(58)【調査した分野】(Int.Cl.,DB名)
前記流路部材は、断面U字状の外管とこの外管内に挿入された内管の二重管であり、前記内管の一端が入口を形成し、前記外管に設けられた開口が出口を形成する、請求項1〜3の何れか一項に記載の熱回収用熱交換器。
前記制御装置は、前記開閉弁が閉じられてから開かれるまでにかかる封止時間および/または前記開閉弁が開かれてから閉じられるまでにかかる補給時間を計るタイマを有する、請求項6に記載の熱回収ユニット。
【発明の概要】
【発明が解決しようとする課題】
【0007】
特許文献2に開示されたチューブヒータでは、内部で空気と燃料ガスの混合気体を燃焼させる燃焼器がセラミックスケースで覆われ、セラミックスケースと燃焼器の間に金属製の熱伝導物体が充填されている。
【0008】
上記のチューブヒータと同様にセラミックスケースを用いるという観点からは、燃焼排ガスから流体に熱を回収する熱交換器においても、内部に流体が流れる流路部材をセラミックスケースで覆い、それらの間に金属製の熱伝導物体を充填することが考えられる。しかしながら、セラミックスは熱的衝撃および物理的衝撃に弱いため、燃焼排ガスの急激な温度変化などにより流路部材を覆うセラミックスケースが破損する可能性が高い。セラミックスケースが破損すると、たとえセラミックスケースと流路部材との間に金属製の熱伝導物体が充填されていたとしても、セラミックスケースと流路部材との間の隙間を完全に埋めることは困難であるために、流路部材が燃焼排ガスに接触して腐食するおそれがある。このため、セラミックスケースの破損を検知できるようにすることが望まれる。また、その破損が軽度な場合には、セラミックスケースが破損した後もしばらくはセラミックスケースと流路部材との間の隙間への燃焼排ガスの侵入を防ぎ、運転を継続できるようにすることが望まれる。
【0009】
そこで、本発明は、セラミックスケースを用いた熱回収用熱交換器において、熱伝達を損なわずに高い収熱効率を保ち、なおかつセラミックスケースの破損を検知できるようにするとともに、その破損が軽度な場合にはしばらく運転を継続できるようにすることを目的とする。
【課題を解決するための手段】
【0010】
前記課題を解決するために、本発明の発明者らは、燃焼排ガスが比較的高い温度を有する条件において、燃焼排ガスに曝されるセラミックスケースとこれに覆われる流路部材との間に熱伝導物体を充填しなくても、セラミックスケースから流路部材への輻射により、熱交換器として機能するのに十分な熱伝達が行われる構成を実現し、セラミックスケースの破損を検知できる機構と制御方法を考案した。
【0011】
すなわち、本発明は、腐食性ガスを含む燃焼排ガスから流体に熱を回収する熱交換器であって、内部に前記流体が流れる流路部材と、前記流路部材を当該流路部材との間に隙間空間が形成されるように覆う、前記燃焼排ガスに曝されるセラミックスケースとを備え、前記隙間空間は、前記燃焼排ガスの圧力よりも高い圧力の気体で満たされている、熱回収用熱交換器を提供する。
【0012】
上記の構成によれば、セラミックスケースが破損したときはその破損部分からセラミックスケースと流路部材の間の隙間空間内の気体が漏れ出すため、セラミックスケースの破損の検知が可能になる。また、その破損が軽度な場合には、隙間空間を満たす気体によって隙間空間への燃焼排ガスの侵入が防がれるために、セラミックスケースが破損した後もしばらくは運転を継続できる。
【0013】
前記隙間空間には前記気体が封入されており、前記熱回収用熱交換器は、前記隙間空間内の気体の圧力を測定する圧力センサをさらに備えてもよい。この構成によれば、隙間空間に気体が封入されているために、セラミックスケースが破損したときには隙間空間内の気体の圧力が低下する。そこで、隙間空間内の気体の圧力を測定することによりセラミックスケースの破損を検知することができる。ここで、「封入」とは、隙間空間、あるいは隙間空間およびこれと連続する空間がほぼ完全に密閉されることをいう。なお、「ほぼ完全に」とは、長時間に亘っての僅かな気体の漏れを許容する概念である。
【0014】
前記熱回収用熱交換器は、前記隙間空間に前記気体を供給するための供給路と、前記供給路に設けられた開閉弁であって閉じられたときに前記隙間空間に気体を封入し、開かれたときに前記隙間空間に気体を補給する開閉弁と、をさらに備えてもよい。この構成によれば、隙間空間内の気体の圧力が低下したときには開閉弁を開いて隙間空間に気体を補給することができるため、熱回収用熱交換器を継続的に使用することができる。
【0015】
前記圧力センサを含む構成の代替案として、前記熱回収用熱交換器は、前記隙間空間に前記気体を供給するための供給路と、前記供給路に設けられた流量計と、をさらに備えてもよい。この構成によれば、セラミックスケースが破損したときには供給路に気体が流れるため、その流量に基づいてセラミックスケースの破損を検知することができる。
【0016】
前記流路部材は、入口から出口に向かってU字状に折れ曲がる形状、または入口と出口との間で蛇行する形状を有してもよい。この構成によれば、流路部材を製造が容易な形状とすることができる。
【0017】
あるいは、前記流路部材は、断面U字状の外管とこの外管内に挿入された内管の二重管であり、前記内管の一端が入口を形成し、前記外管に設けられた開口が出口を形成してもよい。この構成によれば、隙間空間を簡易で輻射に好適な形状とすることができる。
【0018】
前記流路部材における前記セラミックスケース内に収まる部分のうちの少なくとも一部には、その表面に輻射吸収率を高めるための表面処理層が形成されていてもよい。この構成によれば、セラミックスケースから流路部材への熱伝達効率を高めることができる。
【0019】
また、本発明は、上記の熱回収用熱交換器と、前記供給路に設けられた前記開閉弁を、前記圧力センサにより測定される圧力が前記燃焼排ガスの圧力よりも高い第1設定値以下に低下したときに開き、前記圧力センサにより測定される圧力が前記第1設定値よりも高い第2設定値に到達したときに閉じる制御装置と、を備える、熱回収ユニットを提供する。この構成によれば、隙間空間内の気体の圧力を、第1設定値と第2設定値の間に保ち、常に燃焼排ガスの圧力よりも高い状態に維持することができる。
【0020】
前記制御装置は、前記開閉弁が閉じられてから開かれるまでにかかる封止時間および/または前記開閉弁が開かれてから閉じられるまでにかかる補給時間を計るタイマを有してもよい。この構成によれば、セラミックスケースに破損が生じたか否か検知することができるだけでなく、その破損の程度を推測することができる。
【0021】
前記熱回収ユニットは、前記熱回収用熱交換器の前記流路部材に前記流体を導く上流路と、前記上流路を通じた前記流体の流通を遮断可能な遮断機構と、をさらに備え、前記制御装置は、前記封止時間が所定値未満または前記補給時間が所定値以上であれば前記遮断機構により前記上流路を通じた前記流体の流通を遮断してもよい。この構成によれば、流路部材が腐食して流体が燃焼排ガス中に漏れ出すことを未然に防ぐことができる。
【0022】
前記熱回収用熱交換器、および前記遮断機構が設けられた前記上流路のセットが複数並列に配置されてもよい。この構成によれば、1つの熱回収用熱交換器が使用不能になっても、他の熱回収用熱交換器を使用して燃焼排ガスからの熱回収を継続して実行することができる。
【0023】
さらに、本発明は、燃料を燃焼させる燃焼炉と、前記燃焼炉から排出される燃焼排ガスによって水蒸気を生成するボイラと、前記燃焼排ガスが通る排ガス経路中に配置され、前記ボイラで生成された水蒸気を過熱する過熱器と、前記過熱器で過熱された水蒸気に前記燃焼排ガスから熱を回収することにより当該水蒸気をさらに過熱する、上記の熱回収用熱交換器と、を備える、燃焼プラントを提供する。この構成によれば、蒸気配管の腐食の問題を回避しつつボイラで生成された水蒸気を非常に高い温度まで過熱することができる。
【発明の効果】
【0024】
本発明によれば、セラミックスケースを用いた熱回収用熱交換器において、熱伝達を損なわずに高い収熱効率を保ちつつ、セラミックスケースの破損の検知が可能になる。また、その破損が軽度な場合には、セラミックスケースが破損した後もしばらくは運転を継続できる。
【発明を実施するための形態】
【0026】
以下、図面を参照して、本発明の実施形態を説明する。
【0027】
図1に、本発明の一実施形態に係る熱回収用熱交換器3を用いた燃焼プラント1を示す。この燃焼プラント1は、一般ごみを燃料とするごみ焼却プラントである。ただし、本発明の熱回収用熱交換器は、ごみ焼却プラントに限らず種々の燃焼プラントに用いることができる。
【0028】
具体的に、燃焼プラント1は、燃料を燃焼させる燃焼炉13と、燃焼炉13から排出される燃焼排ガスによって水蒸気を生成するボイラ2を備える。また、燃焼プラント1は、燃焼炉13にごみを供給する給じん装置12と、給じん装置12にごみを搬送する、ホッパー付の搬送装置11を備える。
【0029】
本実施形態では、燃焼炉13として流動床式焼却炉が用いられている。すなわち、燃焼炉13内では、燃焼炉13の下部から送り込まれる空気により流動状態となった砂がバーナーやごみ自体の燃焼熱などによって加熱され、この砂の中に給じん装置12からごみが投入されて燃焼される。ごみの中に含まれる石や金属などの不燃物は砂と共に燃焼炉13の下部から排出され、不燃物から分離された砂が再び燃焼炉13に戻される。一方、燃焼炉13の上部からは、腐食性ガスを含む燃焼排ガスが排出される。ただし、燃焼炉13は、必ずしも流動床式焼却炉である必要はなく、例えばストーカ式焼却炉であってもよい。
【0030】
ボイラ2は、燃焼炉13の上方に配置された放射室25と、放射室25の側方に配置された第1煙道26および第2煙道27を含む。第1煙道26および第2煙道27は共に上下に延びており、その下部同士がつながっている。これらの放射室25、第1煙道26および第2煙道27は、燃焼排ガスが通る排ガス経路を構成する。
【0031】
放射室25は燃焼炉13と連通しており、図中に矢印Aで示すように、燃焼炉13から排出された燃焼排ガスは放射室25に流入する。燃焼排ガスは、放射室25である程度熱を放出した後に、図中に矢印Bで示すように第1煙道26の上部に流入し、第1煙道26を下向きに流れる。第1煙道26を通過した燃焼排ガスは、図中に矢印Cで示すように第2煙道27の下部に流入し、第2煙道27を上向きに流れた後に、第2煙道27の上部に接続された排出路28に流入する。排出路28には、図示は省略するが、減温塔やバグフィルタなどを含む排ガス処理設備、誘引式送風機および煙突などが設けられており、排ガス処理設備によって無害化処理された燃焼排ガスが煙突から大気中へ放出される。
【0032】
例えば、燃焼炉13から放射室25に流入する燃焼排ガスの温度は900〜1100℃であり、放射室25から第1煙道26に流入する燃焼排ガスの温度は700〜1000℃であり、第1煙道26から第2煙道27に流入する燃焼排ガスの温度は500〜800℃である。
【0033】
さらに、ボイラ2は、放射室25、第1煙道26および第2煙道27で構成される排ガス経路を区画する壁上に設けられた水管22と、水管22内に水を供給するとともに水管22内で発生した水蒸気を収集するボイラドラム21を備えている。また、排ガス経路(正確には、第2煙道27)中には、直列に接続された複数の過熱器23が配置されている。過熱器23は上下に並んでおり、その1つの(本実施形態では最も上に位置する)過熱器23はボイラドラム21と接続されている。すなわち、ボイラドラム21に収集された水蒸気は、過熱器23を順に通過する。これにより、水蒸気が過熱される。ただし、過熱器23は、必ずしも複数設けられている必要はなく、1つだけ設けられていてもよい。
【0034】
過熱された蒸気が最後に通過する(本実施形態では最も下に位置する)過熱器23は、複数の熱回収用熱交換器3(以下、単に熱交換器3という。)を含む熱回収ユニット9を介してタービン14と接続されている。本実施形態では、熱交換器3が、ボイラ2のうちで最も温度の高い放射室25に設けられている。放射室25は燃焼炉13の上方に位置するため、放射室25に設けられた熱交換器3は燃焼火炎からの輻射を受け得る。
【0035】
本実施形態では、熱交換器3が互いに並列に並んでおり、各熱交換器3は、過熱器23で過熱された水蒸気に燃焼排ガスから熱を回収することにより、当該水蒸気をさらに過熱する。過熱器23および熱交換器3で過熱された水蒸気は、発電機15と連結されたタービン14を駆動する。
【0036】
ただし、熱交換器3は必ずしも複数設けられている必要はなく、1つだけ設けられていてもよい。また、熱交換器3は、第1煙道26に設けられていてもよいし、第2煙道27の過熱器23よりも下方に設けられていてもよい。
【0037】
図2に示すように、熱回収ユニット9は、熱交換器3と制御装置8を含む。また、熱回収ユニット9は、各熱交換器3に水蒸気を分配するための第1共通路95と、各熱交換器3から水蒸気を収集するための第2共通路96とを含む。
【0038】
各熱交換器3は、燃焼排ガスに曝されるセラミックスケース5と、このセラミックスケース5に覆われた、内部に水蒸気が流れる流路部材4を含む。流路部材4の入口4aは上流路91により第1共通路95と接続されており、流路部材4の出口4bは下流路92により第2共通路96と接続されている。すなわち、上流路91は第1共通路95から流路部材4に水蒸気を導き、下流路92は流路部材4から第2共通路96に水蒸気を導く。
【0039】
上流路91および下流路92には、それぞれ開閉弁93,94が設けられている。開閉弁93は、上流路91を通じた水蒸気の流通を遮断可能なものであり、本発明の遮断機構に相当する。一方、開閉弁94は、下流路92を通じた水蒸気の流通を遮断可能なものであり、腐食によって流路部材4に穴が開いたときに水蒸気の第2共通路96からの逆流を防ぐ役割を果たす。
【0040】
流路部材4は、本実施形態では、入口4aから出口4bに向かってU字状に折れ曲がる形状を有している。セラミックスケース5は、流路部材4よりも大きな断面U字状の(一端封じの)管であり、流路部材4の全周に亘って流路部材4との間に隙間空間6が形成されるように流路部材4を覆っている。なお、本明細書では以降説明の便宜のために、セラミックスケース5の軸方向のうち開口側を上方、その反対側を下方という。
【0041】
図3に示すように、放射室25に面する壁25aには開口25bが設けられており、セラミックスケース5は開口25bを通じて放射室25内に差し込まれている。セラミックスケース5の上端である開口の周縁にはフランジ51が設けられている一方、壁25aには開口25bを縁取る断面L字状のリム25cが設けられている。そして、フランジ51がリム25cにそれらが面接触した状態で固定されている。
【0042】
セラミックスケース5のフランジ51には、蓋プレート55が乗せられている。流路部材4の両端部は蓋プレート55を貫通している。すなわち、蓋プレート55は、セラミックスケース5と流路部材4の間の隙間空間6を上方から塞いでいる。これにより、隙間空間6は密閉空間となっている。なお、図示は省略するが、蓋プレート55とフランジ51の間には環状のシール部材が配置される。蓋プレート55とリム25cは、それらの間にフランジ51が挟まれた状態でボルトおよびナットにより互いに締結されてもよい。
【0043】
上述したように、本実施形態では流路部材4がU字状に折れ曲がる形状を有しているため、流路部材4におけるセラミックスケース5内に収まる部分は、入口4a側の蓋プレート55より下側の第1直線部4A、出口4b側の蓋プレート55より下側の第2直線部4C、およびそれらの間の屈曲部4Bである。流路部材4におけるセラミックスケース5内に収まる部分のうちの少なくとも下流側の一部(すなわち、第2直線部4Cの一部)には、その表面に輻射吸収率を高めるための表面処理層45が形成されていることが望ましい。これは、水蒸気が流路部材4内を流れる間に水蒸気の温度が上昇するが、温度がある程度上昇した後でも効率的な収熱を行うためである。本実施形態では、第2直線部4Cの出口4b側の僅かな領域を除いたほぼ全域、屈曲部4B、および第1直線部4Aの屈曲部4B側の端部に、表面処理層45が形成されている。ただし、表面処理層45は、流路部材4におけるセラミックスケース5内に収まる部分の全体に形成されていてもよい。
【0044】
表面処理層45を形成するには、流路部材4を構成する配管の表面に吸収率の高い物質を付着させてもよいし、前記配管の表面に吸収率の高い物質をコーティングしたり酸化被膜を形成させたりしてもよい。吸収率の高い物質としては、流路部材4を構成する材料よりも輻射吸収率の高いものであれば種々のものが採用可能であり、例えばクロムカーバイドやカーボンブラックを用いることができる。あるいは、流路部材4を構成する配管の表面を輻射吸収率の高い色でホーロー加工することにより、表面処理層45を形成することも可能である。
【0045】
各熱交換器3の隙間空間6は、熱交換器3が配置された位置での燃焼排ガスの圧力P1よりも高い圧力P2の気体で満たされている。本実施形態では、隙間空間6に気体が封入されている。具体的に、隙間空間6は、供給路7を介して、圧力P2またはそれ以上の圧力の気体を供給可能な図略の圧力源と接続されている。また、供給路7には開閉弁71が設けられている。すなわち、開閉弁71が閉じられたときには隙間空間6に気体が封入され(正確には、隙間空間6および供給路7における開閉弁71よりも下流側に気体が閉じ込められ)、開閉弁71が開かれたときには隙間空間6に気体が補給される。
【0046】
隙間空間6に満たされる気体は、腐食性および可燃性でない限り、特に限定されるものではない。例えば、気体としては、熱伝導率の高いヘリウムなどを用いることもできるが、本実施形態ではセラミックスケース5から流路部材4への輻射による熱伝達が支配的であるために、安価な空気などを用いることが望ましい。
【0047】
さらに、各熱交換器3は、隙間空間6内の気体の圧力を測定する圧力センサ61を有する。圧力センサ61は、例えば蓋プレート55に設けられる。なお、圧力センサ61は、必ずしも隙間空間6内の気体の圧力を直接的に測定する必要はなく、供給路7における開閉弁71よりも下流側に設けられて、供給路7内の気体の圧力を隙間空間6内の気体の圧力として測定してもよい。
【0048】
上述した制御装置8は、各熱交換器3ごとに、圧力センサ61により測定される圧力に基づいて開閉弁71を制御する。制御装置8には、燃焼排ガスの圧力P1よりも高い第1設定圧力PLと、第1設定圧力よりもさらに高い第2設定圧力PMとが予め格納されている(
図4参照)。
【0049】
セラミックスケース5に破損がない場合でも、フランジ51と蓋プレート55の間などから微量の気体が漏れるため、
図4に示すように、隙間空間6内の気体の圧力は十分に長い時間Tcをかけて低下する。そこで、制御装置8は、圧力センサ61により測定される圧力が第1設定値PL以下に低下したときに開閉弁71を開いて隙間空間6への気体の補給を開始し、圧力センサ61により測定される圧力が第2設定値PMに到達したときに開閉弁71を閉じて隙間空間6への気体の補給を停止する。これにより、隙間空間6内の気体の圧力を、第1設定値PLと第2設定値PMの間に保ち、常に燃焼排ガスの圧力P1よりも高い状態に維持することができる。
【0050】
一方で、セラミックスケース5に穴あきや亀裂などの破損が生じた場合には、
図5(a)に示すように、開閉弁71が閉じられてから開かれるまでにかかる封止時間Tcが短くなるとともに、気体の供給流量が一定とすると、開閉弁71が開かれてから閉じられるまでにかかる補給時間Toが長くなる。破損の状態が進展すると、
図5(b)に示すように、封止時間Tcがより短く、補給時間Toがより長くなる。
【0051】
制御装置8は、封止時間Tcまたは補給時間Toあるいはそれらの双方を計るタイマを有している。そして、制御装置8は、封止時間Tcが計られる場合は封止時間Tcを予め定められた所定値TLと比較し、補給時間Toが計られる場合は補給時間Toを予め定められた所定値THと比較する。封止時間Tcが所定値TL以上または補給時間Toが所定値TH未満であれば、セラミックスケース5の破損の状態は軽度であると考えられるため、制御装置8は、開閉弁93を開いて上流路91を通じた水蒸気の流通を許容する。一方、封止時間Tcが所定値TL未満または補給時間Toが所定値TH以上であれば、セラミックスケース5の破損の状態はかなりひどいと考えられるため、制御装置8は、開閉弁93を閉じて上流路91を通じた水蒸気の流通を遮断する。これにより、流路部材4が腐食して水蒸気が燃焼排ガス中に漏れ出すことを未然に防ぐことができる。なお、上流路91に設けられた開閉弁93が閉じられるときは、下流路92に設けられた開閉弁94も閉じられる。
【0052】
以上説明した本実施形態の熱交換器3では、セラミックスケース5と流路部材4の間の隙間空間6が燃焼排ガスの圧力P1よりも高い圧力P2の気体で満たされているために、セラミックスケース5が破損したときはその破損部分から隙間空間6内の気体が漏れ出す。このため、セラミックスケース5の破損の検知が可能になる。また、その破損が軽度な場合には、隙間空間6を満たす気体によって隙間空間6への燃焼排ガスの侵入が防がれるために、セラミックスケース5が破損した後もしばらくは運転を継続できる。
【0053】
特に本実施形態では、隙間空間6に気体が封入されているために、セラミックスケース5が破損したときには隙間空間6内の気体の圧力が低下する。そこで、隙間空間6内の気体の圧力を測定することによりセラミックスケース5の破損を検知することができる。
【0054】
さらに、本実施形態では、制御装置8のタイマによって封止時間Tcまたは補給時間Toあるいはそれらの双方が計られるため、セラミックスケース5に破損が生じたか否か検知することができるだけでなく、その破損の程度を推測することができる。
【0055】
ところで、セラミックスケースを有しない、金属材料で構成された熱交換器は、腐食性の環境下では水蒸気の温度がおよそ400℃を超えると腐食しやすくなる。このため、通常の熱交換器は、過熱器23で過熱される水蒸気の温度が400℃を超えない場所に設置される。これに対し、本実施形態の熱交換器3を用いれば、水蒸気の温度が400℃を超える場所でも燃焼排ガスからの熱の回収を行うことができる。それ故に、蒸気配管の腐食の問題を回避しつつボイラ2で生成された水蒸気を非常に高い温度まで過熱することができる。
【0056】
さらに、本実施形態では、熱回収ユニット9が複数の熱交換器3を含んでいて、熱交換器3、上流路91および下流路92のセットが複数並列に配置されるため、1つの熱交換器3が使用不能になっても、他の熱交換器3を使用して燃焼排ガスからの熱回収を継続して実行することができる。
【0057】
さらに、本実施形態では、流路部材4におけるセラミックスケース5内に収まる部分の表面に輻射吸収率を高めるための表面処理層45が形成されているため、セラミックスケース5から流路部材4への熱伝達効率を高めることができる。特に、本実施形態のように、入口4a側の直線部4Aの大部分(場合によっては全体)に表面処理層45を形成しないようにすれば、表面処理層45の形成に必要な高価な材料の使用量を抑えつつ、十分な効果を得ることができる。
【0058】
(変形例)
本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。
【0059】
例えば、熱回収ユニット9が複数の熱交換器3を含んでいる場合は、必ずしも各熱交換器3が圧力センサ61および/または供給路7を備えている必要はない。例えば、複数の熱交換器3の隙間空間6を連通管でつないで一つの連続空間を形成し、この連続空間に対して1つの供給路および/または1つの圧力センサを設けてもよい。
【0060】
また、前記実施形態では、隙間空間6に気体が封入されていたが、隙間空間6には必ずしも気体が封入されている必要はなく、隙間空間6が燃焼排ガスの圧力P1よりも高い圧力P2の気体で満たされていればよい。例えば、供給路7には開閉弁71が設けらずに、供給路7が気体供給用配管に直接接続されていてもよい。この場合、セラミックスケース5が破損したときには供給路7に気体が流れる。そこで、圧力センサ61の代わりに、供給路7に流量計を設けておけば、流量計で測定される流量に基づいてセラミックスケース5の破損を検知することができる。
【0061】
供給路7に流量計を設けた場合は、測定される流量に基づいてセラミックスケース5の破損の程度を推測することができる。そこで、流量が小さい場合は、破損した部分から気体が漏れ出ることを許容してもよい。このようにしても、隙間空間6内の気体によって流路部材4を燃焼排ガスから保護できるからである。
【0062】
さらに、熱交換器3は必ずしも供給路7を有している必要はなく、隙間空間6に圧力P2の気体が満たされた状態で隙間空間6が完全に密閉されていてもよい。この構成であっても、圧力センサ61で測定される圧力に基づいてセラミックスケース5の破損を検知することができる。ただし、この場合には、隙間空間6内の気体の圧力が低下すると、もはや熱交換器3が使用できなくなる。これに対し、前記実施形態のように開閉弁71付の供給路7が設けられていれば、隙間空間6内の気体の圧力が低下したときには開閉弁71を開いて隙間空間6に気体を補給することができるため、熱交換器3を継続的に使用することができる。
【0063】
前記実施形態では、供給路7に開閉弁71が設けられていたが、開閉弁71の代わりに流量調整弁を用いてより複雑な制御を行うことも可能である。
【0064】
さらには、供給路7の上流側を二つに分岐させ、その一方を別の気体を供給可能な加圧源に接続し、隙間空間6に供給される気体を切り換え可能にしてもよい。例えば、セラミックスケース5に破損がない場合には熱伝導率の高い気体を隙間空間6に供給し、セラミックスケース5の破損の程度が軽度である場合には安価な気体を隙間空間6に供給してもよい。
【0065】
また、熱交換器3は、必ずしも並列に並んでいる必要はなく、直列に並んでいてもよい。さらには、例えば
図6に示すように、熱交換器3が並列に並んだ2つの熱交換器群が中継路97により直列に接続されていて、水蒸気が二段で加熱されてもよい。下流側の熱交換器群は燃焼排ガスの流れの高温側に設置し、この熱交換器群を構成する熱交換器3のそれぞれに対し、流路部材4におけるセラミックスケース5内に収まる部分のほぼ全域に表面処理層45を形成してもよい。この構成であれば、流路部材4のほぼ半分に対して表面処理層45を形成する場合に比べて、表面処理層45を容易に形成することができる。
【0066】
さらに、流路部材4の構成も種々のものが採用可能であり、例えば
図7(a)〜(c)に示すような熱交換器3A〜3Cも考えられる。
【0067】
図7(a)に示す熱交換器3Aでは、流路部材4が、入口4aと出口4bとの間で蛇行する形状を有している。すなわち、流路部材4は、セラミックスケース5内で互いに平行に配列された複数の直線部と、これらの直線部の端部同士をつなぐ屈曲部を含む。そして、最も外側の直線部から蓋プレート55を貫通して外に延びる一対の貫通部が入口4aおよび出口4bを形成している。図例では、最も出口4bに近い直線部における蓋プレート55の近傍から、屈曲部および隣接する直線部の終端までのU字状の領域に、表面処理層45が形成されている。これにより、蒸気温度をより高温にすることができる。
【0068】
図7(b)に示す熱交換器3Bでは、2つの流路部材4が1つのセラミックスケース5で覆われている。各流路部材4は、前記実施形態で説明したのと同様に、入口4aから出口4bに向かってU字状に折れ曲がっている。このようにセラミックスケース5の外で流路部材4が互いに分岐していれば、
図7(a)に示す構成と比べてより多くの蒸気を加熱することができる。
【0069】
図7(c)に示す熱交換器3Cでは、流路部材4が断面U字状の外管42と、この外管42内に挿入された内管41の二重管である。このような構成であれば、隙間空間6を簡易で輻射に好適な形状とすることができる。
【0070】
具体的に、外管42の上部はセラミックスケース5の上端から露出しており、内管41の上部は外管42の上端から露出している。内管41の上側の開口は流路部材4の入口4aを構成する。なお、内管41は、外管42の外側で直角に折れ曲がっていてもよい。外管42の上端と内管41の外周面との間は端部材43によりシールされている。端部材43は、外管42と一体に形成されていてもよい。セラミックスケース5から露出する外管42の上部の外周面には横穴(開口)が形成されており、この横穴(開口)が流路部材4の出口4bを構成する。すなわち、入口4aを通じて上流路91から流路部材4の内部に流入した水蒸気は、内管41の中を下向きに進んで外管42の底に衝突した後に、外管42と内管41の間の筒状の隙間を通って上向きに流れ、出口4bを通じて下流路92に流出する。
【0071】
図7(c)に示す熱交換器3Cでは、外管42における蓋プレート55よりも下側の部分が、セラミックスケース5内に収まる、出口4bに最も近い直線部であり、この部分の一部または全部(図例では蓋プレート55に近い側の約半分)の表面には、輻射吸収率を高めるための表面処理層45が形成されていることが望ましい。
【0072】
(その他の実施形態)
本発明の熱回収用熱交換器は、燃焼プラント1における過熱器23や水管22として用いることも可能である。さらに、本発明の熱回収用熱交換器では、流路部材の内部を流れる流体は必ずしも水蒸気である必要はなく、他の気体または液体であってもよい。