、そのような相関パラメータの代表例である。第2特徴値がキーワードの使用傾向を十分反映するようにするために、本実施例において以下のような手順で第2特徴値を算定するのが望ましい。
【0051】
サブブロックA1で、各主キーワードとその関連キーワードのそれぞれとの相関度を、これらが一緒に検索された頻度に基づき算定する。
【0052】
サブブロックA2で、キャッシュメモリから第1特徴値を取り出して、これらの第1特徴値および相関度に基づいて第2特徴値を算定する。
【0053】
詳しくは、先ず、各主キーワードがその関連キーワードのそれぞれと一緒に検索された頻度に基づいて、次のような算定式の一例により相関度を算定する:
相関度=1つの主キーワードと1つの関連キーワードが一緒に検索された頻度/相関度の所定の基準値
【0054】
表5のデータを用いた場合、相関度の所定の基準値が10だとすると、「バイク」という主キーワードと「Eバイク」という関連キーワードとの間の相関度は、表における「バイク」および「Eバイク」の共出現頻度を10で割った値、すなわち2/10=0.2に相当する。相関度の所定の基準値は、各主キーワードとそれぞれの関連キーワードとの連携検索頻度の中央値であることが望ましい。相関度の基準値を予め経験や必要に基づいて決めてもよく、本発明は、相関度の基準値の決め方について限定を設けない。
【0055】
計算効率を高めるために、本実施例において、第1特徴値をキャッシュメモリに保存し、第2特徴値を算定するときに、第1特徴値を直接キャッシュメモリから取り出すとよい。そして第2特徴値を第1特徴値と相関度とに基づいて算定する。キャッシュメモリからのデータ読出しが、データベースや他の装置からのデータ読出しより遙かに高速であることは自明である。したがって、本発明の好ましい実施例は計算性能を向上させるものである。また、キャッシュメモリにデータを保存する場合、ハッシュ形式で保存することができ、ファイル形式やその他の形式で保存することもできる。第1特徴値の読み出しを容易にするために、主キーワードの分類や等級付けといった動作を設定して最適化するとよい。最適化の方法について、本発明はいかなる限定も行わない。
【0056】
ユーザーの必要により密接した第2特徴値を得るために、第1特徴値と相関度とを別々に重み付けして、重み付けされた結果を第2特徴値とすることが望ましい。例えば、先の例の「Eバイク」というキーワードの第1特徴値0.05を0.4で重み付けし、「バイク」という主キーワードと「Eバイク」という関連キーワードとの間の相関度0.2を0.6で重み付けした場合、「バイク」という主キーワードと「Eバイク」という関連キーワードに対する第2特徴値は、0.05×0.4+0.2×0.6=0.14となる。
【0057】
重み付け値は、経験や必要に基づいて予め定めてもよいし、ユーザーの必要に基づいて任意に変更することもできる。つまり本発明は、このやり方について限定を加えるものではない。計算結果の一貫性を保つために、重み付け値の合計を1または別の1つの値に設定するとよい。
【0058】
なお当業者にとって、第2特徴値を算定するために他の方式を用いてもよいことは自明であり、本発明は、これについても制限を設けない。
【0059】
第2特徴値は、関連キーワードの表示モードを決定する更新パラメータとみなされる。例えば、閾値以上の第2特徴値を有する関連キーワードを優先的または常に表示し、閾値未満の第2特徴値を有する関連キーワードは順番に表示するかまたは表示しない。第2特徴値に基づいて関連キーワードをどのように表示するかは、当業者が経験と必要に基づき任意に設定してよく、本発明は、このやり方についても限定しない。
【0060】
システムの計算性能と計算効率を高めるために、検索キーワードの計数処理と、第1特徴値の算定および第2特徴値の算定をおこなう処理とを、マルチスレッド方式で同時に実行することが望ましい。
【0061】
マルチスレッド処理のメカニズムは、各命令ストリームを1つのスレッドとして複数の命令ストリームを同時に実行することを可能とする。各スレッドは、それぞれに独立している。複数のスレッドが同時に、つまり論理上同時進行で実行される。つまりマルチスレッド動作とは、N個の実行すべきことが同時に存在し、いくつかの異なる実行スレッドにしたがって同時進行で実行されている状況を指す。実施例では、計算性能と計算効率を高めるために、検索キーワードを計数するスレッドと、特徴値(第1特徴値および第2特徴値を含む)を算定するスレッドとを同時に実行して、対応する関連キーワードを順番に処理する。
【0062】
さらに実施例では、主キーワードと関連キーワードと第2特徴値を記録することが望ましい。記録は、ある種の記録表、ファイル形式または他の適当な形式で行ってよい。主キーワードと関連キーワードと第2特徴値を記録することでキーワード情報テーブルを作成することが更に望ましい。これにより、次の更新の際に、キーワード情報テーブルの元のデータを削除して、本発明の実施例の方法により更新されたデータを新たに書き込めばよくなる。更新は、定期的またはリアルタイムで、あるいはこれら2つの方法を交互に用いて行ってよい。例えば、更新を月に1回行うようにしてもよく、あるいは、当業者が自由に更新を行なってもよい。本発明は、更新の仕方を制限するものではない。
【0063】
検索時にユーザーに検索のヒントを直に与えるような、より直感的な表示を行うために、本発明の実施例では、更に、関連する第1特徴値をキーワード情報テーブルに記録して、検索ツールの知能を更に高めるようにすることが望ましい。
【0064】
実際的適用例として、異なるタイプのユーザーには異なるキーワードを提供するという設定が考えられる。例えば、ショッピングウェブサイトに関して、ユーザーには一般的に購入側と販売側のユーザーがある。このため、検索キーワードにも、検索側ユーザーによって使われる検索キーワードと、広告側ユーザーによって掲示される広告キーワードとが含まれることになる。
【0065】
本発明をより明確に理解できるようにするために、検索キーワードが検索側ユーザーによって使われる検索キーワード(以下第1検索キーワードと称する)と、広告側ユーザーによって掲示される広告キーワード(以下第2検索キーワードと称する)とを含む例について、本発明を詳細に説明する。すなわち、この実施例は次のような手順を含む。
【0066】
手順Aでは、所定の期間内に、第1スクリプトプログラムにおいて第1検索キーワードを取得する。第1検索キーワードは、ユーザーがブラウザーを開いてから、そのブラウザーを閉じるまでの間に検索に用いた検索キーワードから収集される。例えば、ブラウザーを使用したときに、ユーザーが検索フィールドを用いて多重検索を行って複数のキーワードを入力したとする。この場合、これらのキーワードは第1検索キーワードとしてカウントされる。表6は、第1検索キーワードである第1主キーワードと第1関連キーワード、第1主キーワードと第1関連キーワードとが一緒に検索された頻度、および第1主キーワードが単独で検索された頻度を示し、これらは統計的に求められる。
【0067】
【表6】
【0068】
手順Bでは、所定の期間内に、第2スクリプトプログラムにおいて第2検索キーワードを取得する。第2検索キーワードは、製品を掲示するユーザーが入力したキーワードから収集される。これらのキーワードは、通常4個以上のキーワードが掲示されるので、取得可能である。表7は、第2検索キーワードである第2主キーワードと第2関連キーワード、第2主キーワードと第2関連キーワードとが共に検索された頻度と、第2主キーワードが単独で検索された頻度とを示し、これらは統計的に求められる。
【0069】
【表7】
【0070】
手順Cでは、第1特徴値が次のようにして算定される。すなわち、所定の人気度基準値が20とすると、第1主キーワードのうち「バイク」の人気度により表される第1特徴値は2/20=0.1となり、第1関連キーワードのうち「Eバイク」の人気度により表される第1特徴値は1/20=0.05となる。第2主キーワードと第2関連キーワードに対する第1特徴値も、上記同様に算定される。
【0071】
手順Dでは、相関度が次のようにして算定される。すなわち、相関度の所定の基準値を10とすると、「バイク」という主キーワードと「Eバイク」という関連キーワードとの間の第1相関度および第2相関度は、それぞれ、2/10=0.2と、1/10=0.1になる。経験に基づいて、それぞれ別の重み付け値を割り当てる。第1特徴値の重み付け値を0.2とし、第1相関度の重み付け値を0.3とし、第2相関度の重み付け値を0.5とする。したがって、主キーワードである「バイク」と関連キーワードである「Eバイク」に対する第2特徴値は、0.2×0.05+0.3×0.2+0.5×0.1=0.12となる。
【0072】
上記の例では第1キーワードの第1特徴値と第2キーワードの第1特徴値が同じなので、計算効率を高めるために、計算には第1特徴値の1つだけを用いる。もちろん、2つの第1特徴値を用い、それぞれ異なる重み付けをおこなって計算結果を得てもよいことはいうまでもない。
【0073】
手順Eでは、主キーワードと関連キーワードと第2特徴値を記録して、表8に示すようなキーワード情報テーブルを作成する。
【0074】
【表8】
【0075】
図2は、本発明による更新パラメータの生成装置の実施例の概略構造を示す図である。この装置において、取得ユニット201は、所定の期間内にユーザーが使った検索キーワードを取得するために用いられる。統計ユニット202は、検索キーワードをカウントして、主キーワードと関連キーワードを求め、且つ各主キーワードとそれぞれの関連キーワードが共に検索された連携検索頻度と、各主キーワードが単独で検索された単独検索頻度とを算定するために用いられる。第1計算ユニット203は、主キーワードの単独検索頻度に基づいて第1特徴値を算定するために用いられ、第2計算ユニット204は、第1特徴値と、各主キーワードとそれぞれの関連キーワードの連携検索頻度とに基づいて第2特徴値を算定するために用いられる。第2特徴値は、関連キーワードの表示モードを決定する更新パラメータとして用いられる。
【0076】
装置は、更に、主キーワードと関連キーワードと第2特徴値を記録することでキーワード情報テーブルを作成する記録ユニットを備えていることが望ましい。
【0077】
統計ユニットと、第1計算ユニットと、第2計算ユニットとを同時的マルチスレッド動作の処理に用いることが望ましい。
【0078】
装置は、更に、フィルタリング規則に当てはまる検索キーワードのふるい分けのためのフィルタリングユニットを備えていることが望ましい。
【0079】
第2計算ユニットは、各主キーワードと関連キーワードのそれぞれとが一緒に検索された頻度に基づき相関度を算定する相関度計算部と、キャッシュメモリから第1特徴値を取り出して、これらの第1特徴値および相関度に基づいて第2特徴値を算定する取得/計算部とを備えていることが望ましい。
【0080】
装置は、関連する第1特徴値をキーワード情報テーブルに記録するための追加ユニットを更に備えていることが望ましい。
【0081】
検索キーワードには、検索側ユーザーによって使われる検索キーワードと、広告側ユーザーによって掲示される広告キーワードとが含まれることが望ましい。
【0082】
図2に示す更新パラメータの生成装置の実施例は、先に述べた更新パラメータの生成方法に対応するものといえるので、装置の説明は比較的簡略にした。省略されている詳細については、本発明の上記の関連する箇所の説明を参照されたい。
【0083】
図3は、本発明による関連キーワードの追加方法を示す。この方法は次のような手順を含む。
【0084】
ブロック301では、ユーザーにより入力された主キーワードに対応する関連キーワードの取得要求を行う。
【0085】
ブロック302では、この取得要求に応じて、閾値以上の第2特徴値を有する関連キーワードを取得する。第2特徴値は、第1特徴値と、主キーワードおよび関連キーワードが一緒に検索された連携検索頻度とに基づき算定される。第1特徴値は、主キーワードの単独検索頻度に基づいて算定される。主キーワードが関連キーワードと共に検索された連携検索頻度および各主キーワードの単独検索頻度は、検索キーワードをカウントすることによって求められる。
【0086】
ブロック303では、取得された関連キーワードを表示する。
【0087】
検索ツールや検索エンジンを用いるときは、ユーザーは、キーボードや手書きパッドなどの入力手段を使って主キーワードを検索ボックスやツールバーに入力し、その後、確定のためにクリックするか、Enterキーを押すか、Tabキーを押すか、または他のトリガ方法でローカルプログラムまたは検索ページのスクリプトプログラムをトリガすることで、当該主キーワードに対応する関連キーワードの取得要求を行う。
【0088】
第2特徴値は、一種の相関パラメータである。第2特徴値がキーワードの使用傾向を十分反映するようにするために、本実施例においては、先ず、主キーワードと関連キーワードが一緒に検索された頻度に基づいて相関度を算定するのが望ましい。例えば、次のような算定式の一例により相関度を算定することができる:
相関度=1つの主キーワードと1つの関連キーワードが一緒に検索された頻度
/相関度の所定の基準値
【0089】
相関度の所定の基準値は、その主キーワードとそれぞれの関連キーワードとの連携検索頻度の中央値であることが望ましいが、当業者が予め経験や必要に基づいて決めてもよく、本発明は、これについて限定するものではない。
【0090】
第1特徴値と相関度に基づいて算定された結果を第2特徴値として用いることができる。
【0091】
別の実施例として、第1特徴値と相関度とを別々に重み付けして、重み付けされた結果を第2特徴値とすることもできる。重み付け値は、経験や必要に基づいて予め定めてもよいし、必要に基づいて任意に変更することもできる。つまり本発明は、これについて限定を加えるものではない。計算結果の一貫性を保つために、重み付け値の合計を1に設定するとよい。
【0092】
当業者にとって、第2特徴値を算定するために他の方式を用いてもよいことは自明であり、本発明は、この算定方法ついても制限を設けない。
【0093】
実施に当たり、主キーワードに対応する関連キーワードを表示するときに、閾値以上の第2特徴値を有する関連キーワードは常に表示するようにするとよい。閾値以上の第2特徴値を有するということは、これらの関連キーワードの主キーワードに対する相関性が高いということである。このため、関連キーワードが表示される度に、ユーザーの使用習慣に密接に繋がり、ユーザーの使用傾向に合ったお勧めの項目が常にユーザーに提供されるようになる。この結果、ユーザーの満足感が高まる。例えば、「バイク」という主キーワードに対して閾値(例えば0.2)以上の第2特徴値を有する関連キーワードが、電動バイク、マウンテンバイク、Eバイク、電動自転車、サスペンションバイク、スクーター、オートバイ、電動スクーター、ガススクーター、乗り物であるとする。固定された関連キーワードを用いる検索ツールの場合、これらの10個の関連キーワードが、「バイク」という主キーワードで検索する度に常に関連ウェブページに表示されることになる。関連キーワードを順番に表示する検索ツールの場合、これらの10個の関連キーワードが、交替表示される関連キーワードグループのいずれでも表示されるようにする。これにより、ユーザーが「バイク」に対応する関連キーワードを取得するよう要求したときに、要求の頻度に応じていずれかの関連キーワードグループがユーザーに表示されるが、どの関連キーワードグループの中にも、これらの10個の関連キーワードが含まれるようになる。
【0094】
閾値未満の第2特徴値を有する関連キーワードは、任意の規則に従って表示するか、全く表示しないのが望ましい。例えば、決まった数の関連キーワードしか表示しない検索ツールでは、閾値以上の第2特徴値を有する関連キーワードを決まった数のみ表示するようにし、閾値未満の第2特徴値を有する関連キーワードは全く表示しない。関連キーワードを順番にまたは一覧表示する検索ツールでは、これらの関連キーワードを任意の規則に従って表示するとよい。しかし本発明は、これらの方法に限定されるものではない。
【0095】
図4は、本発明による関連キーワード追加装置の実施例の概略構成を示す図である。この装置において、インターフェースユニット401は、ユーザーにより入力された主キーワードに対応する関連キーワードの取得要求を行うためのものである。関連キーワード取得ユニット402は、この取得要求に応じて、閾値以上の第2特徴値を有する関連キーワードを取得するためのものである。第2特徴値は、第1特徴値と、主キーワードおよび関連キーワードが一緒に検索された連携検索頻度とに基づき求められる。第1特徴値は、主キーワードの単独検索頻度に基づいて求められる。主キーワードと関連キーワードが一緒に検索された連携検索頻度および各主キーワードの単独検索頻度は、検索キーワードをカウントすることによって求められる。第1表示ユニット403は、取得された関連キーワードを表示するためのものである。
【0096】
好ましい実施例において、装置には、閾値未満の第2特徴値を有する関連キーワードを表示するための第2表示ユニットを更に設けてもよい。
【0097】
図4に示す関連キーワード表示装置の実施例は、図3の関連キーワード表示方法の実施例に対応するものといえるので、この装置の説明は比較的簡略にした。省略されている詳細については、本発明の上記の関連する箇所の説明を参照されたい。
【0098】
このように、本発明の実施例では、所定の期間内にユーザーが使用した検索キーワードの統計分析を行うことで、キーワードを常に時季に即したものにしている。第2特徴値を関連キーワードの表示モード決定のための相関パラメータとして用いることで、ユーザーに対して最近の使用傾向に合った関連キーワードが提供されるので、ユーザーにとって良好な検索結果が得られるようになる。
【0099】
また、ここに開示した方法および装置では、キーワード情報テーブルが作成される。更新時には、このテーブルのデータを適宜に更新しさえすればよいので、システムの処理効率が向上する。
【0100】
さらに、検索キーワードの計数処理と特徴値の算定処理とをマルチスレッド方式で同時に実行してもよく、これによりシステムの計算性能と効率を高めることができる。
【0101】
その上、第1特徴値をキャッシュメモリに保存することで、ここに開示した方法および装置は、システムの計算性能と効率を更に高めている。第1特徴値を記録することで、ここに開示した方法および装置は、主キーワードを表示する際に、その第1特徴値をユーザーが参照できるようにすることもできる。
【0102】
そして、サービス提供者の観点からみても、本発明の実施例は、実施導入にあたり何ら特別な秘密アルゴリズムを必要とせず、簡単に操作でき、開発コストも低くてすむ。
【0103】
以上、本発明の更新パラメータ生成方法および装置ならびに関連キーワード表示方法および装置を詳細に説明してきたが、上記実施例は、本発明の概念と実施形態を説明するためのものであって、本発明の方法および装置をより良く理解してもらうために用いたにすぎない。ここに開示した概念に基づいて本発明の実施例を変形応用することは、当業者にとって可能であろう。つまり、本発明の内容は、ここに開示した方法および装置に限定されるものと解釈されるべきではない。
図1
図2
図3
図4