【実施例】
【0038】
以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例で測定された特性値の測定は、以下の方法に従った。
【0039】
(1)内径、外径、中空率
中空糸型半透膜の内径、外径および膜厚は、中空糸型半透膜をスライドグラスの中央に開けられたφ3mmの孔に中空糸型半透膜が抜け落ちない程度に適当本数通し、スライドグラスの上下面に沿ってカミソリにより中空糸型半透膜をカットし、中空糸型半透膜断面サンプルを得た後、投影機Nikon PROFILE PROJECTOR V−12を用いて中空糸型半透膜断面の短径、長径を測定することにより得られる。中空糸型半透膜断面1個につき2方向の短径、長径を測定し、それぞれの算術平均値を中空糸型半透膜断面1個の内径および外径とし、膜厚は(外径−内径)/2で算出した。5つの断面について同様に測定を行い、平均値を内径、外径、膜厚とした。
中空率は(内径/外径)
2×100で算出した。
【0040】
(2)圧力差による透水量
中空糸型半透膜を束ねて、プラスチック製スリーブに挿入した後、熱硬化性樹脂をスリーブに注入し、硬化させ封止した。熱硬化性樹脂で硬化させた中空糸型半透膜の端部を切断することで中空糸型半透膜の開口面を得て、外径基準の膜面積がおよそ0.1m
2の評価用モジュールを作製した。この評価用モジュールを供給水タンク、ポンプからなる膜性能試験装置に接続し、性能評価した。
塩化ナトリウム濃度1.5g/Lの供給水溶液を、25℃、圧力1.5MPaで中空糸型半透膜の外側から内側へ向かって濾過して1時間運転する。その後、中空糸型半透膜の開口面より膜透過水を採取して、電子天秤(島津製作所 LIBROR EB−3200D)で透過水重量を測定した。透過水重量は、下記式にて25℃の透過水量に換算した。
透過水量(L)=透過水重量(kg)/0.99704(kg/L)
透水量(FR)は下記式より算出する。
FR[L/m
2/日]=透過水重量[L]/外径基準膜面積[m
2]/採取時間[分]×(60[分]×24[時間])
また、上記の条件で運転圧力を3.0MPaとして透水量を同様に測定し、また、24時間後の透水量の測定値との比を膜の耐圧性として下記の式より算出する。
透水量比[−]=24時間後の3.0MPaでの透水量/1時間後の3.0MPaでの透水量
【0041】
(3)圧力差による塩除去率
前記透水量測定で採取した膜透過水と、同じく透水量の測定で使用した塩化ナトリウム濃度1.5g/L供給水溶液を電気伝導率計(東亜ディーケーケー社CM−25R)を用いて塩化ナトリウム濃度を測定する。
塩除去率は下記式より算出する。
塩除去率[%]=(1−膜透過水塩濃度[mg/L]/供給水溶液塩濃度[mg/L])×100
【0042】
(4)濃度差による透水量
(中空糸型半透膜エレメントの作製)
これらの中空糸型半透膜を多孔管からなる供給流体分配管の周りに交差状に配置させ、中空糸型半透膜の集合体を形成させた。供給流体分配管をその軸を中心に回転させながら中空糸型半透膜の束をトラバースさせ、供給流体分配管の周りに捲きつけることにより中空糸型半透膜が交差状に配置される。最外層における中空糸型半透膜は軸方向に対して約41度であった。この中空糸型半透膜の集合体の両端部をエポキシ樹脂でポッティングさせて固定させた後、両端を切断して中空糸型半透膜の中空孔を開口させて中空糸型半透膜エレメントを作製した。この中空糸型半透膜エレメントの中空糸型半透膜集合体の外径は117mm、開口端部間の軸方向の長さは58cmであった。また、中空糸型半透膜の有効長の平均長さは約70cmであった。また、有効膜面積は、中空糸型半透膜の外径基準で約67m
2であった。
(モジュールの透水量測定)
このエレメントを圧力容器に装填して、中空糸型半透膜のそれぞれの開口部に連通するノズルのうち、一方のノズルより塩化ナトリウム濃度0g/Lの淡水を供給ポンプで供給し、他方のノズルから淡水を流出させた。塩化ナトリウム濃度35g/Lの高濃度水溶液を中空糸型半透膜の外側に連通する供給流体分配管に供給ポンプで供給し、中空糸型半透膜の外側を通過させた後、中空糸型半透膜集合体の外側に連通する圧力容器の側面に存在するノズルから流出させ、流量調整バルブで、圧力と流量を調整する。高濃度水溶液の供給圧力をPDS1(MPa)、供給流量をQDS1(L/min)、高濃度水溶液の排出水量をQDS2(L/min)、淡水の供給流量をQFS1(L/min)、淡水の流出流量をQFS2(L/min)、淡水の流出圧力をPFS2(kPa)とした場合、モジュールの透水量(QDS2−QDS1)と、圧力、流量が下記の条件となるように、各供給ポンプの流量と圧力を調整し、その条件での高濃度水溶液の流量増分(QDS2−QDS1)をモジュール透水量として測定した。
PDS1=1.0MPa
PFS2=10kPa以下
QDS1/(QDS2−QDS1)=2
QFS2/(QDS2−QDS1)=0.1
濃度による透水量(FR)は下記式より算出する。
FR[L/m
2/日]=モジュール透水量[L/min]/外径基準膜面積[m
2]×(60[分]×24[時間])
【0043】
(5)緻密層厚み
評価する中空糸型半透膜を水洗した後、25℃の2-プロパノール(ナカライテスク社)、シクロヘキサン(ナカライテスク社)の順に1時間ずつ浸漬して溶媒置換を行う。溶媒置換後の中空糸型半透膜を液切りし、庫内温度50℃、庫内圧力−40Paの真空乾燥機(Yamato VacuumDryingOven DP41)で24時間乾燥する。
乾燥して得られた中空糸型半透膜を樹脂包埋して中空糸型半透膜断面が観察できるようにミクロトーム(REICHERT-NISSEI ULTRACUT)を用い切片を切り出す。
切り出した切片を微分干渉顕微鏡(Nikon社製 OPTIPHOT鏡基、反射型微分干渉装置NR)で観察する。
得られた顕微鏡画像より、10ヵ所の緻密層厚みを測定し、それらの平均値を緻密層厚みとした。
【0044】
(実施例1)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)41重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)49.9重量%、エチレングリコール(EG、三菱化学社)8.8重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を75℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が100μm、外径が175μm、中空率が33%であった。
本実施例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表1にまとめる。
【0045】
(実施例2)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)44重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)47.3重量%、エチレングリコール(EG、三菱化学社)8.4重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を72℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が100μm、外径が175μm、中空率が33%であった。
本実施例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表1にまとめる。
【0046】
(実施例3)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)41重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)47.0重量%、エチレングリコール(EG、三菱化学社)11.7重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を80℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が100μm、外径が175μm、中空率が33%であった。
本実施例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表1にまとめる。
【0047】
(実施例4)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)41重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)52.8重量%、エチレングリコール(EG、三菱化学社)5.9重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を72℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が100μm、外径が175μm、中空率が33%であった。
本実施例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表1にまとめる。
【0048】
(実施例5)
実施例1と同様にして、内径が76μm、外径が120μm、中空率が40%の中空糸型半透膜を得た。
本実施例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表1にまとめる。
【0049】
(実施例6)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)41重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)52.8重量%、エチレングリコール(EG、三菱化学社)5.9重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を71℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が170μm、外径が270μm、中空率が40%であった。
本実施例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表1にまとめる。
【0050】
(実施例7)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)43重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)51.0重量%、エチレングリコール(EG、三菱化学社)5.7重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を72℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が158μm、外径が250μm、中空率が40%であった。
本実施例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表1にまとめる。
【0051】
(比較例1)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)41重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)49.9重量%、エチレングリコール(EG、三菱化学社)8.8重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を40℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が100μm、外径が175μm、中空率が33%であった。
本比較例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表2にまとめる。
【0052】
(比較例2)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)38重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)52.4重量%、エチレングリコール(EG、三菱化学社)9.3重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を60℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が100μm、外径が175μm、中空率が33%であった。
本比較例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表2にまとめる。
【0053】
(比較例3)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)41重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)41.1重量%、エチレングリコール(EG、三菱化学社)17.6重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を60℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が100μm、外径が175μm、中空率が33%であった。
本比較例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表2にまとめる。
【0054】
(比較例4)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)47重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)44.8重量%、エチレングリコール(EG、三菱化学社)7.9重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を98℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が100μm、外径が175μm、中空率が33%であった。
本比較例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表2にまとめる。
【0055】
(比較例5)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)38重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)43.2重量%、エチレングリコール(EG、三菱化学社)18.5重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を88℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が100μm、外径が175μm、中空率が33%であった。
本比較例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表2にまとめる。
【0056】
(比較例6)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)41重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)41.1重量%、エチレングリコール(EG、三菱化学社)17.6重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を82℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が100μm、外径が175μm、中空率が33%であった。
本比較例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表2にまとめる。
【0057】
(比較例7)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)43重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)56.7重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を65℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が158μm、外径が250μm、中空率が40%であった。
本比較例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表2にまとめる。
【0058】
(比較例8)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)38重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)61.7重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を65℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が100μm、外径が175μm、中空率が33%であった。
本比較例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表2にまとめる。
【0059】
【表1】
【0060】
【表2】
【0061】
以上の結果から明らかなように、実施例1〜7の中空糸型半透膜はいずれも、濃度差を駆動力とする透水性能が高い値を有しているので、少ない設置スペースで濃度差を駆動力としてエネルギーを生成するための水と圧力を効率良く得ることが可能である。これに対して、比較例1は、熱水処理温度が低いため、膜構造の緻密化、固定化が不十分となり、加圧による透水性は高いが、塩分の除去率が不十分で、濃度差を駆動力とする水処理の場合、漏洩した塩分により半透膜を介した濃度差が十分取れないためか、濃度差を駆動力とする透水性能は低い。比較例2は、ポリマー濃度が低く、また、熱水処理温度も低いため、膜全体として構造の緻密化が不十分となり、加圧による透水性能は高いが濃度差を駆動力とする水処理の場合、塩分が漏洩して、半透膜を介した濃度差が十分取れないため、濃度差を駆動力とする透水性能は低い。比較例3は、溶媒/非溶媒比が大きく、おそらく空中走行部での溶媒蒸発が十分促進されず、よって膜表面の構造が思ったほど緻密化せず、分離性能が高くないため、濃度差を駆動力とする水処理の場合、塩分が漏洩して、半透膜を介した濃度差が十分取れないため、濃度差を駆動力とする透水性能は低い。比較例4は、製膜原液中のポリマー濃度が高く、また、熱水処理温度が高いためか、加圧による透水性は低く、濃度差を駆動力とする水処理の場合の透水性能も低い。比較例5は、製膜原液中のポリマー濃度が低く、溶媒/非溶媒比が大きく、熱水処理温度が高いため、加圧による透水性も低く、また、塩除去率もそれほど高くないため、濃度差を駆動力とする水処理の場合の透水性能は低い。比較例6は、製膜原液中の溶媒/非溶媒比が大きく、熱水処理温度が高いため、加圧による透水性は低く、濃度差を駆動力とする水処理の場合の透水性能は低く、濃度差を駆動力とする水処理時の透水性能は低い。比較例7は、製膜原液中の非溶媒がない系であり、熱水処理温度が低く、中空率が高いため、加圧による透水性は高く、濃度差を駆動力とする水処理の場合の透水性能は非常に高いが、耐圧性は非常に低く、加圧状態の高濃度の溶液について濃度差を利用する場合には実用的ではない。比較例8は、製膜原液中のポリマー濃度は低く、製膜原液中の非溶媒がない系であるが、熱水処理温度が低いため、圧力差による透水量は高いが塩除去率が低く、濃度差を駆動力とする水処理の場合の透水性能は低い。
これらの比較例にも記載したように、圧力による透水量が高くても濃度差による透水量が低い場合が存在する。これは、圧力による透水量が高くても塩の除去性能が十分高くなく、塩の漏出により低濃度側の濃度が増加したことや、低濃度側の膜内での塩の拡散が不十分で濃度分極が大きくなり低濃度側の濃度が増加したことにより、膜を介した濃度差が十分取れなかったためと推察される。