(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0011】
本開示は、概して、患者に供給される累積加熱量に基づいて再充電可能な電源を充電するための電力使用を制御するためのデバイス、システムおよび技術を対象としている。埋め込み可能な医療デバイス(IMD)は、患者内に埋め込まれることができ、患者のパラメータを監視すること、および/または、患者に治療を提供することに使用することができる。IMDの動作寿命を延命化するために、IMDは、再充電可能な電源(例えば、1つ以上のキャパシタまたはバッテリ)を備えていてもよい。再充電可能な電源が再充電されているとき、IMDに伝送される電力は、IMDの温度を上昇させる熱を発生させ得る。この上昇した温度が、IMDに隣接する患者組織にダメージを与えることを防止するために、充電期間は、所定の期間に限定されてもよく、および/または、再充電可能な電源を再充電するのに、低減された電力レベルが使用されてもよい。しかしながら、このアプローチは、再充電期間を増大させることがあり、および/または、再充電可能な電源が完全に充電されることを阻止することがある。
【0012】
本明細書で開示されるように、再充電中に患者に供給される累積加熱量の推定(例えば、推定累積加熱量)は、継続的に計算され得る。外部充電デバイスは、累積加熱量を監視して、IMDにおいて発生される熱を制限するために充電プロセスの充電電力レベルを制御してもよい。例えば、充電デバイスは、計算された累積加熱量が、低減される必要がある電力レベルを示すまで、高い電力レベルを選択して、再充電可能な電源を高速で充電してもよい。充電デバイスは、その後、充電を終了させてもよく、あるいは、低い電力レベルを選択して、再充電可能な電源を低いIMD温度で充電し続けてもよい。
【0013】
このようにして、累積加熱量のフィードバックが、IMDの温度を安全限界内に維持するために充電回数および再充電電力レベルを保存的に推定する必要性を低減してもよい。その代わりに、充電デバイスは、累積加熱量が、低減される必要がある温度および充電電力レベルを示すまで、再充電可能な電源を高速で充電してもよい。電源が完全に充電されるまで、低電力レベルが使用されて、再充電可能な電源の充電を継続してもよい。この閉ループフィードバックアプローチは、再充電可能な電源を充電するのに必要な時間を低減することができ、および/または、再充電期間の後に再充電可能な電源が完全に充電される可能性を高めることができる。
【0014】
累積加熱量は、IMDを取り囲む組織が曝露される熱量の合計の目安(indication)または概算(estimation)であってもよい。即座の組織壊死を生じるには低すぎる温度でさえ、上昇した温度は、患者にとって依然として望ましくない。したがって、組織が上昇した温度(例えば、39℃よりも高く、43℃よりも低い)に曝される合計時間を監視することは有用になり得る。この累積加熱量は、再充電プロセスおよび不快で望ましくない上昇した温度を制御するのに使用できる。例えば、累積加熱量は、所定期間に亘って組織温度を積分することによって計算されてもよい。患者に供給される正確な加熱量は、正確に測定することが困難であるので、本明細書で説明される累積加熱量を、患者に供給される実際の累積加熱量の概算として使用できる。しかしながら、本明細書で説明される計算された累積加熱量は、患者によって受け取られる実際の熱量と実質的に同様である。このため、再充電可能な電源を充電するのに使用される電力レベルは、累積加熱量を1つ以上の閾値と比較することに基づいて選択できる。
【0015】
幾つかの例では、充電デバイスは、累積加熱量が閾値に到達する際に、減少する強度を使用して電力レベルを選択することができる。電力レベルを徐々に低下させることによって、電力レベルを低下させた後でさえも、累積加熱量がIMDの余剰熱から閾値を超えるリスクを最小限に抑えることができる。他の例では、充電デバイスは、ロックアウト期間を使用して、充電の間の高電力レベルを頻繁に使用することを防止してもよい。例えば、ロックアウト期間は、高電力レベルが停止された後に始まってもよく、新たな高電力レベルが、ロックアウト期間が満了する後まで充電に使用されなくてもよい。ロックアウト期間は、予め定められた期間であってあってもよいし、再充電可能な電源を充電するために以前の高電力レベルが使用された時間の長さに基づいて決定されてもよい。
【0016】
図1は、実施例としてのシステム10を示す概念図である。システム10は、埋め込み可能な医療デバイス(IMD)14と、外部充電デバイス20と、を備えている。外部充電デバイス20は、再充電可能な電源18を充電する。本開示で説明される技術は、概して、例えば、患者監視装置、電気刺激装置または薬物送達システムなどの医療デバイスが含まれる様々な医療デバイスに適用可能であるが、そのような技術を、埋め込み可能な神経刺激装置適用することを例示目的で説明する。より詳細には、本開示は、脊髄電気刺激治療に使用するために埋め込み可能な神経刺激システムに関するが、他のタイプの医療デバイスに関して限定するものではない。
【0017】
図1に示すように、システム10は、IMD14と、患者12とともに示される外部充電デバイス20と、を備えている。患者12は、通常、人間の患者である。
図1の実施例では、IMD14は、例えば、慢性的な痛みまたは他の症状を取り除くために患者12に神経刺激治療を供給する埋め込み可能な電気刺激装置である。一般的に、IMD14は、数週間、数ヶ月または数年間さえ患者12内に埋め込まれた状態で残される常在電気刺激装置である。
図1の実施例では、IMD14およびリード16は、移送脊椎刺激治療を対象とすることができる。他の実施例では、IMD14は、常在治療のための電気的な刺激の効能を検査または評価するために使用される一時的、または、予備的な刺激装置であってもよい。IMD14は、筋肉または他の内部位置の1つ以上の層内で皮下組織ポケットに埋め込まれてもよい。IMD14は、再充電可能な電源18を備え、IMD14は、リード16に接続される。
【0018】
電気的な刺激エネルギー(これは、例えば、パルスベースの一定電流または一定電圧であってもよい)は、IMD14からリード16の1つ以上の電極(図示せず)を介して患者12内の1つ以上の目標位置まで移送される。IMD14による刺激エネルギーの移送を制御するプログラムのためのパラメータには、刺激を移送するために、刺激プログラムに従っていずれの電極が選択されたのかを同定する情報、選択された電極の極性、すなわち、プログラムのための電極構成、電極によって移送される刺激のパルス数、パルス形状およびパルス幅が含まれ得る。電気的な刺激は、例えば、刺激パルスまたは連続的な波形の形態で移送され得る。
【0019】
図1の実施例では、リード16は、患者12内に配置され、例えば、患者12内に埋め込まれる。リード16は、脊髄22に沿って皮下組織ポケット、または、IMD14が配置される他の内部位置まで患者12の組織内を通る。リード16は、単一のリードであってもよいが、リード16は、リード延長部またはリード16の埋め込みまたは位置決めを助けることができる他のセグメントを備えていてもよい。さらに、リード16の近位端は、IMD14のヘッダに電気的に接続するコネクタ(図示せず)を備えていてもよい。1つのみリード16が
図1に示されているが、システム10は、2つ以上のリードを備えていてもよく、これらのリードの各々は、IMD14に接続され、同様または異なる目標組織部位に向けられてもよい。例えば、多数のリードが脊髄22に沿って配置されてもよく、あるいは、複数のリードが脊髄22および/または患者12内の他の位置に向けられてもよい。
【0020】
リード16は、目標組織に、例えば、脊椎刺激(SCS)治療のために脊髄22に隣接して配置される1つ以上の電極を運んでもよい。1つ以上の電極が、例えば、リード16の遠位端、および/または、リード16に沿った中間点の他の位置に配置されてもよい。リード16の電極は、IMD14の電気的刺激生成装置によって生成される電気的な刺激を患者12の組織に伝達する。これらの電極は、パドルリード上の電極パッド、リードの本体を取り囲む円形(例えば、リング)電極、適合電極、カフ電極、セグメント化された電極、または、単極、双曲または多極の治療のための電極構成を形成することができる他の任意のタイプの電極であってもよい。概して、リード16の遠位端のところの異なる軸線位置に配置される複数のリング電極を例示目的で説明する。
【0021】
代替の実施例では、リード16は、IMD14によって生成される刺激エネルギーを移送して、患者12の1つ以上の仙骨神経を刺激する(例えば、仙骨神経刺激(SNS))ように構成されてもよい。SNSは、任意の数の骨盤底障害、例えば、痛み、尿失禁、便失禁、性機能不全、または、1つ以上の仙骨神経を対象とすることによって治療可能な他の障害を煩う患者を治療するのに使用され得る。また、リード16およびIMD14が、他のタイプの電気的な刺激または薬物療法を提供するように構成されてもよい(例えば、リード16がカテーテルとして構成される)。例えば、リード16は、脳深部電気刺激法(DBS)、末梢神経刺激法(PNS)、または、他の深部組織もしくは表面タイプの電気的な刺激を提供するように構成されてもよい。他の実施例では、リード16は、IMD14が患者12の1つ以上のパラメータを監視することを可能にするように構成された1つ以上のセンサを提供してもよい。リード16による治療移送に加えて、または、代えて、1つ以上のセンサが設けられてもよい。
【0022】
IMD14は、リード16によって運ばれる電極の選択された組み合わせを介して、電気的な刺激治療を患者12に移送する。電気的な刺激治療のための目標組織は、電気的な刺激エネルギーによって作用される任意の組織とすることができ、それは、電気的な刺激パルスまたは波形の形態であってもよい。いくつかの実施例では、目標組織には、神経、平滑筋および骨格筋が含まれる。
図1に示される実施例では、リード16を介して移送される電気的な刺激のための目標組織は、脊髄22に近接する組織、例えば、脊髄後索の1つ以上の目標位置、または、脊髄22から枝分かれする1つ以上の後根である。リード16は、任意の適切な領域、例えば、胸部領域、頸部領域または腰部領域を介して、脊髄22内に導入されてもよい。脊髄後索、後根および/または末梢神経の刺激は、例えば、痛み信号が脊髄22を通って移動して患者の脳に至ることを防止できる。患者12は、痛み信号の遮断を痛みの低減として受け止めることができ、したがって、効果的な治療結果が得られる。他の障害の治療のために、リード16が患者12の任意の外部位置に導入されてもよい。このようにして、皮膚開口部18は、他の実施例において、任意の外部皮膚位置に配置され得る。
【0023】
リード16は、概して電気的な刺激信号を移送すなわち伝送するものとして説明されるが、リード16は、追加的に、または、代替的に、監視のために電気信号を患者12からIMD14まで伝送してもよい。例えば、IMD14は、検出された神経インパルスを利用して、患者12の体調を診断するか、あるいは、移送される刺激治療を調節してもよい。リード16は、このようにして、電気信号を患者12へ、または、患者12から伝達することができる。
【0024】
ユーザ、例えば、臨床医または患者12は、外部プログラマー(図示せず)のユーザインタフェースと相互作用してIMD14をプログラムしてもよい。IMD14のプログラミングとは、概して、コマンド、プログラム、または、IMD14の動作を制御するための情報の生成および伝送をいうことができる。例えば、外部プログラマーは、プログラム、パラメータ調整、プログラム選択、集団選択、または、IMD14の動作を制御するための他の情報を、例えば、無線テレメトリまたは有線接続によって伝送することができる。
【0025】
いくつかの場合では、外部プログラマーは、外科医または臨床医による使用が主に意図される場合に、外科医または臨床医プログラマーとして特徴付けることができる。他の場合では、外部プログラマーは、患者による使用が主に意図される場合には、患者プログラマーとして特徴付けることができる。患者プログラマーは、概して、患者12にアクセスすることができ、多くの場合では、患者の日常作業を通して患者に同行できる可搬式デバイスであってもよい。概して、外科医または臨床医プログラマーは、刺激装置14によって使用するための臨床医によるプログラムの選択または生成をサポートしてもよく、一方、患者プログラマーは、日常使用の間の患者によるそのようなプログラムの調整および選択をサポートしてもよい。他の実施例では、外部充電デバイス20が外部プログラマーに含まれてもよく、あるいは、その一部分であってもよい。このようにして、ユーザは、1つのデバイスまたは多数のデバイスを使用してIMD14をプログラムし、充電することができる。
【0026】
IMD14は、IMD14の構成要素(例えば、
図2に示される構成要素)を患者12内に収容するのに十分な任意のポリマー、金属、または、複合材料から構成されてもよい。この例では、IMD14は、生体適合性ハウジング、例えば、チタニウムもしくはステンレス鋼、または、ポリマー材料、例えば、シリコーンもしくはポリウレタンで構成されてもよく、また、骨盤、腹部または臀部の近傍の患者12の部位に外科的に埋め込まれてもよい。IMD14のハウジングは、再充電可能な電源18のような構成要素のために密封シールを提供するように構成されていてもよい。さらに、IMD14のハウジングは、エネルギーの受け取りを促進して再充電可能な電源18を充電する材料から選択されてもよい。
【0027】
本明細書で説明するように、再充電可能な電源18は、IMD14内に収容されてもよい。しかしながら、他の例では、再充電可能な電源18は、IMD14のハウジングの外部に配置され、患者12の流体から個別に保護され、IMD14の電気構成部品に電気的に接続されてもよい。IMD14のおよび再充電可能な電源18のこのタイプの構成は、埋め込み可能なデバイスのための解剖学的空間が最小限である場合に、埋め込み位置適応性を提供することができる。任意の場合において、再充電可能な電源18は、IMD14の1つ以上の構成要素に動作電力を提供することができる。
【0028】
再充電可能な電源18は、1つ以上のキャパシタ、バッテリまたは構成要素(例えば、化学的または電気的エネルギー貯蔵デバイス)を備えていてもよい。例示的なバッテリは、リチウム系バッテリ、ニッケル水素バッテリまたは他の材料を含んでいてもよい。また、再充電可能な電源18は、再充電可能である。換言すれば、再充電可能な電源18は、再補給もしくは再補充されることができ、または、エネルギーが使い果たされた後に、貯蔵されるエネルギーの量を増大させることができる。再充電可能な電源18は、IMD14の再充電可能な電源18の寿命に亘って多数の放電・再充電サイクル(例えば、数百回または数千回ものサイクル)にさらされることができる。再充電可能な電源18は、完全に消耗された場合、または、部分的に消耗された場合に、再充電されることができる。
【0029】
患者12内に埋め込まれる際に、再充電可能な電源18およびIMD14を再充電するために、充電デバイス20が使用されてもよい。充電デバイス20は、手持ち式デバイス、可搬式デバイス、または、固定充電システムとすることができる。任意の場合において、充電デバイス20は、患者12の組織を介して再充電可能な電源18を充電するために必要な構成要素を備えていてもよい。いくつかの例では、充電デバイス20は、再充電可能な電源18の充電のみを行ってもよい。他の例では、充電デバイス20は、外部プログラマー、または、追加的な機能を実行する他のデバイスであってもよい。例えば、外部プログラマーとして実施される場合には、充電デバイス20は、再充電可能な電源18を充電することに加えて、プログラミングコマンドをIMD14に伝送してもよい。他の例では、充電デバイス20は、IMD14と通信して、再充電可能な電源18に関する情報の送信および/または受信を行ってもよい。例えば、IMD14は、IMD14および/または再充電可能な電源18の温度情報、充電中の受信電力、再充電可能な電源18の充電レベル、使用中の充電消耗速度、または、IMD14および再充電可能な電源18の電力消費および再充電に関する任意の他の情報を伝送してもよい。
【0030】
充電デバイス20およびIMD14は、IMD14が患者12内に埋め込まれる場合に、IMD14の再充電可能な電源18を再充電することができる任意の電力伝達技術を利用することができる。一例では、システム10は、充電デバイス20のコイルと、再充電可能な電源18に接続されたIMD14のコイルと、の間の誘導結合を利用することができる。誘導結合において、充電デバイス20は、充電デバイス20の一次コイルがIMD14の二次コイルと整合されるように、すなわち、当該二次コイルに亘って配置されるように、埋め込まれたIMD14の近傍に配置されてもよい。このようにして、充電デバイス20は、再充電可能な電源18を充電するために選択された電力レベルに基づいて一次コイルに電流を発生させることができる。以下でさらに説明するように、電力レベルは、IMD14の温度、および/または、再充電可能な電源18の充電速度を制御するために選択されてもよい。一次コイルと二次コイルとが整合する場合、一次コイルの電流は、IMD14内の二次コイルに電流を磁気的に誘導してもよい。二次コイルが再充電可能な電源18と関連付けられるとともに再充電可能な電源18に電気的に接続されるので、再充電可能な電源18の電圧または充電レベルを増大させるために誘導電流が使用されてもよい。誘導結合が概して本明細書で説明されるものの、再充電可能な電源18を充電するために、任意の種類の無線エネルギー伝達を使用することができる。
【0031】
再充電可能な電源18を充電するエネルギー伝達プロセスの間、エネルギーの一部は、再充電可能な電源18および/またはIMD14の他の構成要素のところで熱に変換され得る。再充電可能な電源18を高速で充電するために増大されたエネルギーレベルが使用される場合、IMD14の温度もまた上昇する。IMD14のハウジングの温度はIMD14のハウジングに隣接する組織を燃焼または壊死させるのに十分な温度を達成することができないものの、上昇した温度は、徐々に望ましくなく不快なものになる。したがって、充電デバイス20は、再充電可能な電源18の充電に使用される電力レベルを制御して、再充電可能な電源18を充電することによって生じるであろうIMD14の望ましくない温度を低減または最小化することができる。さらに、IMD14の温度の監視、および/または、IMD14のハウジングに隣接する組織の温度によって、充電プロセス中の患者の不快感を最小限に抑えることができる。
【0032】
一例では、再充電可能な電源18を再充電するために充電デバイス20によって使用される電力レベルは、IMD14によって患者12に供給される累積加熱量に基づいて選択または制御され得る。累積加熱量は、IMD14に隣接する組織に曝露される合計温度を定量化または推定するために使用される計量であってもよい。そのようなものとして、累積加熱量は、推定累積加熱量であってもよい。一例では、累積加熱量は、所定期間に亘って組織温度を積分することによって計算されてもよい。結果として得られる累積加熱量は、供給熱を所定期間の所定の組織温度レベルに一致させるために使用され得る。例えば、臨床医は、組織曝露を30分間、43℃の熱に制限することを望んでもよい。しかしながら、IMD14の温度は、充電期間に亘って任意の1つの温度から変化する可能性が高い。このため、累積加熱量の計算によって、実際の組織温度が徐々に変化する場合であっても、充電デバイス20またはIMD14は、熱曝露の望ましい制限に到達したときを決定することができる。他の例では、累積加熱量は、所定期間の多数のセグメントについての平均温度を加えることによって計算されてもよい。任意の例では、IMD14を取り囲む組織、および/または、IMD14に隣接する組織について、合計熱量、または、上昇した温度の曝露の程度を決定するために、累積加熱量を使用することができる。
【0033】
累積加熱量の計算に使用される組織温度は、いくつかの異なる技術を使用して決定されてもよい。各技術は、患者12によって受け取られる実際の累積加熱量を推定する累積加熱量を提供してもよい。しかしながら、システム10によって計算される推定累積加熱量は、患者12によって受け取られる実際の累積加熱量と実質的に等しくてもよい。一例では、組織温度は、IMD14の1つ以上の場所で測定され得る。IMD14は、1つ以上の熱電対、サーミスタ、または、IMD14のハウジングの内面の近傍の他の測温体、ハウジング内に組み立てられた他の測温体、もしくは、IMD14の外部に配置された他の測温体を備えていてもよい。他の例では、IMD14は、IMD14の外面から延出する1つ以上の測温体を備えていてもよい。この直接的な組織温度測定は、最も精度が高くなり得る。しかしながら、組織温度測定は、充電デバイス20のプロセッサが累積加熱量を計算することができるように、充電デバイス20に伝送されることが必要となる場合がある。代替的に、IMD14のプロセッサは、測定された組織温度を使用して、累積加熱量を計算することができる。このようにして、IMD14のプロセッサは、充電デバイス20が電力レベルを選択できるように累積加熱量を伝送することができ、あるいは、IMD14のプロセッサは、累積加熱量に基づいて電力レベルを直接的に選択するとともに、充電に使用されるべき電力レベルを充電デバイス20に指示することができる。
【0034】
他の例では、組織温度は、組織モデルと、所定期間に亘って再充電可能な電源18に伝送される電力と、に基づいて間接的に計算または推定されてもよい。充電デバイス20は、一次コイルに発生された電流と、結果として充電デバイス20からIMD14の二次コイルに伝送された電力と、を監視してもよい。伝送電力は、発生された電流を使用して計算されてもよく、発生された電流と、熱および不整合に起因する予測エネルギーロスと、に基づいて推定されてもよく、これらの組み合わせであってもよい。このようにして、充電デバイス20は、組織温度を一方的に決定することができる。代替的に、IMD14は、再充電可能な電源18に接続された二次コイルに誘導された実際の電流を測定してもよい。この測定電流に基づいて、IMD14のプロセッサは、充電デバイス20から伝送される電力を計算してもよい。次に、IMD14は、充電デバイス20から伝送された計算電力を充電デバイス20に戻してもよい。
【0035】
次に、充電デバイス20から再充電可能な電源18に伝送された測定電力または推定電力が、組織モデルに当てはめられ、予測組織温度を計算してもよい。組織モデルは、IMD14に隣接する組織の熱容量、周囲組織の密度、固有体温、IMD14のハウジングの表面積、IMD14を取り囲む組織の推定表面積、患者12の皮膚からのIMD14の深さ、患者12内の二次コイルの向き、または、IMD14のハウジングを取り囲む温度、および/または、直接的に接触する温度に影響を与えるであろう他の任意の変数のうちの1つ以上を組み込んだ1つ以上の式であってもよい。組織モデルは、さらに、組織内成長、瘢痕組織、カプセル化、および、IMD14のハウジングと患者12との間の生物相互作用に起因する他の組織変化を把握するために経時的に修正されてもよい。伝送電力が組織モデルに入力されて、充電デバイス20が再充電可能な電源18を充電する際の組織温度の推定量を計算してもよい。
【0036】
伝送電力技術を使用して、充電デバイス20、IMD14、または、それらの組み合わせのプロセッサによって、組織温度が計算されてもよい。例えば、充電デバイス20は、組織モデルと、IMD14に伝送された測定された電力と、を使用して組織温度を一方的に計算してもよい。他の例では、充電デバイスが組織温度を計算できるように、1つ以上の測定変数がIMD14から充電デバイス20に伝えられてもよい。IMD14は、一次コイルと二次コイルとの検出された整合性、および/または、二次コイルに誘導された電流を伝送してもよい。代替実施形態では、IMD14は、伝送電力を測定し、充電デバイス20から伝送された測定電力に基づいて組織温度を計算してもよい。次に、IMD14は、計算された組織温度を充電デバイス20に伝送し、組織温度に基づいて累積加熱量を計算して充電デバイス20に伝送してもよいし、あるいは、計算された累積加熱量に基づいて充電デバイス20のための選択された電力レベルを伝送してもよい。これらの例によれば、組織温度を決定するとともに(例えば、測定温度または組織モデル計算を使用する)累積加熱量を計算するために必要となるプロセスは、充電デバイス20またはIMD14の1つによって独立して、または、充電デバイス20とIMD14との間の通信を介して共通的に、実行されてもよい。
【0037】
本明細書で説明するように、充電デバイス20とIMD14との間で情報が伝送されてもよい。したがって、IMD14と充電デバイス20とは、当該分野で公知の任意の技術を使用した無線通信を介して通信してもよい。通信技術の例には、例えば、低周波または高周波(RF)テレメトリが含まれ得るが、他の技術も考えられる。いくつかの例では、充電デバイス20は、IMD14と充電デバイス20との間の通信の品質またはセキュリティを向上するためにIMD14埋め込み部位の近傍の患者の体に近接して配置され得る通信ヘッドを備えていてもよい。充電デバイス20との間の通信は、電力伝送中に、あるいは、電力伝送と切り離して発生させることができる。
【0038】
累積加熱量は、所定期間に亘って組織に供給される熱量を反映することができる計量である。組織は、熱を放散するので、組織に供給される熱量が患者12の生涯に亘って継続的に増加することはない。その代わりに、供給熱量の合計量は、所定期間に亘って著しいものとなり得る。この期間は、製造者または臨床医によって、所定数の分、時間、さらには日に設定されてもよい。一般的に、累積加熱量の計算に使用される期間は、およそ10分から10日までの間とすることができる。より詳細には、累積加熱量の計算に使用される期間は、1時間から48時間までの間とすることができる。一例では、この期間は、約24時間に設定されてもよい。この期間は、現在時間から遡る繰り返し周期(rolling period)であってもよい。換言すれば、この期間が24時間である場合、累積加熱量は、過去24時間における分刻みの合計量であってもよい。他の例では、この期間は、事象(event)として表されてもよい。例えば、この期間は、単一の再充電セッション(例えば、充電デバイス20からIMD14に伝送される充電電力の連続的な伝送)として定められてもよい。したがって、この期間は、時間または事象によって定義され得る。
【0039】
累積加熱量は、充電デバイス20からIMD14に伝送される電力、再充電可能な電源18を再充電する速度、および、再充電プロセス中にIMD14によって発生される熱を制御するために、システム10によって利用されてもよい。このため、システム10(例えば、充電デバイス20および/またはIMD14の1つ以上のプロセッサ)は、所定期間に亘るIMD14の再充電可能な電源18の充電中に患者12に供給される累積加熱量を計算することができる。次に、システム10の1つ以上のプロセッサは、計算された累積加熱量に基づいて、再充電可能な電源の後続の充電のための電力レベルを選択してもよい。次に、充電デバイス20は、選択された電力レベルで再充電可能な電源18を充電してもよい。以下でより詳細に説明するように、選択された電力レベルは、IMD14を取り囲む組織に伝送される熱および累積加熱量を制御するために、充電セッション中に変化してもよい。IMD14のプロセッサが充電電力レベルを選択してもよいが、本明細書では、例示目的で、充電デバイス20のプロセッサが充電電力レベルを選択するように説明される。
【0040】
一例では、充電デバイス20は、累積加熱量が熱量閾値を超えていない場合には、高電力レベルを選択してもよく、また、累積加熱量が熱量閾値を超えている場合には、低電力レベルを選択してもよい。このようにして、高電力レベルが、IMD14の温度を上昇させつつ充電時間を低減するために、再充電可能な電源18を高速で充電してもよい。IMD14の上昇した温度からの累積加熱量が熱量閾値を超えると、充電デバイス20は、IMD14の温度を下降させるために、低電力レベルを選択して再充電可能な電源18を低速で充電してもよい。低電力レベルは、IMD14の温度の上昇が周囲組織にほとんど影響を与えないか影響を与えないように、十分に小さくてもよい。
【0041】
高電力レベルおよび低電力レベルは、主観的であってよく、充電デバイス20が発生させIMD14に伝送することができる充電電力に関連していてもよい。いくつかの場合では、高電力レベルは、充電デバイス20が発生させることができる最大電力であってもよい。再充電可能な電源18に誘導される充電速度が速いので、この高電力レベルは、「ブースト」または「加速された」充電レベルと称することができる。この速い充電速度は、患者12が再充電可能な電源18を充電する必要がある時間量を最小限に抑えることができる。累積加熱量を監視することによって、充電デバイス20は、IMD14を取り囲む組織にダメージを与えることなく、より長い期間、再充電可能な電源18を高電力レベルで充電することができる。換言すれば、実際の累積加熱量を計算することなく充電デバイス20が高電力レベルで充電することができる時間量をただ単に推定することは、安全ではない熱レベルに組織を曝露するおそれがあり、あるいは、高電力充電を十分に活用できず、その結果、合計充電時間がより長くなる。したがって、患者12に供給される累積加熱量を使用することによって、システム10は、高速充電時間と安全な加熱レベルとをより効果的にバランスさせることができる。
【0042】
一例では、高電力レベルは、約2.5ワットであってもよく、低電力レベルは、1.0ミリワット(mW)であってもよい。例示的な充電電流レベルは、高電力レベルについて約100ミリアンペア(mA)であってもよく、低電力レベルについて約60mAであってもよい。充電信号の周波数は、電力レベルに依存することができ、パルス幅は、一般的に、Hブリッジ電圧が一定であると仮定すると、高電力レベルほど大きくなることができる。充電デバイス20の一次コイルを交流で駆動する1つの方法としてHブリッジ回路が使用されてもよい。Hブリッジ回路は、パルスを使用してゲートをオンオフできる交流の一対のスイッチ(例えば、トランジスタ)を有していてもよい。例えば、そのようなパルスの幅は、約10ボルト(V)のHブリッジ電圧で、高電力レベルについて約4000マイクロ秒(μS)であってもよく、低電力レベルについて約2000μSであってもよい。高電力についての一次コイルの例示的な電圧および電流は、それぞれ、約450V、約800mAであってもよく、低電力レベルについての一次コイルの例示的な電圧および電流は、約250V、約500mAであってもよい。これらの値は、例に過ぎず、他の例では、本明細書に記載された技術にしたがって、より高い値、または、より低い値が含まれてもよい。
【0043】
熱量閾値は、患者12にとって常に安全なものとして同定される最大累積加熱量であってもよい。換言すれば、熱量閾値は、組織が、不快または望ましくない上昇したレベルおよび期間まで加熱されることを防止するように定められるか選択されてもよい。熱量閾値は、製造者によって予め設定されてもよく、臨床医によって選択されてもよい。また、熱量閾値は、必要に応じて、徐々に修正されてもよい。いくつかの例では、熱量閾値は、最大安全量に設定されなくてもよい。その代わりに、熱量閾値は、低い値に設定され、組織の潜在的な過熱を最小限に抑える熱量閾値よりも小さく安全マージンを定めてもよい。
【0044】
熱量閾値は、予め定められた時間量における所定温度での組織の等価の加熱に基づいていてもよい。換言すれば、熱量閾値は、上昇温度の経時的な合計の程度として表すことができる。一例では、熱量閾値は、30分間、43℃の組織と等価なものとして選択されてもよい。他の例では、熱量閾値は、50分間、43℃の組織と等価なものとして選択されてもよい。他の代替例では、熱量閾値は、4時間、41.5℃の組織と等価なものとして選択されてもよい。これらの閾値は、累積加熱量との比較のために合計されてもよい。例えば、30分間、43℃の組織は、制限時間に亘る組織温度の上昇(例えば、43℃と、37℃の通常体温と、の差)を合計または積分した後の単一の値によって表すことができる。累積加熱量が同様の方法で計算される場合、累積加熱量は、充電デバイス20が再充電可能な電源18を再充電する際に、熱量閾値と比較されてもよい。
【0045】
累積加熱量は、次式(1)によって計算されてもよい。
【0047】
「CEM43」は、温度一定期(例えば、基準データ)で43℃での累積等価の分(minutes)と称することができる。Tiは、測定されたセルシウス温度であり、tiは、分での期間である。Rは、特徴パラメータすなわち定数であり、43℃よりも低い温度について0.25に設定することができる。Rの値は、公知の細胞および/または組織特性に基づいて経験的に決定されてもよく、Rは、他の例では、別の値であってもよい。一例では、5分のCEM43限度が累積加熱量閾値として使用されてもよく、再充電セッションの累積加熱量が、設定された累積加熱量閾値よりも低く留まることができるように、電力レベルが選択されてもよい。一例では、組織温度は、充電の所定の電力レベルを選択することによって、再充電セッション全体において42℃に制限されてもよく、熱量閾値に20分(例えば、0.25^(43−42)
*20=5分)で到達する。充電が効果を生じる場合に生じる経時的な上昇温度および下降温度(例えば、時間積分温度)を組み入れることによって、任意の特定電力レベルで一定温度を推定することによって可能となる充電期間よりも長い充電期間が可能となる。
【0048】
充電デバイス20は、累積加熱量に基づいて2つの電力レベルの間で選択することができるが、充電デバイス20は、3つ以上の離散的な電力レベルの間で選択してもよく、可能な電力レベルの連続的な範囲から電力レベルを選択してもよい。例えば、充電デバイス20は、高・中・低・ゼロ(例えば、伝送電力がない)の電力レベルの間で選択して充電時間を最小限に抑えるとともに、周囲組織における不快または望ましくない温度を最小限に抑えてもよい。他の例では、充電デバイス20は、少しずつ増えるように電力レベルを継続的に調節してもよく、この場合、増加は、充電デバイス20の一次コイルに発生させることができる電流の可能な分解能によって達成することができる。したがって、これらのより調節可能な電力レベルによって、高電力レベルおよび低電力レベルのみを使用する場合の電力レベルの各段階と比べて、経時的な電力レベルのカーブが得られる。任意の例では、充電デバイス20からIMD14に伝送される電力は、計算された累積加熱量に基づいて変化されてもよい。
【0049】
他の例では、充電デバイス20は、累積加熱量が熱量閾値を超過した場合に、ゼロの電力レベルを選択してもよい。このゼロの電力レベルによって、再充電可能な電源18の充電が停止される。それは、充電デバイス20がゼロの電力レベルを選択したことに応じて、一次コイルへの電流が停止されるからである。低電力レベルを使用して再充電可能な電源18を低速で充電することができるが(例えば、トリクル充電)、ゼロの電力レベルで充電を停止することによって、最速でIMD14をクールダウンすることができ、また、IMD14を取り囲む組織のいかなる追加的な加熱をも最小限に抑えることができる。さらに、ゼロの電力レベルは、再充電可能な電源18が完全に充電された場合に選択されてもよい。
【0050】
追加的な例では、充電デバイス20は、熱量閾値に到達するか超過することを見越して、充電電力レベルを低減してもよい。充電デバイス20は、熱量閾値から累積加熱量を差し引くことによって、利用可能な熱量を計算してもよい。換言すれば、利用可能な熱量は、累積加熱量が熱量閾値を超過する前に留まる熱量であってもよい。この利用可能な熱量は、熱量閾値を超過する前に充電電力レベルを低減するために使用されてもよい。利用可能な熱量は、累積加熱量が熱量閾値に近づいているので電力が低減されるべきことを示す高電力量要件と比較されてもよい。高電力量要件は、熱量閾値のパーセント、例えば、熱量閾値の70パーセントと95パーセントとの間に設定されてもよい。高電力量要件は、その代わりに、熱量閾値よりも小さい所定の絶対値に設定されてもよい。これらの指針を使用して、充電デバイス20は、利用可能な熱量が高電力量要件よりも大きい場合に高電力レベルを選択してもよい。次に、充電デバイス20は、利用可能な熱量が高電力量要件よりも小さい場合に低電力レベルを選択してもよい。充電デバイス20は、その後、再充電可能な電源18の充電を低電力レベルで継続してもよいし、あるいは、累積加熱量が熱量閾値を超過した場合に充電を終了してもよい。
【0051】
他の例では、システム10は、ロックアウト期間を使用してもよい。ロックアウト期間では、充電デバイス20が再充電可能な電源18を高電力レベルで充電することができる時間が制限される。ロックアウト期間は、再充電可能な電源18を充電するために高電力レベルが使用される後に開始されてもよく、高電力レベルは、ロックアウト期間が満了または経過した場合にのみ再度使用されてもよい。このようにして、充電デバイス20は、再充電可能な電源18を高電力レベルで充電した後に、ロックアウト期間が高電力レベルの選択を阻止するように、ロックアウト期間を開始してもよい。ロックアウト期間の長さは、高電力レベルでの以前の充電時間に基づいていてもよい。換言すれば、ロックアウト期間は、高電力レベルがより長い期間使用された場合に、より長い期間に設定されてもよい。他の例では、ロックアウト期間は、どれだけ長く充電が高電力レベルで実施されたかにかかわりなく、単一の期間に設定されてもよい。
【0052】
いくつかの例では、IMD14は、充電デバイス20での電力レベルの変化に依存する代わりに、充電電力レベルを直接的に調節(例えば、充電電流を制限する)してもよい。例えば、IMD14は、
充電速度および充電中のIMD14の温度を低減するために全波整流から半波整流まで変化することができる回路を使用してもよい。換言すれば、IMD14は、IMD14によって受け取られる総電力を低減する代わりに、再充電可能な電源18に供給される電流を低減するための手段として、半波整流を利用してもよい。あるいは、IMD14は、他の機構、例えば、再充電可能な電源18の充電速度を制限することができる電流および/または電圧リミッタを採用してもよい。
【0053】
本明細書において、埋め込み可能な再充電可能な電源18が概して説明されるが、本開示の技術は、埋め込まれない再充電可能な電源18にも適用することができる。例えば、再充電可能な電源18は、患者12の皮膚の外部にあってもよいし、皮膚と物理的に接触していてもよい。したがって、充電デバイス20は、電源が患者12の外部にある場合であっても、計算された累積加熱量を使用して、再充電可能な電源18の充電を制御することができる。しかしながら、組織モデルおよび閾値は、充電デバイス20を外部充電使用のために構成するように修正され得る。
【0054】
図2は、IMD14の例示的な構成要素を示すブロック図である。
図2の例では、IMD14は、温度センサ39と、コイル40と、プロセッサ30と、治療モジュール34と、再充電モジュール38と、メモリ32と、テレメトリモジュール36と、再充電可能な電源18と、を備えている。他の例では、IMD14は、より多くの、または、より少ない構成要素を備えていてもよい。例えば、いくつかの例では、例えば、組織温度が伝送電力から計算される例では、IMD14は、温度センサ39を備えていなくてもよい。
【0055】
概して、IMD14は、IMD14およびプロセッサ30に属する、本明細書に記載された様々な技術を実施するために、単独で、または、ソフトウェアおよび/またはファームウェアと組み合わせて、任意の適切な構成のハードウェアを備えることができる。様々な例では、IMD14は、1つ以上のプロセッサ30、例えば、1つ以上のマイクロプロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、もしくは、他の任意の同等の集積回路もしくは個別論理回路、または、このような構成要素の任意の組み合わせを備えていてもよい。また、様々な例では、IMD14は、メモリ32、例えば、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、プログラマブルリードオンリーメモリ(PROM)、イレーサブルプログラマブルリードオンリーメモリ(EPROM)、エレクトカリーイレーサブルプログラマブルリードオンリーメモリ(EEPROM)、フラッシュメモリを備えていてもよく、これらは、1つ以上のプロセッサにそれらに属する動作を実行させるための実行可能な命令を備えている。さらに、プロセッサ30、治療モジュール34、再充電モジュール38およびテレメトリモジュール36は、分離型モジュールとして説明されるものの、いくつかの例では、プロセッサ30、治療モジュール34、再充電モジュール38およびテレメトリモジュール36は、機能的に統合される。いくつかの例では、プロセッサ30、治療モジュール34、再充電モジュール38およびテレメトリモジュール36は、個々のハードウェアユニット、例えば、ASIC、DSP、FPGAまたは他のハードウェアユニットに対応する。
【0056】
メモリ32は、治療プログラム、または、治療モジュール34およびIMD14によって提供される治療のための治療パラメータ値を特定する他の命令を格納してもよい。いくつかの例では、メモリ32は、温度センサ39からの温度データ、再充電可能な電源18を再充電するための命令、組織モデル、閾値、IMD14と充電デバイス20との間の通信のための命令、または、IMD14の属するタスクを実行するために求められる他の任意の命令も格納してもよい。このようにして、メモリ32は、プロセッサ30が組織モデルと、二次コイル40および再充電可能な電源18によって所定期間に亘って受け取られる電力と、に基づいてIMD14の周囲の組織温度を計算するように構成されるように、組織モデルを格納するように構成されてもよい。
【0057】
概して、治療モジュール34は、プロセッサ30の制御下において電気的な刺激を生成し、供給してもよい。いつくかの例では、プロセッサ30は、メモリ32にアクセスして治療モジュール34への少なくとも1つの刺激プログラムに選択的にアクセスし、ロードすることによって、治療モジュール34を制御する。例えば、動作において、プロセッサ30は、メモリ32にアクセスして、治療モジュール34への刺激プログラムの1つをロードしてもよい。そのような例では、関連する刺激パラメータは、電圧の振幅、電流の振幅、パルス数、パルス幅、デューティサイクル、または、電気刺激信号を供給するために治療モジュール34が使用する電極17A,17B,17C,17Dの組み合わせを含んでいてもよい。治療モジュール34は、リード16の電極17A,17B,17C,17Dのうちの1つ以上を介して電気的な刺激治療を生成し、供給するように構成され得るものの、治療モジュール34は、患者12に異なる治療を提供するように構成されてもよい。例えば、治療モジュール34は、カテーテルを介して薬剤供給治療を供給するように構成されていてもよい。これらおよび他の治療は、IMD14によって提供されてもよい。
【0058】
また、IMDは、再充電可能な電源18が少なくとも部分的に消耗された場合に充電デバイス20から再充電可能な電源18に電力を受け取るための構成要素を備えている。
図2に示すように、IMD14は、二次コイル40と、再充電可能な電源18に接続される再充電モジュール38と、を備えている。再充電モジュール38は、プロセッサ30または充電デバイス20のいずれかによって決定された選択された電力レベルで再充電可能な電源18を充電するように構成されてもよい。プロセッサ30は、いくつかの例では、いくつかのコマンドを再充電モジュール38に提供してもよいが、プロセッサ30は、再充電のいかなる局面も制御する必要はない。
【0059】
二次コイル40は、ワイヤのコイル、または、患者12の外部に配置される一次コイルと誘導結合することができる他のデバイスを備えていてもよい。一次コイル48は、
図3では、簡単な輪として示されているが、一次コイル48は、多数巻きのワイヤを備えていてもよい。二次コイルは、二次コイル40内で磁界から電流が誘導され得るように構成されたワイヤの巻き線を備えていてもよい。次に、誘導された電流は、再充電可能な電源18を再充電するために使用されてもよい。このようにして。電流は、再充電可能な電源18に関連する二次コイル40に誘導され得る。誘導は、充電デバイス20の一次コイルに生成された電流によって、選択された電力レベルに基づいて引き起こされてもよい。二次コイル40と、充電デバイス20の一次コイルと、の結合は、2つのコイルの整合性に依存し得る。一般的に、連結効率は、2つのコイルが共通の軸線を共有し、相互に近接する場合に増大する。充電デバイス20および/またはIMD14は、整合性の1つ以上の可聴音または可視表示を提供してもよい。
【0060】
再充電可能な電源18を再充電するための方法として、誘導結合が概して説明されるものの、他の無線エネルギー伝送技術が代替的に使用されてもよい。任意のこれらの技術は、フィードバックとして計算された累積加熱量を使用して充電プロセスが制御され得るように、IMD14内に熱を発生させる。
【0061】
再充電モジュール38は、二次コイルに誘導された電気信号をフィルタリングし、および/または、再充電可能な電源18を再充電することができる電気信号に変換する1つ以上の回路を備えていてもよい。例えば、交流誘導において、再充電モジュール38は、誘導からの交流電流を再充電可能な電源18のための直流電流に変換するように構成された半波整流回路および/または全波整流回路を備えていてもよい。全波整流回路は、再充電可能な電源18のための誘導エネルギーの変換において、より高効率になり得る。しかしながら、再充電可能な電源18により低速でエネルギーを蓄積するために、半波整流回路が使用されてもよい。いくつかの例では、再充電モジュール38は、再充電モジュール38が各回路間で切り替えられ、再充電可能な電源18の充電速度およびIMD14の温度を制御することができるように、全波整流回路および半波整流回路の両方を備えていてもよい。
【0062】
いくつかの例では、再充電モジュール38は、誘導結合中に誘導された電流および/または電圧を測定するように構成された測定回路を備えていてもよい。この測定は、充電デバイス20からIMD14に伝送された電力を測定または計算するために使用され得る。いくつかの例では、伝送された電力は、IMD14の温度および周囲組織の温度を概算するために使用され得る。この方法は、IMD14のハウジングと接触する組織の温度を非直接的に測定するために使用され得る。他の例では、IMD14は、測定された電圧または電流を使用して、再充電モジュール38、または、再充電可能な電源18の充電速度の後の伝送された電力を推定してもよい。
【0063】
再充電可能な電源18は、1つ以上のキャパシタ、バッテリ、または、他のエネルギー貯蔵デバイスを備えていてもよい。次に、再充電可能な電源18は、動作電力をIMD14の構成要素に供給してもよい。いくつかの例では、再充電可能な電源18は、動作電力を作り出すために電力生成回路を備えていてもよい。再充電可能な電源18は、数百または数千の放電・再充電サイクルを通して動作するように構成されていてもよい。また、再充電可能な電源18は、再充電プロセス中にIMD14に動作電力を提供するように構成されていてもよい。いくつかの例では、再充電可能な電源18は、充電中に生成される熱量を低減するための材料で構成されてもよい。他の例では、IMD14は、再充電可能な電源18、再充電モジュール38および/または二次コイル40において生成される熱のIMD14のハウジングのより大きな表面積に亘る放熱を促進することができる材料で構成されてもよい。
【0064】
再充電可能な電源18、再充電モジュール38および二次コイル40は、IMD14のハウジング内に収容されるように示されているものの、これらの構成要素の少なくとも1つは、ハウジングの外部に配置されてもよい。例えば、二次コイル40は、二次コイル40と、充電デバイス20の一次コイルと、のより良い結合を容易にするために、IMD14のハウジングの外部に配置されてもよい。IMD14の構成要素のこれらの様々な構成によって、IMD14を様々な解剖学的空間に埋め込むことが可能になり、あるいは、一次コイルと二次コイルとのより良い誘導結合整合を容易にすることができる。
【0065】
また、IMD14は、温度センサ39を備えていてもよい。温度センサ39は、IMD14の温度を測定するように構成された1つ以上の温度センサ(例えば、熱電対またはサーミスタ)を備えていてもよい。温度センサ39は、IMD14のハウジングの内部に配置されてもよく、ハウジングに接触していてもよく、ハウジングの一部分として形成されていてもよく、あるいは、ハウジングの外部に配置されてもよい。本明細書で説明するように、温度センサ39は、IMD14および/または組織周辺の温度を直接的に測定するために使用されてもよく、および/または、IMD14のハウジングに接触していてもよい。プロセッサ30または充電デバイス20は、組織温度がフィードバックされ、再充電可能な電源18の充電中に組織に提供された累積加熱量を決定する際に、この温度測定値を使用することができる。単一の温度センサが適切である場合があるものの、多数の温度センサがIMD14のより良い温度勾配または平均温度を提供してもよい。また、IMD14の様々な温度は、モデル化され、累積加熱量を決定するために提供されてもよい。プロセッサ30は、温度センサ39を使用して継続的に温度を測定できるものの、プロセッサ30は、再充電セッション中に温度を測定することのみによってエネルギーを節約してもよい。さらに、温度は、累積加熱量を計算するために必要となる速度でサンプリングされてもよいが、サンプリング速度は、必要に応じて電力を節約するために低減されてもよい。
【0066】
また、プロセッサ30は、テレメトリモジュール36を使用して、充電デバイス20および/または外部プログラマーとの情報の交換を制御してもよい。テレメトリモジュール36は、高周波プロトコルまたは誘導通信プロトコルを使用して無線通信するように構成されていてもよい。テレメトリモジュール36は、例えば、充電デバイス20と通信するように構成された1つ以上のアンテナを備えていてもよい。プロセッサ30は、テレメトリモジュール36を介して、動作情報を伝送するとともに治療プログラムまたは治療パラメータ調整を受け取ってもよい。また、いくつかの例では、IMD14は、テレメトリモジュール36を介して、他の埋め込みデバイス、例えば、刺激装置、制御デバイスまたはセンサと通信してもよい。さらに、テレメトリモジュール36は、例えば、測定された組織温度を温度センサ39から伝送するように構成されていてもよい。いくつかの例では、組織温度は、再充電可能な電源18の近傍で測定されてもよい。このようにして、充電デバイス20は、伝送された組織温度を使用して、累積加熱量を計算することができる。他の例では、プロセッサ30は、累積加熱量を計算し、計算された累積加熱量を、テレメトリモジュール36を使用して伝送してもよい。
【0067】
他の例では、プロセッサ30は、再充電可能な電源18の動作に関する追加的な情報を充電デバイス20に伝送してもよい。例えば、プロセッサ30は、テレメトリモジュール36を使用して、再充電可能な電源18が完全に充電されていること、再充電可能な電源18が完全に放電されていること、または、再充電可能な電源18の他の任意の充電状態を伝送してもよい。また、プロセッサ30は、再充電可能な電源18が動作電力をIMD14の構成要素に提供することを阻止する、再充電可能な電源18に関する何らかの問題またはエラーを表す情報を充電デバイス20に伝送してもよい。
【0068】
図3は、例示的な外部充電デバイス20のブロック図である。充電デバイス20は、概して、手持ち式デバイスとして説明されるが、充電デバイス20は、より大きな可搬式デバイス、または、より固定的なデバイスであってもよい。さらに、他の例では、充電デバイス20は、外部プログラマーの一部分として備えられていてもよく、あるいは、外部プログラマーの機能を備えていてもよい。さらに、充電デバイス20は、外部プログラマーと通信するように構成されてもよい。
図3に示すように、充電デバイス20は、プロセッサ50と、メモリ52と、ユーザインタフェース54と、テレメトリモジュール56と、電力モジュール58と、コイル48と、電源60と、を備えていてもよい。メモリ52は、プロセッサ50によって実行される場合に、本開示を通して外部充電デバイス20に属する機能をプロセッサ50および外部充電デバイス20に提供させる命令を格納していてもよい。
【0069】
概して、充電デバイス20は、充電デバイス20、ならびに、充電デバイス20のプロセッサ50、ユーザインタフェース54、テレメトリモジュール56、充電モジュール58に属する技術を実施するために、単独で、または、ソフトウェアおよび/またはファームウェアと組み合わせて、任意の適切な構成のハードウェアを備えることができる。様々な例では、充電デバイス20は、1つ以上のプロセッサ、例えば、1つ以上のマイクロプロセッサ、DSP、ASIC、FPGA、もしくは、他の任意の同等の集積回路もしくは個別論理回路、または、このような構成要素の任意の組み合わせを備えていてもよい。また、様々な例では、充電デバイス20は、メモリ52、例えば、RAM、ROM、PROM、EPROM、EEPROM、フラッシュメモリ、ハードディスク、CD−ROMを備えていてもよく、これらは、1つ以上のプロセッサにそれらに属する動作を実行させるための実行可能な命令を備えている。さらに、プロセッサ50およびテレメトリモジュール56は、分離型モジュールとして説明されるものの、いくつかの例では、プロセッサ50およびテレメトリモジュール56は、機能的に統合される。いくつかの例では、プロセッサ50およびテレメトリモジュール56ならびに充電モジュール58は、個々のハードウェアユニット、例えば、ASIC、DSP、FPGAまたは他のハードウェアユニットに対応する。
【0070】
メモリ52は、プロセッサ50によって実行される場合に、本開示を通して充電デバイス20に属する機能をプロセッサ50および充電デバイス20に提供させる命令を格納してもよい。例えば、メモリ52は、プロセッサ50に累積加熱量を計算させ、閾値を定めさせ、累積加熱量に基づいて電力レベルを選択させ、あるいは、充電モジュール58を制御させ、IMD14と通信させる命令、または、他の任意の機能のための命令を備えていてもよい。さらに、メモリ52は、選択された電力レベルの記録、計算された累積加熱量、または、再充電可能な電源18の充電に関する他の任意のデータを備えていてもよい。プロセッサ50は、必要な場合に、メモリ52に格納されたこのデータのいずれかを、再検討またはさらなる処理のために、他のコンピューティングデバイスに伝送してもよい。
【0071】
いくつかの例では、メモリ52は、組織モデルと、所定期間に亘って再充電可能な電源18に伝送される電力と、に基づいて組織温度を計算するために、プロセッサ50によって使用される組織モデルを代表するデータを格納するように構成されていてもよい。組織モデルは、IMD14を取り囲む組織の温度がどのように経時的に変化するのかを、一次コイル48から受け取られる電力に基づいて、すなわち、当該電力の関数として、表していてもよい。したがって、プロセッサ50は、IMD14のハウジングを取り囲む組織の温度を直接的に測定することなく、組織温度を推定することができてもよい。
【0072】
ユーザインタフェース54は、ボタンもしくはキーパッド、ライト、音声コマンド用のスピーカ、ディスプレイ、例えば、液晶(LCD)、発光ダイオード(LED)もしくはブラウン管(CRT)を備えていてもよい。いくつかの例では、ディスプレイは、タッチスクリーンであってもよい。本開示で説明されるように、プロセッサ50は、ユーザインタフェース54を介して、再充電可能な電源18の充電に関する情報を送出し、受け取ってもよい。例えば、ユーザインタフェース54は、充電が生じている場合に、コイル40とコイル48との整合性の品質、選択された電力レベル、再充電可能な電源18の電流充電レベル、電流再充電セッションの期間、充電セッションの予測残り時間、または、他の情報を表示してもよい。いくつかの例では、プロセッサ50は、ユーザインタフェース54に表示された情報のいくつかをIMD14から受け取ってもよい。
【0073】
また、ユーザインタフェース54は、ユーザインタフェース54を介してユーザ入力を受け付けてもよい。この入力は、例えば、キーパッド上のボタンを押し下げる形態、または、タッチスクリーンからアイコンを選択する形態であってもよい。入力は、再充電セッションの開始または停止、充電の所望のレベル、または、再充電可能な電源18の充電に関する1つ以上の統計量(例えば、累積加熱量)を要求してもよい。このようにして、ユーザインタフェース54によって、ユーザは、再充電可能な電源18の充電に関する情報を見ることができ、および/または、充電コマンドを受け取ることができる。
【0074】
また、充電デバイス20は、再充電可能な電源18に電力を伝送するための、IMD14に関連する構成要素を備えていてもよい。
図3に示すように、充電デバイス20は、一次コイル48と、電源60に接続される充電モジュール58と、を備えている。充電モジュール58は、電源60に貯蔵された電圧から一次コイル48に電流を発生させるように構成されてもよい。一次コイル48は、
図3では、単一の輪として示されているが、一次コイル48は、多数巻きのワイヤを備えていてもよい。充電モジュール58は、累積加熱量に基づいてプロセッサ50によって選択される電力レベルにしたがった電流を発生させてもよい。本明細書に説明されるように、プロセッサ50は、再充電可能な電源18における再充電速度、および、IMD14の温度を制御するために、高電力レベル、低電力レベル、または、様々な異なる電力レベルを選択してもよい。いくつかの例では、プロセッサ50は、IMD14のプロセッサ30によって選択される電力レベルに基づいて充電モジュール58を制御してもよい。
【0075】
一次コイル48は、ワイヤのコイル(例えば、多数巻きを有する)、または、患者12内に配置された二次コイル40と誘導結合することができる他のデバイスを備えていてもよい。一次コイル48は、
一次コイル48内で生成された電流が、二次コイル40内で電流を誘導するように構成された磁界を生じさせることができるように構成されたワイヤの巻き線を備えていてもよい。次に、誘導された電流は、再充電可能な電源18を再充電するために使用されてもよい。このようにして、電流は、再充電可能な電源18に関連する二次コイル40に誘導され得る。二次コイル40と、充電デバイス20の一次コイルと、の結合効率は、この2つのコイルの整合性に依存し得る。一般的に、連結効率は、2つのコイルが共通の軸線を共有し、相互に近接する場合に増大する。充電デバイス20のユーザインタフェース54は、整合性の1つ以上の可聴音または可視表示を提供してもよい。
【0076】
充電モジュール58は、一次コイル48内に電気信号および電流を発生させる1つ以上の回路を備えていてもよい。いくつかの例では、充電モジュール58は、特定の振幅および周波数の交流電流を発生させてもよい。他の例では、充電モジュール58は、直流電流を発生させてもよい。任意の場合において、充電モジュール58は、様々なレベルの電力をIMD14に伝送するために、電気信号を発生させ、後続の磁界を発生させることができてもよい。このようにして、充電モジュール58は、選択された電力レベルでIMD14の再充電可能な電源18を充電するように構成され得る。
【0077】
充電モジュール58が充電のために選択する電力レベルは、コイル48のために発生される電気信号の1つ以上のパラメータを変化させるために使用されてもよい。例えば、選択された電力レベルは、消費電力、一次コイル48もしくは二次コイル40の電流、電流の振幅、電圧の振幅、パルス数、パルス幅、または、コイル48から伝送される電力を変調するのに使用され得る他の任意のパラメータを特定してもよい。このようにして、各電力レベルは、各電力レベルのための信号を特定する所定のパラメータセットを備え得る。1つの電力レベルから他の電力レベルへの変更、例えば、高電力レベルから低電力レベルへの変更には、1つ以上のパラメータを調節することが含まれてもよい。各電力レベルのパラメータは、充電デバイス20および/またはIMD14のハードウェア特性に基づいて選択されてもよい。
【0078】
電源60は、動作電力を充電デバイス20の構成要素に供給してもよい。また、電源60は、充電プロセス中に動作電力を一次コイル48に供給してもよい。電源60は、バッテリと、動作電力を作り出すための電力生成回路と、を備えていてもよい。いくつかの例では、電源60は、有線接続された電圧限、例えば、消費者または商用電源出力から電力を引き出してもよい。
【0079】
電源60および充電モジュール58は、充電デバイス20のハウジング内に示されており、一次コイル48は、充電デバイス20の外部に示されているが、様々な構成も使用され得る。例えば、一次コイル48も充電デバイス20のハウジング内に配置されてもよい。他の例では、電源60、充電モジュール58および一次コイル48は、全て、充電デバイス20のハウジングの外部に配置され、充電デバイス20に接続されてもよい。
【0080】
テレメトリモジュール56は、プロセッサ50の制御下で、IMD14と充電デバイス20との間の無線通信を支援する。また、テレメトリモジュール56は、無線通信技術、または、有線接続による直接通信によって、他のコンピューティングデバイスと通信するように構成されていてもよい。いくつかの例では、テレメトリモジュール56は、本明細書に記載されたIMD14のテレメトリモジュール36と実質的に同じであってもよく、RFまたは近距離誘導媒体を介した無線通信を提供する。いくつかの例では、テレメトリモジュール56は、アンテナを備えていてもよく、このアンテナは、様々な形態、例えば、内部アンテナまたは外部アンテナの形態をとることができる。
【0081】
充電デバイス20とIMD14との間の通信を容易にするために使用され得るローカル無線通信技術の例には、802.11に準拠したRF通信、もしくは、ブルートゥース(登録商標)規格セット、または、他の規格もしくは特許テレメトリプロトコルが含まれる。このようにして、他の外部デバイスは、安全な無線コネクションを確立する必要なく、充電デバイス20と通信することができる。本明細書に記載されるように、テレメトリモジュール56は、測定された組織温度をIMD14から受け取るように構成されてもよい。組織温度は、再充電可能な電源18の近傍で測定されてもよく、例えば、IMD14のハウジングの近傍、または、ハウジングの外部で測定されてもよい。IMD14は、組織温度を測定するが、1つ以上の別の埋め込み可能な温度センサ(例えば、独立設置式の埋め込み可能な温度感知デバイス)が、異なる位置で独立して組織温度を測定し、当該温度を充電デバイス20に伝送してもよい。いくつかの例では、IMD14による多数の温度測定値の平均値を求めてもよく、あるいは、充電デバイス20に伝送される単一の温度値を生成するために使用されてもよい。この温度は、様々なレートで、例えば、マイクロ秒、ミリ秒、秒、分または時間のオーダで、サンプリングおよび/または伝送されてもよい。次に、プロセッサ50は、受け取った組織温度を使用して累積加熱量を計算してもよい。
【0082】
図4は、IMD再充電中に所定期間に亘って患者内で発生する例示的な温度のグラフ62である。
図4に示すように、グラフ62には、再充電可能な電源18の再充電中の経時的な温度64が含まれる。この温度は、IMD14内で測定されてもよく、IMD14のハウジング上で測定されてもよく、あるいは、IMD14を取り囲む組織内で測定されてもよい。あるいは、この温度は、IMD14に伝送された電力と、伝送された電力に基づいて組織が経時的にどのような反応を示すかについての組織モデルと、に基づいて計算されてもよい。したがって、温度64は、IMD14のハウジングと取り囲む、および/または、当該ハウジングと接触する組織の温度が、再充電可能な電源18が再充電電力の所与のレベルで再充電されている場合に、どのように変化するかを表し得る。
【0083】
グラフ62は、充電デバイス20が最初に充電のために高電力レベルを選択し、累積加熱量が達成されると、低電力レベルに変更される場合に、温度64がどのように変化するのかを示し得る。再充電可能な電源18の充電がゼロ分のマーク(電力レベル変更66)のところで開始されると、温度64は、約37℃から上昇し始める。充電デバイス20は電力を高電力レベルで伝送するので、再充電可能な電源18は、高速で充電されることができ、IMD14および周囲組織の温度は、低い伝送電力レベルでの遅い充電速度と比べて、比較的高速に上昇することができる。温度64は、伝送された電力と、組織の放熱能力と、に基づいて所定の規模のところで横ばい状態になり得る。
【0084】
時間Tは、累積加熱量が熱量閾値に到達するのにかかる時間量を示し得る。累積加熱量は、組織が所定の期間に亘って曝露される合計熱量を表すように決定されてもよい。累積加熱量は、この合計熱量を示す様々な異なる技術を使用して計算されてもよい。例えば、温度64は、時間積分されて、累積加熱量が分レベルで計算されてもよい。このため、累積加熱量70、例えば、温度62のカーブよりも加法の領域は、IMD14から組織に経時的に供給された合計熱量を表している。組織の通常の生理的温度は、約37℃であるので、温度64は、単に、この37℃フロア(floor)に関して温度について積分され得る。しかしながら、累積加熱量は、熱量閾値または他の任意の閾値がこのフロア温度を使用して同様に定められる限り、フロアとして任意の温度を使用して計算されてもよい。
【0085】
他の例では、累積加熱量は、代替技術を使用して計算されてもよい。例えば、充電デバイス20は、各時間セグメントについて(例えば、毎分)温度64の平均値を求めて、各分についての平均温度を合計して、累積加熱量を計算してもよい。あるいは、累積加熱量は、異なる温度規模、例えば、異なる温度の異なる時間加重で組織への影響を考慮することができる、より複雑な式、例えば、本明細書に開示されるような式を使用して計算されてもよい。温度64が上昇すると、温度における各増加変化の効果は、望ましくない組織効果の不均衡な増加と、患者の快適性の減少と、を引き起こし得る。換言すれば、各底の変化によって、組織が温度に安全に曝露される時間量が指数関数的に減少する。例えば、組織を41℃に4時間曝露することは安全となり得るが、温度が43℃まで僅かに上昇することによって、安全な曝露時間がわずか30分まで減少する。このようにして、累積加熱量は、温度と、望ましくない経時的な副次的影響と、の間の非線形関係を考慮するように計算され得る。
【0086】
累積加熱量が熱量閾値を超過すると、充電デバイス20は、電力レベル変化68のところで、充電電力を低電力レベルまで減少されてもよい。
図4の例では、累積加熱量は、高電力レベルで再充電可能な電源18の充電を開始した後約35分のこところで、熱量閾値を超過した。次に、低電力レベルは、再充電可能な電源18が充電される速度を減少させてもよく、温度64は、この減少された伝送電力とともに減少してもよい。他の例では、充電デバイス20は、熱量閾値に到達され、熱量閾値に到達した後に充電が終了する前に、低電力レベルを選択してもよい。任意の場合において、充電デバイス20は、再充電可能な電源18を充電するための電力レベルを、温度64を使用して計算された累積加熱量に基づいて選択してもよい。
【0087】
グラフ62の温度64は、IMD14の再充電可能な電源18の充電に起因する組織温度変化の例に過ぎない。
図4の例では、温度64は、充電のための電力レベルを低減する前に、約41.5℃まで上昇し得る。他の例では、温度64は、より高速に、または、より低速に変化し得る。さらに、温度64は、より低い温度で横ばい状態になることができ、より高い温度で横ばい状態になることができ、あるいは、再充電セッション中の全てにおいて横ばい状態にならないことができる。いくつかの例では、温度64は、42℃を超える温度に到達することができ、あるいは、43℃にさえ到達することができる。このようにして、熱量閾値、累積加熱量の計算方法、および、患者12によって受け取られる累積加熱量の管理のための他の変数は、充電デバイス20、IMD14および患者12の特定の特性に基づいて調節され得る。
【0088】
図5Aおよび
図5Bは、充電のための選択された電力レベルと、選択された電力レベルに起因する再充電可能な電源18のための関連する充電レベルと、の例のグラフである。
図5A,5Bのグラフ72,78は、
図4に示される温度変化に対応していてもよい。換言すれば、
図4の温度64は、
図5Aで選択される電力レベルに起因する組織温度変化と、
図5Bの充電速度と、を表している。
【0089】
図5Aに示すように、グラフ72は、再充電可能な電源18を充電するための、充電デバイス20の選択された電力レベル74の例を示している。ゼロ分のマークのところで充電が開始されると、充電デバイス20は、高電力レベルを選択し得る。最初の高電力レベル74は、再充電可能な電源18を高速、例えば、「ブースト」で充電するために選択し得る。この高速は、患者12が再充電可能な電源18を再充電するのに必要となり得る時間量を最小限に抑えることができる。充電デバイス20は、高電力レベルを使用して、累積加熱量が熱量閾値を超過するまで、IMD14にエネルギーを伝送してもよい。
【0090】
充電レベル変化76は、選択された高電力レベルから低電力レベルまでの変化を示している。充電デバイス20は、充電レベル変化76のところで低電力レベルを選択してもよい。それは、累積加熱量が熱量閾値を超過したからである。次に、充電デバイス20は、再充電可能な電源18が完全に充電されるまで、再充電可能な電源18を低電力レベルで継続して充電してもよい。再充電可能な電源18が完全に充電されると、充電デバイス20は、ゼロ電力レベルを選択することによって充電を終了してもよい。
【0091】
グラフ72は、高・中・低レベルを示している。グラフ72は、高電力レベルおよび低電力レベルのみが選択された状態を示しているが、充電デバイス20は、中電力レベルを選択してもよく、あるいは、計算された累積加熱量に基づいて様々な電力レベルが選択される他の例では、他の任意の電力レベルを選択してもよい。他の例では、充電デバイス20は、再充電可能な電源18を充電する場合に、高電力レベルと低電力レベルとの間でのみ選択してもよい。
【0092】
図5Bに示すように、グラフ78は、充電デバイス20によって選択された様々な電力レベルに起因する経時的な充電速度80を示している。高速82は、充電デバイス20が充電のために高電力レベルを選択する場合の、再充電可能な電源18の充電速度を表している。累積加熱量が熱量閾値を超過すると、充電速度変化86は、充電速度が低下したことを示している。充電速度変化86の後、低電力レベルは、再充電可能な電源18を低速84で誘導する。再充電可能な電源18のための充電レベルが約100パーセントに到達すると、充電速度は、ゼロまで低減され得る。それは、再充電セッションが終了され得るからである。他の例では、累積加熱量が熱量閾値に到達する場合に、患者12に供給される正確な累積加熱量をより良く制御するために、低電力レベルが、熱量閾値を超過する前に選択されてもよい。
【0093】
図6A,6Bは、充電のための選択された電力レベルと、選択された電力レベルに起因する、関連する再充電可能な電源18の充電レベルと、の例のグラフである。
図6A,6Bのグラフ90,98は、
図5A,5Bに示される電力レベル変化の代替の電力レベル変化を示している。
図6Aは、充電のための3つの異なる電力レベルを示しており、
図6Bは、選択された電力レベルの各々に起因する充電速度を示している。
図6A,6Bの技術は、累積加熱量が熱量閾値に到達する前の電力レベル変化を示している。
【0094】
図6Aに示すように、グラフ90は、再充電可能な電源18を充電するための、充電デバイス20の選択された電力レベル92の例を示している。充電が開始されると、ゼロ分のマークのところで、充電デバイス20は、高電力レベルを選択してもよい。ゼロ分のマークと20分のマークとの間の最初の高電力レベルが、高速、例えば、「ブースト」で再充電可能な電源18を充電するために選択されてもよい。この高速は、患者12が再充電可能な電源18を再充電する必要がある時間量を最小限に抑えることができる。充電デバイス20は、高電力レベルを使用して、累積加熱量が熱量閾値に到達し始めるまで、IMD14にエネルギーを伝送してもよい。
【0095】
充電デバイス20は、利用可能な熱量を計算して、再充電セッションのための低電力レベルを選択するタイミングを決定してもよい。利用可能な熱量は、熱量閾値から累積加熱量を差し引くことによって計算されてもよい。このようにして、利用可能な熱量は、IMD14が周囲組織に依然として安全に提供できる合計熱量を示すことができる。充電デバイス20は、利用可能な熱量を高電力量要件と比較して、選択された高電力レベルから電力を低減するタイミングを決定してもよい。このようにして、充電デバイス20は、利用可能な熱量が高電力量要件よりも大きい場合に、例えば、ゼロ分のマークと20分のマークとの間にある場合に、高電力レベルを選択することができる。
【0096】
充電デバイス20が、利用可能な熱量が高電力量要件よりも小さいことを計算すると、充電デバイス20は、中電力レベルを選択してもよい。充電レベル変化94は、累積加熱量が熱量閾値を超過すると、電力レベルが高から中に変化したことを示している。次に、充電デバイス20は、20〜25分の間、再充電可能な電源18を中電力レベルで充電してもよい。累積加熱量が熱量閾値を超過する場合、充電レベル変化96は、再充電可能な電源18の追加的な充電のために、充電デバイスが低電力レベルを選択することを示している。このため、選択された電力レベル92は、累積加熱量がIMD14を取り囲む組織によって受け取られる熱量を示している。充電デバイス20は、再充電可能な電源18が完全に充電されるまで、再充電可能な電源18を低電力レベルで充電し続けてもよい。再充電可能な電源18が完全に充電されると、充電デバイス20は、ゼロ充電レベルを選択することによって充電を終了してもよい。
【0097】
熱量閾値を超過するまでに充電電力レベルを低減することによって、充電デバイス20は、累積加熱量が超過しないことを保証することができる。換言すれば、IMD14は、充電電力が減少した後に、未だ放熱することができる。熱量閾値に到達する前に電力レベルを低減することによって、IMD14は、以前のより高い電力レベルからIMD14に留まる熱を放散することができる。熱量閾値が超過すると、IMD14は、放熱するために、より少ない残余熱を有していてもよい。したがって、利用可能な熱量を使用して電力レベルを低減することによって、熱量閾値が超過されるまで待つ場合とは対照的に、充電デバイス20は、組織が曝露される合計熱量をより良く制御することができる。
【0098】
図6Bに示すように、グラフ98は、充電デバイス20によって選択された電力レベルの変化に起因する経時的な充電速度100を示している。高速102は、充電デバイス20が充電のために高電力レベル(例えば、ブースト速度)を選択する場合の、再充電可能な電源18の充電速度表し得る。累積加熱量が高電力量要件を超過すると、充電速度変化108は、充電速度が低下したことを示す。充電速度変化108の後に、中電力レベルは、中速度104での再充電可能な電源18の充電を誘導する。さらに、累積加熱量が熱量閾値を超過すると、充電速度変化110は、充電速度が低下したことを示す。充電速度変化110の後、低電力レベルは、低速度106での再充電可能な電源18の充電を誘導する。再充電可能な電源18のための充電レベルが約100パーセントに到達すると、充電速度は、ゼロまで低減され得る。それは、再充電セッションが終了され得るからである。
【0099】
図6Aのグラフ90は、高・中・低電力レベルを示している。グラフ90は、充電デバイスが、組織温度から計算された累積加熱量に基づいて3つの異なる電力レベルから選択することを示している。他の例では、充電デバイスは、より多数の電力レベルを利用して、より少ない増加で電力レベルを変化させることができる。したがって、充電デバイス20は、充電セッション中に再充電速度およびIMD14の温度をより精細に制御することができる。電力のより精細な制御によって、充電デバイス20がIMD14の温度を段階的に変化させること、例えば、充電が停止された後においても、累積加熱量が熱量閾値を超過しないように、IMD14の温度を低減することができる。
【0100】
図5A,5B,6A,6Bでは、充電デバイス20は、累積加熱量が熱量閾値を超過する後においても低充電レベルを選択する。これらの場合では、低充電レベルは、IMD14の無視できる程度の加熱を生じさせるに過ぎない。換言すれば、対応する遅い充電速度中にIMD14に作り出される熱は、累積加熱量に対して、取るに足らない増加を引き起こし得る。それは、この温度が通常の体温と同様だからである。しかしながら、他の例では、低充電レベルは、依然として、IMD14に熱を生じさせ、累積加熱量に寄与し得る。この場合、充電デバイス20は、再充電可能な電源18の充電を終了してもよい(例えば、ゼロ電力レベルを選択する)。
【0101】
図7A,7Bは、高電力レベルでの充電の後の、加えられたロックアウト期間Lに起因する選択された電力レベルの例のグラフである。
図7Aに示すように、充電デバイス20は、再充電可能な電源18を選択された高電力レベルで充電することができる。しかしながら、グラフ112の充電レベル114は、充電レベルが、再充電可能な電源18を充電するために、必要に応じて変化でき、患者12に供給される累積加熱量を制限できることを示している。t
0での充電レベル変化116は、累積加熱量が熱量閾値を超過したか、再充電可能な電源18が100パーセントの充電レベルに到達したかによって、充電が停止されたことを示し得る。
【0102】
図7Aの例に示すように、ロックアウト期間Lは、高電力レベルの使用と、これらの速い充電速度に起因してIMD14において発生される関連する比較的高い温度を制限するために、高電力レベルの後に実施され得る。充電レベル変化116のところで電力レベルがゼロまで低減された後、ロックアウト期間Lは、t
0とt
1との間において、再充電可能な電源18の充電を阻止することができる。ロックアウト期間Lが満了すると、充電デバイス20は、再度、再充電可能な電源18を充電するための電力レベル、例えば、充電レベル変化118の後に示される高電力レベルを選択してもよい。充電デバイス20は、ロックアウト期間Lが満了した直後に再充電可能な電源18の充電を開始してもよいが、充電は、直ちに開始することを求められない。ロックアウト期間Lは、単に、経過後の充電を可能にする。
【0103】
グラフ120は、ロックアウト期間Hに応じて変化する充電レベル122を提供する。
図7Bの例では、ロックアウト期間Hもまた、高電力レベルの使用と、これらの速い充電速度に起因してIMD14において発生される関連する比較的高い温度を制限するために、高電力レベルの後に実施され得る。充電レベル変化124のところで電力レベルがゼロまで低減された後、ロックアウト期間Hは、充電のための高電力の選択のみを阻止してもよい。したがって、ロックアウト期間Hは、t
0とt
2との間において、高電力レベルでの再充電可能な電源18の充電を阻止することができる。しかしながら、ロックアウト期間Hは、充電デバイス20がロックアウト期間中に低電力レベルで再充電可能な電源18を充電することを阻止しなくてもよい。ロックアウト期間H中において、充電デバイス20は、充電レベル変化126のところで低電力レベルを選択してもよい。この低電力レベルの選択によって、再充電可能な電源18がゆっくりと充電されることが可能になる。それは、IMD14が、この遅い充電中に多量の熱を放熱しなくてもよいからである。
【0104】
ロックアウト期間Hが満了すると、充電デバイス20は、再度、再充電可能な電源18を充電するための電力レベル、例えば、充電レベル変化128の後に示される高電力レベルを選択してもよい。充電デバイス20は、ロックアウト期間Hが満了した直後に再充電可能な電源18の充電を開始してもよいが、高電力レベルは、ロックアウト期間Hの満了後の任意の時間を選択されることを許容されるに過ぎない。いくつかの例では、中電力レベル、または、他の電力レベルがロックアウト期間H中に選択されてもよい。これらの低電力レベルは、再充電可能な電源18がさらに補給されることを可能にしつつ、IMD14および周囲組織の温度を大きく上昇させない。いくつかの例では、高電力レベルは、「ブーストとして捉えられるので、高電力レベルが再充電可能な電源18を再充電する必要はない場合がある。
【0105】
ロックアウト期間の長さは、様々な例において、様々な目的で変わってもよい。例えば、ロックアウト期間は、高電力の周波数の使用を単純に制限する所定の時間に設定されてもよい。この所定期間は、約10分と約48時間との間であってもよい。他の例では、ロックアウト期間は、利用可能な熱量と高電力量要件との差に基づいて変わってもよい。充電デバイス20は、累積加熱量と熱量閾値との差を計算して、利用可能な熱量を決定してもよい。高電力量要件(例えば、再充電可能な電源18を高電力レベルで充電するのに必要とされる熱量)が利用可能な熱量よりも大きい場合、ロックアウト期間は継続する。このようにして、ロックアウト期間は、それが満了すると充電を単純に許容するタイマーでなくてもよい。換言すれば、ロックアウト期間は、高電力レベル中に患者12によって受け取られる実際の累積加熱量の代用として高電力レベルで生じる充電の時間量に基づいていてもよい。あるいは、ロックアウト期間は、計算された累積加熱量に直接的に基づいていてもよい。
【0106】
他の例では、ロックアウト期間は、累積加熱量が熱量閾値を超過した後のみに開始されてもよい。累積加熱量が熱量閾値を超過した場合に充電が停止された後においてもIMD14が組織を熱に曝露し続けることがあるので、ロックアウト期間は、周囲組織が充電セッションから復帰することを可能にするために開始されてもよい。ロックアウト期間は、いくつかの例では、充電が、充電デバイス20が最小限の熱生成で充電するための低電力レベルを選択することが可能になることが生じることを阻止してもよい。あるいは、充電デバイス20は、多数のロックアウト期間を実施してもよい。例えば、完全なロックアウト期間が、高電力レベルが充電デバイス20高電力レベルを選択することを阻止するだけとした状態で、充電が生じることを阻止してもよい。これらの多数のタイマーは、同時に動作してもよい。
【0107】
図8は、計算された累積加熱量に基づいて、埋め込み可能な再充電可能な電源18を充電するための電力レベルを選択するための例示的な技術を示すフロー図である。充電デバイス20のプロセッサ50は、
図8の技術を全体的に実行するものとして説明するが、その代わりに、
図8の技術は、他の例では、プロセッサ30,50の組み合わせによって実行されてもよい。
【0108】
再充電可能な電源18のための充電セッションは、プロセッサ50がユーザインタフェース54を介して充電要求を受け取ったときに開始されてもよい(130)。プロセッサ50は、累積加熱量を計算して、IMD14を取り囲む組織がどれだけの熱量に最近曝露されたのかを確認してもよい(132)。プロセッサ50が伝送電力を使用して組織温度を計算する場合、プロセッサ50は、IMD14からのデータを使用せずに累積加熱量を計算してもよい。プロセッサ50がIMD14で測定された電力、または、IMD14で測定された温度を使用して組織温度を計算する場合、プロセッサ50は、IMD14から受け取った適切なデータを組み込んでもよい。本明細書で説明されるように、累積加熱量は、所定期間に亘る組織温度に基づいて計算されてもよい。所定期間は繰り返し期間であるので、累積加熱量は、再充電可能な電源18が充電されていない時間とともに減少する。
【0109】
累積加熱量が熱量閾値よりも小さい場合(ブロック134の「NO」の分岐)、プロセッサ50は、充電のために高電力レベルを選択する(140)。累積加熱量が熱量閾値以上である場合(ブロック134の「YES」の分岐)、プロセッサ50は、充電のために低電力レベルを選択する(136)。プロセッサ50が高電力レベルから低電力レベルに切り替わっている場合、ユーザインタフェース54は、音または可視表示によって、そのような変化が生じたことをユーザに報知してもよい。次に、プロセッサ50は、選択された電力レベルで再充電可能な電源18を充電するように充電モジュール58に命令する(138)。代替的な例では、プロセッサ30は、累積加熱量を計算してもよく、および/または、充電のための電力レベルを選択してもよい。これらの例では、プロセッサ50は、IMD14から受け取ったこの情報を組み込んで、
図8の要素の少なくとも一部分を実行する。
【0110】
再充電可能な電源18が未だ100パーセントすなわち完全な充電レベルに達していない場合には(ブロック142の「NO」の分岐)、次に、プロセッサ50は、累積加熱量を計算し続ける(132)。再充電可能な電源18が100パーセントすなわち完全な充電レベルに達している場合には(ブロック142の「YES」の分岐)、次に、プロセッサ50は、充電を終了するように充電モジュール58に命令してもよい(144)。換言すれば、プロセッサ50は、ゼロ電力レベルを選択してもよい。充電デバイス20は、その後、再充電可能な電源18およびIMD14の再充電が完了したことをユーザに報知してもよい(146)。この報知は、ユーザインタフェース54によって提供される可聴警告または可視表示の形態であってもよい。また、プロセッサ50は、ユーザからの要求によって充電を終了してもよい。
【0111】
代替的な例では、プロセッサ50は、累積加熱量が熱量閾値に達していないか超過していない場合には、再充電可能な電源18を充電しなくてもよい。したがって、低電力レベルが選択されることすらない。累積加熱量が熱量閾値を超過した後に任意の電力レベルで再充電可能な電源18を充電する能力は、
再充電可能な電源18の充電に様々な電力レベルが使用される場合にIMD14からどれほどの熱が発生されるかに依存し得る。低電力レベルは、いくつかのシステムおよび患者において任意の時間で充電することを許容され得るが、他のシステムは、熱量閾値を超過した後は、いかなる充電も許容されないようにプログラムされてもよい。
【0112】
図9は、埋め込み可能な再充電可能な電源18を充電するための電力レベルを、充電目的で残っている利用可能な累積加熱量に基づいて選択するための例示的な技術を示すフロー図である。利用可能な熱量によって、充電電力レベルが熱量閾値を超過する前に低減されることが可能になる。充電デバイス20のプロセッサ50は、
図9の技術を実行するものとして説明されるが、他の例では、その代わりに、
図9の技術は、IMD14のプロセッサ30、または、プロセッサ30,50の組み合わせによって実行されてもよい。
【0113】
再充電可能な電源18のための充電セッションは、プロセッサ50がユーザインタフェース54を介して充電要求を受け取ったときに開始されてもよい(150)。プロセッサ50は、累積加熱量を計算して、IMD14を取り囲む組織がどれだけの熱量に最近曝露されたのかを確認してもよい(152)。累積加熱量が熱量閾値よりも小さい場合(ブロック154の「NO」の分岐)、プロセッサ50は、利用可能な熱量を計算する(160)。利用可能な熱量が高電力量要件よりも大きい場合(ブロック162の「YES」の分岐)、プロセッサ50は、充電のために高電力レベルを選択する(166)。利用可能な熱量が高電力量要件よりも小さい場合(ブロック162の「NO」の分岐)、プロセッサ50は、充電のために中電力レベルを選択する(164)。中電力レベルによって、再充電可能な電源18を未だ充電しつつ、IMD14がその温度を低下させるとともに、累積加熱量が増大する速度を低下させることが可能になってもよい。
【0114】
累積加熱量が熱量閾値以上である場合(ブロック154の「YES」の分岐)、プロセッサ50は、充電のために低電力レベルを選択する(156)。プロセッサ50が別の電力レベルに切り替わっている場合、ユーザインタフェース54は、音または可視表示によって、そのような変化が生じたことをユーザに報知してもよい。適切な電力レベルを選択した後、プロセッサ50は、選択された電力レベルで再充電可能な電源18を充電するように充電モジュール58に命令する(158)。再充電可能な電源18およびIMD14を充電するための電力レベルを選択するためのこの技術によって、プロセッサ50は、熱量閾値を超過した後にIMD14による放熱を制限することができる。
【0115】
再充電可能な電源18が未だ100パーセントすなわち完全な充電レベルに達していない場合には(ブロック168の「NO」の分岐)、次に、プロセッサ50は、累積加熱量を計算し続ける(152)。再充電可能な電源18が100パーセントすなわち完全な充電レベルに達している場合には(ブロック168の「YES」の分岐)、次に、プロセッサ50は、充電を終了するとともにこの終了をユーザに報知するように充電モジュール58に命令してもよい(170)。この報知は、ユーザインタフェース54によって提供される可聴警告または可視表示の形態であってもよい。また、プロセッサ50は、ユーザからの要求によって充電を終了してもよい。
【0116】
図10は、再充電可能な電源18を高電力レベルで充電するためのロックアウト期間を実施するための例示的な技術を示すフロー図である。ロックアウト期間は、充電デバイス20が、IMD14を充電するとともに周囲組織を許容できない温度に曝露することを阻止してもよい。充電デバイス20のプロセッサ50は、
図10の技術を実行するように説明されるが、
図10の技術は、他の例では、その代わりに、IMD14のプロセッサ30、または、プロセッサ30,50の組み合わせによって実行されてもよい。
【0117】
再充電可能な電源18のための充電セッションは、プロセッサ50がユーザインタフェース54を介して充電要求を受け取ったときに開始されてもよい(172)。プロセッサ50が、ロックアウト期間が未だ満了していないと決定する場合(ブロック174の「YES」の分岐)、プロセッサ50は、充電のために低電力レベルを選択する(184)。プロセッサ50が、ロックアウト期間が満了したと決定する場合(ブロック174の「NO」の分岐)、プロセッサ50は、累積加熱量を計算して、IMD14を取り囲む組織がどれだけの熱量に最近曝露されたのかを確認してもよい(176)。累積加熱量が熱量閾値よりも小さい場合(ブロック178の「NO」の分岐)、プロセッサ50は、充電のために高電力レベルを選択する(186)。
【0118】
累積加熱量が熱量閾値以上である場合(ブロック178の「YES」の分岐)、プロセッサ50は、現在の選択された電力レベルが高電力レベルであるか否かを決定する(180)。高電力レベルが現在選択されている場合(ブロック180の「YES」の分岐)、プロセッサ50は、ロックアウト期間を開始し(182)、充電のために低電力レベルを選択する(184)。高電力レベルが現在選択されていない場合(ブロック180の「NO」の分岐)、次に、プロセッサ50は、低電力レベルを選択する(184)。このようにして、プロセッサ50は、高電力レベルからの切り替え時にロックアウト期間を開始する。このため、ロックアウト期間によって、ロックアウト期間が満了するまでプロセッサ50が高電力レベルを再度選択することが阻止される。適切な電力レベルの選択の後、次に、プロセッサ50は、再充電可能な電源18を選択された電力レベルで充電するように充電モジュール58に命令する(188)。
【0119】
再充電可能な電源18が未だ100パーセントすなわち完全な充電レベルに達していない場合には(ブロック190の「NO」の分岐)、次に、プロセッサ50は、累積加熱量を計算し続ける(176)。再充電可能な電源18が100パーセントすなわち完全な充電レベルに達している場合には(ブロック168の「YES」の分岐)、次に、プロセッサ50は、充電を終了するとともにこの終了をユーザに報知するように充電モジュール58に命令してもよい(192)。この報知は、ユーザインタフェース54によって提供される可聴警告または可視表示の形態であってもよい。また、プロセッサ50は、ユーザからの要求によって充電を終了してもよい。
【0120】
図10の例では、ロックアウト期間は、再充電可能な電源18を充電するために高電力レベルが使用された時間量、または、累積加熱量にかかわらず、所定の期間であってもよい。いくつかの例では、プロセッサは、ロックアウト期間が開始されるときにロックアウト期間の長さを計算してもよい。ロックアウト期間は、再充電可能な電源18を充電するために高電力レベルが使用された期間に基づいていてもよく、例えば、より長い高電力レベルの充電がより長いロックアウト期間を生じさせる。他の例では、ロックアウト期間は、累積加熱量閾値よりも小さい値に低下した際にロックアウト期間が満了するように、累積加熱量を反映してもよい。このようにして。プロセッサ50は、ロックアウト期間が満了したか否かを決定する前に、累積加熱量を計算することができる。任意の場合において、ロックアウト期間は、再充電セッション中にIMD14の過剰な温度がより高い電力レベル、または、より速い充電速度になることを防止するために、充電デバイス20またはIMD14によって実施され得る。
【0121】
本明細書で説明される技術およびデバイスによれば、IMDの再充電可能な電源を充電するために使用される電力レベルの選択のためのフィードバックとして累積加熱量が計算されてもよい。電力レベルは、再充電中に望ましくなく不快により高いIMDの温度になるリスクを制限するために、累積加熱量が閾値を超過した際に低減されてもよい。また、累積加熱量は、充電デバイスが再充電可能な電源を「ブーストモード」で高速で充電するとともに温度が組織にダメージを与える前に充電速度を低下させるリアルタイムフィードバックを可能にしてもよい。このようにして、充電デバイスまたはIMDは、開ループ充電技術で使用される推定を行うことなく、高速の充電速度についての要求と、患者の安全と、をバランスさせることができる。
【0122】
本開示は、2つのコイル間でのエネルギーの無線伝送(例えば、誘導結合)を主に対象としている。しかしながら、本開示の1つ以上の態様が、充電デバイスと再充電可能な電源との間の物理的な接続を含むエネルギー伝送にも適用可能であってもよい。例えば、本開示の態様は、外部充電デバイスに連結されたニードルを、皮膚を通ってIMDのポートに挿入することによって、IMDの電源を充電することに適用可能でであってもよい。エネルギー伝送のための物理的な接続は無線コイル間のエネルギー伝送に起因する熱ロスを導入し得ないが、熱は、依然として発生され、IMDの内の構成要素(例えば、充電されたバッテリ、および、電源の再充電に関与する回路)から患者に失われ得る。
【0123】
様々な例について説明した。これらまたは他の例が次の特許請求の範囲の範囲内にある。