特許第6072005号(P6072005)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ カーディオインサイト テクノロジーズ インコーポレイテッドの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6072005
(24)【登録日】2017年1月13日
(45)【発行日】2017年2月1日
(54)【発明の名称】信号の加算平均
(51)【国際特許分類】
   A61B 5/0452 20060101AFI20170123BHJP
【FI】
   A61B5/04 312A
【請求項の数】13
【全頁数】22
(21)【出願番号】特願2014-509479(P2014-509479)
(86)(22)【出願日】2012年5月4日
(65)【公表番号】特表2014-512925(P2014-512925A)
(43)【公表日】2014年5月29日
(86)【国際出願番号】US2012036543
(87)【国際公開番号】WO2012151498
(87)【国際公開日】20121108
【審査請求日】2014年3月27日
(31)【優先権主張番号】61/482,345
(32)【優先日】2011年5月4日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】511268041
【氏名又は名称】カーディオインサイト テクノロジーズ インコーポレイテッド
(74)【代理人】
【識別番号】110000176
【氏名又は名称】一色国際特許業務法人
(72)【発明者】
【氏名】ジョージ,ブライアン ピー.
(72)【発明者】
【氏名】デュボワ,レミ
(72)【発明者】
【氏名】ラマナサン,シャルラサ
(72)【発明者】
【氏名】ウォドリンガー,ハロルド
【審査官】 田邉 英治
(56)【参考文献】
【文献】 米国特許第05840038(US,A)
【文献】 特表2010−510851(JP,A)
【文献】 F. Castells et al.,Estimation of atrial fibrillatory waves from one-lead ECGs using principal component analysis concepts,Computers in Cardiology,IEEE,2004年,pp.413-416
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/00− 5/053
A61B 5/06− 5/22
JSTPlus(JDreamIII)
JMEDPlus(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
センサーによって検出される、複数の電気生体信号のサブセットに対応する測定データを受信し、
前記測定データのテンプレート領域を選択し、
前記測定データについて主成分分析(PCA)を実施して入力チャネルのサブセットから単一チャネルを求め、前記選択されたテンプレート領域について主成分分析(PCA)を実施して最適化されたテンプレートを求め、
前記単一チャネルおよび前記最適化されたテンプレートの相互相関を計算して、前記単一チャネルの着目領域(ROI)を決定し、
前記単一チャネルにおけるピーク相関係数を検出し、
前記単一チャネルの前記ROI各々の振幅を前記最適化されたテンプレートと比較して、前記最適化されたテンプレートと前記単一チャネルの各ROIとの間で誤差を求め、
前記ピーク相関係数前記誤差とに基づいて前記ROIの各々に対する平均を計算して、前記複数の信号に対する加算平均化データを作成することを含む、信号解析システムの作動方法。
【請求項2】
前記複数の信号各々について信号品質の低い領域を検出し、
信号品質の低い被検出領域に基づいて、前記複数の信号のうちのどれが、前記PCAの実施から除外される粗悪チャネルと関連しているかを判断することをさらに含む、請求項1に記載の信号解析システムの作動方法。
【請求項3】
前記加算平均化データを臓器の表面にマッピングして、前記臓器の電気活動を再構成することをさらに含む、請求項1に記載の信号解析システムの作動方法。
【請求項4】
前記マップ型の加算平均化データに基づいて、電位マップおよび等時線マップのうちの一方を作成することをさらに含む、請求項3に記載の信号解析システムの作動方法。
【請求項5】
前記複数の信号は、患者の体表面から同時に取得された少なくとも200の信号を含み、前記加算平均化データは、前記少なくとも200の信号のサブセットに対してコンピューター計算された信号加算平均化データを含む、請求項1に記載の信号解析システムの作動方法。
【請求項6】
前記複数の信号は各々、心電図(ECG)信号を表す、請求項5に記載の信号解析システムの作動方法。
【請求項7】
前記テンプレートは、P波を規定する、請求項5に記載の信号解析システムの作動方法。
【請求項8】
前記複数の信号は、患者から非侵襲的に取得される、請求項1に記載の信号解析システムの作動方法。
【請求項9】
前記複数の信号は、患者から侵襲的に取得される、請求項1に記載の信号解析システムの作動方法。
【請求項10】
前記主成分分析は、前記複数の信号の適切なサブセットを含む検知ゾーンに対応するデータに対して実施され、前記加算平均は、前記複数の信号に対して実施される、請求項1に記載の信号解析システムの作動方法。
【請求項11】
前記複数の信号の前記サブセットから相関ノイズを検出し、除去することをさらに含む、請求項1に記載の信号解析システムの作動方法。
【請求項12】
信号解析システムに、請求項1〜11に記載の作動方法を実行させるためのプログラム。
【請求項13】
請求項12に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、発明の名称「SIGNAL AVERAGING(信号の加算平均)」で2011年5月4日にファイルされた米国仮特許出願第61/482,345号の優先権の利益を主張するものであり、その内容全体を本明細書に援用する。
【0002】
本開示は、複数の信号を加算平均するためのシステムおよび方法に関する。これらの信号は、たとえば、生体の状態を評価するのに利用できる。
【背景技術】
【0003】
電気生理学的信号が検知されると、この検知信号には、さまざまな起源の干渉ノイズが混入していることがある。心電図(ECG)信号の例の場合、ノイズ源は、無線伝送、電線、蛍光灯を含む電磁放射(たとえば、国と高調波次第で約50Hzまたは60Hz);モーションアーチファクトおよびベースラインドリフト(たとえば、約0Hzから約20Hzの範囲);筋電図ノイズ(たとえば、約20Hzから約200Hzの範囲);他の電気生理学的機器(たとえば、一般に約0Hzから約2000Hzの範囲)のうちの1つまたは2つ以上の組み合わせである。ECGの診断周波数スペクトルが約0.5Hzから約100Hzの範囲を取り得ることを考えると、ノイズの存在は、特に、検知信号が低電圧信号(たとえば、約50μV未満など)の場合に、医師によるデータの解析と診断的な解釈を困難にする可能性がある。
【発明の概要】
【発明が解決しようとする課題】
【0004】
混入ノイズを除去するための一般的かつ単純な事後解析法は、デジタルフィルターを使用するものである。たとえば、帯域通過デジタルフィルターは、高周波ノイズと低周波ノイズの両方を排除して、所望の周波数だけを通過させることができる。しかしながら、狭周波数帯域フィルターの周波数応答では、ECG信号の生理学的に関連した周波数まで除去してしまうことがある。もうひとつの手法に、信号加算平均心電図検査で一般に用いられている信号の加算平均技術を用いることがある。この方法は、少量の干渉ノイズを低減することもあるが、ECG信号内の大量のノイズまたはばらつきは処理できない。
【課題を解決するための手段】
【0005】
ひとつの例は、複数の信号のサブセットに対応するデータおよび選択されたテンプレートに対して主成分分析(PCA)を実施して、仮想リードおよび最適化されたテンプレートを作成することを含む方法に関する。複数の信号は各々、センサーによって検出される電気生体信号に対応してもよい。また、この方法は、仮想リードおよび最適化されたテンプレートに対する相互相関を計算して、仮想リードと最適化されたテンプレートとの間の一次従属性の強さを求め、仮想リードの着目領域(ROI)を決定することを含んでもよい。この方法は、仮想リードにおけるピーク相関係数を検出することをさらに含んでもよい。この方法は、仮想リードのROI各々の振幅と選択されたテンプレートとを比較して、テンプレートと仮想リードの各ROIとの誤差を求めることをさらに含んでもよい。この方法は、ROIを加算平均して加算平均化データを作成することをさらに含んでもよい。
【0006】
もうひとつの例は、機械読み取り可能な指示を格納するための非一過性の機械読み取り可能な媒体に関する。この機械読み取り可能な指示は、複数の検出された生体信号をキャラクタライズする測定データを受信するよう構成された信号加算平均部を含んでもよい。信号加算平均部は、検出された生体信号のサブセットに対する測定データおよび選択されたテンプレートに対してPCAを実施して、仮想リードおよび最適化されたテンプレートを作成するよう構成されたPCA機能を含んでもよい。また、信号加算平均部は、仮想リードと最適化されたテンプレートとの間の一次従属性の強さを求めて、仮想リードのROIを決定するよう構成された相互相関(CC)計算部を含んでもよい。信号加算平均部は、仮想リードのROI各々の振幅を選択されたテンプレートと比較して、テンプレートと仮想リードの各ROIとの誤差を求めるよう構成された振幅比較部をさらに含んでもよい。信号加算平均部は、ROI各々を加算平均して、(たとえば、生体信号各々に対する)加算平均化データを計算するよう構成されたセグメント加算平均機能をさらに含んでもよい。
【0007】
さらにもうひとつの例は、機械読み取り可能な指示を格納するためのメモリーと、このメモリーにアクセスし、機械読み取り可能な指示を実行するための処理装置と、を含むシステムに関するものであってもよい。機械読み取り可能な指示は、各々が生体信号に対応する複数の信号の各々について、信号品質の低い領域を検出するよう構成された信号加算平均部を含んでもよい。また、信号加算平均部は、信号品質の低い被検出領域に基づいて、複数の信号のうちのどれが粗悪チャネルと関連しているかを判断するよう構成されていてもよい。信号加算平均部は、さらに、仮想リードと最適化されたテンプレートとの間の一次従属性の強さに基づいて求められるROIの加算平均に対応する加算平均化データを供給するよう構成されていてもよく、仮想リードおよび最適化されたテンプレートは、粗悪チャネルに関連せずに選択されたテンプレートに基づく複数の信号に基づくものである。
【図面の簡単な説明】
【0008】
図1】信号を加算平均するためのシステムの例を示す。
図2】信号の加算平均を実現するための例示的なユーザーワークフローのフローチャートを示す。
図3】テンプレート選択画面の例を示す。
図4】信号加算平均プロセスを適用する機能のあるマッププレビュー画面の例を示す。
図5】事前信号加算平均画面の例を示す。
図6】信号加算平均プロセスが実行されている例を示す。
図7】最大数のセグメントの加算平均に達して、完了した信号加算平均結果の例を示す。
図8】信号加算平均化データから作成される電位マップおよび等時線マップの例を示す。
図9】信号を加算平均するための例示的な方法のフローチャートを示す。
図10】固有値および固有ベクトルの例を示す。
図11】P波精度試験結果の例を示す。
図12】P波精度試験結果のもうひとつの例を示す。
図13】テンプレート対加算平均信号の比較例を示す。
図14】加算平均対象として検出されるすべての着目領域の合成プロットの例を示す。
図15】テンプレートおよび加算平均信号の比較例を示す。
図16】テンプレート対加算平均信号の比較例を示す。
図17】加算平均対象として検出されるすべての着目領域の合成プロットの例を示す。
図18】テンプレートおよび加算平均信号の比較例を示す。
図19】テンプレート対加算平均信号の比較例を示す。
図20】加算平均対象として検出されるすべての着目領域の合成プロットの例を示す。
図21】テンプレートおよび加算平均信号の比較例を示す。
図22】チャネル1の試験事例での信号加算平均結果の例を示す。
図23】信号を加算平均するための方法のもうひとつの例示的なフローチャートを示す。
図24】信号を加算平均するためのシステムのもうひとつの例を示す。
【発明を実施するための形態】
【0009】
本開示は、検出された生体電気信号に対する信号の加算平均に関する。この信号加算平均システムおよび方法は、ノイズを低減するための効率的な手法を提供し、信号の完全性を保つ。
【0010】
たとえば、ECG信号には、他の実験機器(コンピューター)であるか患者(筋電ノイズ)であるかを問わず、干渉ノイズが混入する場合がある。特に信号の電圧が低い場合に、ノイズが存在すると、データの解析と診断的な解釈が困難になる可能性がある。これは、ノイズによって信号が目立たなくなり、検出が妨げられる場合があるからである。本明細書に開示のシステムおよび方法は、干渉ノイズの量を減らすとともに、診断上は重要であり得る、小さいが極めて鍵になる信号を強めて引き出す一助となり得る。
【0011】
本開示は、ノイズを低減し、体表面電気活動などの低振幅信号の検出を可能にする信号加算平均を提供する。一例として、本明細書に開示の信号加算平均は、局所的および広範囲にわたる信号品質の検出、主成分分析によるデータ最適化、相互相関によるテンプレートマッチング、ピーク相関検出および振幅比較による正確なマッチング、信号品質判定法を用いるなどの全入力チャネルのアンサンブル平均を包含し得る。また、本明細書に開示の手法は、高精度のテンプレート検出で誤検出数を減らすこともでき、これが信号品質をさらに高めることにつながり得る。もうひとつの例として、本明細書に開示する信号加算平均法を利用することで、さまざまなノイズレベルに応じて約3μV以下と小さな信号を検出できる。この信号加算平均法を利用して、ノイズ低減の手順を保ちつつ検出方法のパフォーマンスと精度を改善し、高められることは、自明であろう。
【0012】
説明を簡単にするために、信号加算平均システムおよび方法の例を、本明細書では心電図(ECG)信号の文脈で開示する。これらのシステムおよび方法は、他のタイプの電気生理学的信号(たとえば、筋電図記録、脳波記録、眼電図記録、聴覚学など)のみならず、非生理学的電気信号をはじめとして、他のタイプの検知電気信号にも等しく適用可能であることは、理解し、認識できよう。
【0013】
図1は、ECG信号、EEG信号、EMG信号、EOG信号などの検出された生体信号を処理するのに利用できるシステム2の一例を示す。システム2は、センサーアレイ6が実装された基板4を含んでもよい。基板4は、たとえば、患者の胴衣、患者のヘルメットなどとして実現できよう。基板4は、患者の身体8と物理的に接触していてもよい。あるいは、センサー6は、基板を使用せずに患者の身体8と接続されていてもよい。
【0014】
センサーアレイ6のセンサー同士の間隔をあけて配置し、患者の身体8の異なる位置で生体信号を検出するようにしてもよい。これらのセンサーは各々、たとえば、患者の着目領域(ROI)10の電気的活動を記録するのに利用できる電極として実現できよう。この着目領域は、たとえば患者の心臓または脳などである。いくつかの例では、センサーアレイ6は、胴または頭部などの患者の身体8の外面に取り付けられる非侵襲的センサーを含み得る。あるいはまたはそれに加えて、センサーアレイ6は、患者の身体8内の着目領域に配置される侵襲的センサーを含み得る。いくつかの例では、センサーアレイ6に約200個以上のセンサー(たとえば、約252個のセンサーなど)があってもよい。センサーの数は、応用する際の条件に応じて変わり得る。
【0015】
センサーアレイ6によって検出される信号は、被検出信号とも呼ぶことができる。被検出信号は、測定システム12に供給されてもよい。測定システム12は、センサーアレイ6のセンサー各々によって検出される電気信号をキャラクタライズする、対応の測定データ16を提供するためのハードウェアおよび/またはソフトウェアとして実現可能な制御部14を含んでもよい。測定データ16は、アナログ情報またはデジタル情報としてメモリーに格納可能である。それぞれの測定データ16間の一時的な関係をインデックス化するのに適切なタイムスタンプを利用して、その評価と解析を容易にしてもよい。測定データ16は、信号解析システム18に供給されてもよい。
【0016】
図1の例では、信号解析システム18は、ラップトップコンピューター、デスクトップコンピューター、サーバー、タブレットコンピューター、ワークステーションなどのコンピューターとして実現可能である。信号解析システム18は、データおよび機械読み取り可能な指示を格納するためのメモリー20を含んでもよい。測定データ16は解析システム18の外にあるものとして示されているが、このようなデータを解析システムのメモリー20に格納することもできよう。メモリー20は、たとえば、揮発性メモリー(たとえば、ランダムアクセスメモリーなど)、不揮発性メモリー(たとえば、ハードディスクドライブ、ソリッドステートドライブ、フラッシュメモリーなど)あるいはこれらの組み合わせなどの非一過性のコンピューター記憶媒体として実現できよう。
【0017】
また、信号解析システム18は、メモリー20にアクセスし、メモリーに格納された機械読み取り可能な指示を実行するための処理装置22を含んでもよい。処理装置22は、たとえば、1つまたは2つ以上のプロセッサーコアとして実現できよう。本例では、信号解析システム18の構成要素を同一のシステム上で実現するものとして示してあるが、他の例では、異なる構成要素を異なるシステムに分散させて、たとえばネットワーク経由で通信することもできよう。
【0018】
たとえば、測定データ16は、メモリー20に格納されたチャネル選択部24に供給されてもよい。チャネル選択部24は、たとえば、測定データ16の特徴である被検出信号のテンプレート領域(たとえば、P波または識別可能な部分に対応するなど)を選択するのに利用できる。いくつかの例では、チャネル選択部24は、ユーザー入力28に応答してテンプレート領域を選択できるように、メモリー20に格納されたグラフィカルユーザーインターフェース(GUI)26との間をインターフェースできる。また、GUI26は、たとえばテンプレート領域の選択を容易にするためのグラフィック表示(たとえば、チャートなど)を表示できるだけのディスプレイ27に、データを供給してもよい。このグラフィック表示は、測定データ16に含まれる被検出信号の各々(または選択されたサブセット)に対応する。
【0019】
選択されたテンプレート領域は、メモリー20に格納された信号加算平均部30に供給されてもよい。信号加算平均部30は、本明細書に開示されているものなどの処理方法を利用して、テンプレート領域の被検出信号をもとに、検出された入力信号の各々に対する加算平均化データ32を提供するようプログラム可能である。入力信号(入力チャネルに対応)の個数は、センサーアレイ6の構成に左右される場合があり、加算平均は、たとえばこのような各入力チャネル(粗悪チャネルを除外)に関連して実施される。信号加算平均部30は、データの前処理を実施して、チャネルごとの局所的な信号品質を求めるのみならず、グローバルな信号品質も実現できるようプログラム可能である。
【0020】
一例では、GUI26は、ユーザー入力28に応答して、特定の研究に対する研究データ34を選択できる。この研究データは、患者で実施される特定タイプの生物学的研究をキャラクタライズできる。たとえば、いくつかの例では、特定の研究は、心房の研究、心室の研究などであってもよかろう。他の例では、研究データは、1つまたは2つ以上の異なる解剖学的着目領域を識別できる。これは、ユーザー入力に応答して、あるいは、他のあらかじめ定められた解析基準に従って解剖学的に選択可能である。いずれの場合も、研究データは、選択された研究に対するセンサーアレイ6のセンサー(またはノード)のサブセットを識別する情報を含み得る。このサブセットを、集合的に検知ゾーンチャネル36とも呼ぶことができる。いくつかの例では、センサーのサブセットは、センサーアレイ6におけるセンサーの適切なサブセットであってもよく、他の例では、このサブセットは、センサーアレイ6のすべてのセンサーを含んでもよい。検知ゾーンチャネル36は、研究データ34によって表されるような特定タイプの研究に対してあらかじめ規定されていてもよかろう。あるいはまたはそれに加えて、検知ゾーンチャネル36は、ユーザー入力に応答して、患者および/またはセンサーアレイ6の解析をもとに決定されてもよかろう。また、研究データ34は、信号加算平均部30に供給されてもよい。
【0021】
信号加算平均部30は、相互に関連のあるノイズ(たとえば、電源からの周囲ノイズなど)を検出し、除外できるノイズ検出器37を含んでもよい。ノイズ検出器37は、別の例としての測定システムで実現できる。いくつかの例では、ノイズ検出器37は、ローパスフィルターとして実現できる。ノイズ検出器37の出力は、粗悪チャネル検出部38に供給されてもよい。
【0022】
粗悪チャネル検出部38は、粗悪チャネルを検出するよう実現できる。粗悪チャネル検出部38は、たとえば、チャネルのデータ点がすべてゼロであるか否か、あるいは、そのようなチャネルに対する信号の約75%以上の信号品質が低いとみなせるか否かを判断する際に、チャネルを「粗悪チャネル」として識別できる。粗悪チャネル検出部38によって識別された粗悪チャネルは、信号加算平均部30のゾーン選択部40に供給できる。ゾーン選択部40は、研究データ34に含まれる検知ゾーンチャネル36のサブセットに対応するゾーンを選択し、粗悪チャネルを除外できる。選択されたゾーンおよび識別された粗悪チャネルは、信号加算平均部30の主成分分析(PCA)機能42に供給できる。上述したように、選択されたゾーンは、入力チャネルの適切なサブセットを含んでもよいし、最大ですべての入力チャネルを含み得る。いくつかの例では、粗悪チャネルは、選択されたゾーン内にあってもよいし、選択されたゾーンの外側にあってもよい。この後者の場合、PCAに影響することなく、粗悪チャネルをPCA機能42で使用対象から除外してもよい。1つまたは2つ以上の粗悪チャネルが選択されたゾーン内にある場合、これらの粗悪チャネルを解析から外してもよいし、隣接する一組のチャネルからの信号の内挿を代わりのチャネルとして利用してもよい。
【0023】
PCA機能42は、粗悪チャネルとして識別されている選択されたゾーン中のチャネルを除外して、選択されたゾーンに含まれるチャネルに対応する測定データ16のPCAを実施できる。PCA機能42は、選択されたゾーンで識別される被検出信号のサブセットをキャラクタライズする測定データ16を分析し、高次のデータのパターンを識別かつ、たとえば本明細書に記載されたような方法で、データの類似性および差異を強調する方法でデータを表現するための機構を提供できる。PCA機能42は、選択されたゾーンで識別される被検出信号のサブセットをキャラクタライズする測定データ16に対する共分散行列を計算できる。また、PCA機能42は、本明細書に開示されているような単一変数分解を利用することで、共分散行列の固有ベクトルおよび固有値をコンピューター計算することもできる。PCA機能42は、選択されたゾーンで識別される被検出信号のサブセットをキャラクタライズする測定データ16の直交表現を提供できる。ここでは、分解の第1の成分が本明細書で説明するような大半の情報を持つ次元であり得るように、直交次元を関連性の降順に並べ替えることができる。
【0024】
このような技術を採用することで、PCA機能42は、チャネルのサブセットから仮想リードを計算できる。仮想リードは、入力チャネルのサブセットから導き出される単一チャネルに対応し、信号加算平均部30によるさらなる処理に利用できる。仮想リードを作ると、コンピューター的に集約的な複数のプロシージャーの問題が解決され、さらなる処理のために評価基準として使用できる効率的なフォーマットが作られる。また、PCA機能42は、選択された(たとえば、自動または手動で選択された)テンプレートから、最適化されたテンプレートを導き出すのにも利用できる。PCA最適化テンプレートは、たとえば、信号加算平均部30によって使用されるP波検出機能と対応してもよい。このように、PCA機能42は、テンプレートが入力信号とマッチするタイムロケーションを検出するのに利用される。本明細書で開示するように、(セグメント加算平均機能50による)実際の加算平均は、入力データの重要な情報の損失を抑えるために、(たとえば、粗悪チャネルを除外して)もとの入力測定データ16に対して実施される。
【0025】
別の例として、最適化されたテンプレートおよび仮想リードを、相互相関(CC)計算部44に供給してもよい。CC計算部44は、最適化されたテンプレートと仮想リードとの間の一次従属性の強さを求めるのに用いることができ、この強さは、CC信号でキャラクタライズ可能である。CC計算部44は、CC信号の最大と、ある長さの最適化されたテンプレートに設定された着目領域(ROI)を決定し、各入力チャネルのピーク相関係数検出部46にROIを提供できる。
【0026】
信号加算平均部30のピーク相関係数検出部46は、本明細書に記載されているような方法で、相関係数データからの滑らかな導関数を採用することによって、仮想リードで最大相関係数を突き止めることができる。ピーク相関係数検出部46およびROIの出力は、振幅比較部48に供給可能である。また、振幅比較部48は、たとえば本明細書に開示したような方法で、各ROIの振幅を最適化されたテンプレートと比較し、最適化されたテンプレートと仮想リードROIとの間の誤差を計算して各抽出点を求めることができる。このため、各抽出点は、最適化されたテンプレートおよび仮想リードから導き出される時間基準のロケーションに対応できる。
【0027】
また、信号加算平均部30は、チャネルごとに振幅比較部48から提供されるROIの各々でのチャネルごとの平均を計算できるセグメント加算平均機能50を含んでもよい。加算平均機能は、抽出点(たとえば、タイムロケーションに対応)を利用して、それぞれのチャネルでの対応するセグメントに対する加算平均を実施できる。また、セグメント加算平均機能50は、粗悪チャネル検出部38によって検出される数の粗悪チャネルを、加算平均過程からそのような粗悪チャネルを除外することなどによって、非動作状態にすることができる。この方法全体で、検出された領域を加算平均し、事前に計算された信号品質情報を使用して、解釈できない領域や信号品質の劣る領域が加算平均に含まれてしまうのを防ぐ。セグメント加算平均機能50の出力は、ROIの各々についての加算平均信号をキャラクタライズする加算平均化データ32として提供されてもよく、これは、いくつかの例では、約256の加算平均化信号(たとえば、仮想リード)に対応してもよい。このように、当該加算平均機能は、全体としての傾向または小さなセグメント判断に基づいて、チャネル全体を計算から除外するのではなく、チャネル信号内にあるさらに小さな領域を信号品質の面で評価する。許容可能な領域を加算平均した後、このデータを以後の分析と処理に利用できる(たとえば、マップ作成または他の出力の生成用など)。測定データ16に対応した入力チャネル各々についての加算平均信号の波形を表すために、加算平均化データ32は、メモリー20に格納可能である。
【0028】
加算平均化データ32は、メモリー20に格納されたマッピングシステム54に供給されてもよい。マッピングシステム54は、再構成コンポーネント56を用いて、加算平均データを、研究対象臓器(たとえば、患者の心臓)の対応の再構成された電気活動に変換することができる。いくつかの例では、再構成コンポーネント56は、加算平均化データ32と、研究対象臓器10の幾何学形状をキャラクタライズする幾何学形状データ58とを組み合わせ、心外膜、心内膜または他の膜などの膜での研究対象臓器10の電気活動を再構成するための逆アルゴリズムを実行することができる。この膜は、臓器などの解剖学的表面に対応してもよい。
【0029】
また、マッピングシステム54は、再構成コンポーネント56によってコンピューター計算された研究対象臓器10の再構成された電気活動に基づいて、対応するマップデータを作るよう構成されたマップ作成部60を含んでもよい。マップデータは、GUI26がディスプレイ27に研究対象臓器10のマップ(電位マップおよび/または等時線マップなど)を出力させるのに十分なデータを提供できるような方法で、GUI26に供給されてもよい。
【0030】
上述した先の構造的特徴および機能的特徴に鑑みて、図2図9図25を参照すると、例示的な方法を、より一層理解できよう。説明を簡単にするために、図2図9図25の例示的な方法はシリアルに実行されるものとして図示し、説明するが、他の例のいくつかの行為は、本明細書にて図示し、説明するものとは別の順序でおよび/または同時に起こり得るため、本例は図示の順序に限定されるものではない。また、説明する行為がすべてある方法を実現するのに実施される必要もない。図2図9図25の例示的な方法は、コンピュータープログラム製品など、非一過性のコンピューター読み取り可能な媒体に格納可能なコンピューター読み取り可能な指示として実現できる。また、図2図9図25の方法に対応するコンピューター読み取り可能な指示は、プロセッサー(たとえば、図2の処理装置22)によって実行可能である。
【0031】
図2は、信号加算平均法を利用するためのユーザーワークフローの例示的な方法100を示す。110では、図1に示す信号解析システム18などの信号解析システムにおいてデータ(たとえば、測定データなど)を取得できる。このデータは、たとえば複数のセンサー(たとえば、図1に示す複数のセンサー6など)から、リアルタイムで取得してもよいし、ほぼリアルタイムで取得してもよい。あるいはまたはそれに加えて、データを先に取得して、(たとえば、メモリーに格納された)別のファイルからロードしてもよい。
【0032】
120では、ユーザーは、ユーザーインターフェース(たとえば、図1に示すGUI26など)を用いて、利用可能な選択キャリパーでテンプレート領域を選択できる。図3は、テンプレート選択画面200の例を示す。ここでは、センサーアレイ206から供給されるECG信号204から、キャリパー202が選択される。その後、ユーザーは(GUI経由で)選択し、テンプレート領域をマッピングする。ここで図2に戻ると、130において、信号加算平均の対象となるデータのプレビューと、信号加算平均プロセスを開始する機能とを、ユーザーに提示できる。図4は、信号加算平均プロセスを適用し、取得されたデータに適用可能な補正フィルターを選択する機能を有する、マッププレビュー画面250の一例を示す。図5は、事前信号加算平均画面300の一例を示す。図2に戻ると、テンプレートが一致する前に、140において、ユーザー入力(たとえば、図5のCONTINUE GUIエレメント)に応答するなどして、信号加算平均プロセスを開始する。
【0033】
140で信号の加算平均が開始されたのに応答して、現在の信号加算平均結果のみならず、加算平均されたセグメントの平均数と反復数をディスプレイに表示できる。図6は、起動している信号加算平均プロセス画面350の一例を示す。信号加算平均プロセスは、ユーザーが定義した数のセグメントの加算平均に達したとき、あるいは、プロセスがデータセットの先頭に達したら、自動的に終端(たとえば終了など)できる。また、ユーザーは、プロセスを手動で(たとえば、図1に示すGUI26などのGUIを介した入力の供給に応答して)停止できる。
【0034】
図7は、あらかじめ規定された最大数のセグメントの加算平均に達した状態での、コンピューター計算された信号の加算平均結果画面400の一例を示す。図2に戻ると、信号の加算平均の終了時、150において、ユーザーは、加算平均化データ(たとえば、図1に示す加算平均化データ32など)に対して逆解法を使用実行して、電位マップおよび等時線マップを作成できる。いくつかの例では、電位マップおよび等時線マップは、たとえば、図1に示すマッピングシステム54によって作成可能である。図8は、信号加算平均化データから作成可能な電位マップ452および等時線マップ454の例示的な画面450を示す。
【0035】
図9は、信号加算平均法500を表す例示的なプロセスフローチャートを示す。方法500は、たとえば、図1に示す信号加算平均部30によって実現可能であろう。
【0036】
510では、図2を参照して説明したようなテンプレート領域およびECGデータを取得できる。たとえば、信号加算平均法500(たとえば、アルゴリズムなど)は、以下の入力すなわち、ECGデータ信号、前に加算平均されたセグメント数、前の加算平均信号、相関係数の閾値、プロセスが加算平均を止めるための値を返すまでに加算平均されるセグメント数、テンプレート信号、粗悪チャネルの一覧、検知ゾーンチャネル、データをサンプリングした速度を受信できる。検知ゾーンチャネルの代わりに、あるいはこれに加えて、信号加算平均法500を実現するのに必要なチャネルが最低数ですむような方法で、この最低数のチャネルを入力として提供してもよい。検知ゾーンを利用する状況では、最低数のチャネルを無視できるあるいは、検知ゾーンのチャネルに応じて異なる最低数を利用できるような方法で、電極の位置があれば十分だとみなすことができる。
【0037】
515では、(たとえば、図1に示す測定システム52によって)相関ノイズを入力信号から除去できる。これは、方法500によって電気的データを取得する前または取得した後に実施可能である。信号加算平均法で効率的に除去できるノイズは相関していないか、ランダムである。相関ノイズが信号加算平均プロセスに混入するのを抑えるために、信号加算平均部によってデータを処理する前に、ラインフィルターおよびローパスフィルターを(たとえば、図1の測定システム12の一部として)実装できる。ラインフィルターは、60Hz(またはヨーロッパのコンセントでは50Hz)ならびに、60Hzの周囲ノイズのさらに高調波を、信号から除去することができる。100HzのButterworthローパスフィルターは、ECG信号の周波数スペクトルが0.05Hz〜100Hzにあるという前提で、100Hzよりも高い周波数を除去する。100Hzのローパスフィルターは、米国のECG装置での標準である。このようなフィルターは、ハードウェア、ソフトウェアあるいは、これらの組み合わせで実現できる。
【0038】
一例として、ホワイトノイズの場合、ノイズレベルを標準偏差すなわちσ(シグマ)で表すことができる。振幅範囲σDS(DS=被検出信号)の信号が検出される確率は、入力信号のノイズレベル(σnoise)と加算平均される波形数(Nb)に左右され、以下の式1で計算することができる。
【数1】
【0039】
式1は、指定数の波形が加算平均された後に、特定の振幅で特定のノイズレベルの信号から信号が抽出される確率を示す。信号加算平均部によって用いられる信号加算平均法は、PV再接続解析用に3μVと低電圧の信号の検出に適用されるため、3μVは、解析に用いられるベースラインの信号振幅であった。
【0040】
520では、信号品質が低く粗悪チャネルの領域を検出し、(たとえば、図1に示す信号解析システムの)メモリーに格納できる。たとえば、粗悪チャネルは、粗悪チャネル検出部(たとえば、図1に示す粗悪チャネル検出部38など)によって検出可能である。入力粗悪チャネルは、CTスキャンから欠けていた、完全に飽和した、あるいはユーザーによって(たとえば、図1に示すGUI26などのGUIを介して手で選択することによって)粗悪チャネルとして選択されたチャネルとして定義できる。また、このような検出では、たとえば、粗悪チャネル検出および振幅比較などの識別方法を利用して、限定された閾値範囲内の選択されたテンプレート信号のマッチング形態に対し、胴の電位データ(または他のデータ)のすべてのチャネルをサーチすることができる。このように、最高品質のマッチング領域をチャネルごとに加算平均でき、得られるデータは、信号品質の低い検出領域および/または粗悪チャネルを無視できるような方法で、戻される。粗悪チャネル検出部は、反復のたびに、あらかじめ定められた時間窓セグメントデータ(たとえば、約30秒のデータなど)を利用できる。連続反復の場合、このシステムおよび方法では、前の反復よりも前、30秒間のデータを検索できる。
【0041】
さらに別の例として、信号品質の低い領域および/または粗悪チャネルを検出するには、粗悪チャネル検出部は、粗悪チャネル検出アルゴリズムを用いることができる。一例では、粗悪チャネル検出部は、たとえば、チャネルのすべてのデータ点がゼロであるか、信号の75%が信号品質の低いものであるとみなされると決定されたことに応答して、チャネルを「粗悪チャネル」として識別できる。たとえば、入力データは、複数のデータ点(たとえば、データセットに含まれるデータ点が2000未満であれば、2000データ点以下など)からなるセグメントに分割できる。粗悪チャネル検出部は、ベースラインのばらつき、窓間の振幅の変化、大きな振幅の変化、すべてのゼロデータ(情報なし)に基づいて、各窓セグメントを評価できる。
【0042】
各窓セグメントについて、520での粗悪チャネル検出では、窓方法を用いるローパスフィルターFIRデジタルフィルター(たとえば、0.1HzのLPFなど)でベースラインを計算できる。ベースラインのある場合とない場合で信号を比較するために、ベースラインを信号から減算できる。粗悪チャネル検出では、振幅とベースラインドリフト間のばらつきについて、各窓セグメントを前のセグメントと比較できる。ベースラインからの信号のばらつきと、信号がすべてゼロを含むかどうかについて、セグメントを評価可能である。これらの基準のいずれかが満たされなかったら、そのセグメント(たとえば、粗悪チャネル)を、加算平均には許容できないおよび/または品質の低いものとしてマークできる。粗悪チャネルであると識別されなかったセグメントを、加算平均することができる。あるチャネルで、あらかじめ定められた量(たとえば、約75%)以上の全セグメントが許容されなかった場合には、そのチャネルを「粗悪チャネル」として加算平均プロセスから除外し、その反復での加算平均がゼロとなる。セグメントの品質に関する情報は、メモリーに格納できる。
【0043】
525では、検知ゾーンを選択できる(たとえば、図1に示すゾーン選択部40)。検知ゾーンを選択するには、ゾーン選択部は、検知ゾーンチャネルとも呼べる被検出チャネルのサブセットを識別する研究データを受信できる。いくつかの例では、検知ゾーンは、研究データで識別される研究(たとえば、心房研究または心室研究など)に基づいて、あらかじめ規定されていてもよい。他の例では、検知ゾーンチャネルは、患者および/またはセンサーアレイ(たとえば、図1に示すセンサーアレイ6など)の幾何学的形状に基づいて、可変であってもよい。ゾーン選択部は、研究データに基づいて、検知ゾーンチャネルに対応する検知ゾーンを選択できる。検知ゾーンにおける検知ゾーンチャネルをキャラクタライズするデータを、PCA機能(たとえば、図1に示すPCA機能42など)に供給してもよい。
【0044】
530では、パフォーマンスを最適化するとともに、精度を高めるなどの目的で、(たとえば、図1のPCA機能42などによって)PCAを実施できる。PCAは検知ゾーンチャネルで実現でき、このゾーンの粗悪チャネルを除外することができる。PCAは、高次のデータにおいてパターンを識別する機構を提供し、データの類似性と差分を強調するような方法でそのデータを表現することができる。PCA機能は、たとえば、多数の観測変数についての測定値が得られ、観測変数における大半の相違を説明する、観測変数よりも少数の人工変数を開発すると都合がよい場合に、有用となろう。主成分は、以後の分析で予測変数または基準変数として使用できる。主成分は、最適に重み付けされた観測変数の一次結合として定義できよう。
【0045】
530のPCAは、共分散行列の計算、特異値分解の実施、特徴ベクトルの形成、その後、新たなデータセットの編成を含んでもよい。一例として、この分析では、まず共分散行列を計算する。共分散は、2つ以上の信号同士の相関の強さを示す尺度である。信号の主成分は、特異値分解によって固有ベクトルおよび共分散行列の固有値を求めることで、コンピューター計算可能である。第1の固有ベクトルがベストフィットのラインを示すのに対し、他の固有ベクトルは、それほど重要ではないトレンドを示す。
【0046】
図10は、第1の固有ベクトル652および第2の固有ベクトル654が例示的なデータセットの散布図にプロットされた場所を示しているグラフ650を例示する。第1の固有ベクトル652は、データセットが多数のアウトラインを含む場合に、データの散布に基づいてその方向から変化していてもよい。図9に戻ると、PCA機能は、ECGデータと右特異ベクトルを乗算することによって、仮想リードを計算できる。
【0047】
PCA機能は、元データの直交表現を作成できる。ここに、直交次元を関連性の降順に格納できる。各次元は、元データの一次結合によって得られる。分解のいわゆる「第1の成分」は、ほとんどの情報を持つ次元(たとえば、元データの一次結合など)であってもよい。上述のように、図10は、PCA機能を利用できるグラフ650の例を示す。PCA機能のグラフ650は、ベクトルとして図示される「第1の成分」652の例を含んでもよい。
【0048】
図9に戻ると、ECGデータに適用され、第1の成分は、信号の振幅を最大にする一次結合として求められる。たとえば、体表面ECGを有する行列をAとする。行列Aは、Ns×NLの行列であってもよく、この場合、NLは、利用可能なチャネル数、Nsは、レコード内のサンプル数である。体表面ECG上に手作業で表されるテンプレートを、Tとする。Tは、サイズNT×NLのAの部分行列であった。ここで、NTは、テンプレートのサンプル数である。PCAは、以下のように表現可能な行列Tのsvd分解(特異値分解)を用いる式3〜4を利用して構築できる。
【数2】
【0049】
次に、V1すなわちVの第1の列は、第1の成分に対する一次結合の重みで構成される。よって、仮想リードでのテンプレートTの射影TMは、式3で表される。
【数3】

式中、
Tiは、Tのi番目の列(たとえば、チャネル番号iのテンプレートのECG)である。TPCA1は、サイズがNT×1のものである。
【0050】
レコード全体に対する仮想リードは、式4によって得られる。
【数4】

式中、
Aiは、Aのi番目の列(たとえば、チャネル番号iのECG)である。APCA1のサイズはNSx1である。これらの結果から、最適化されたテンプレートおよび仮想リードECG信号が得られ、その各々が単一チャネルに対応している。上述したように、図10に示すグラフ650は、は、固有値と、固有ベクトル652および654との例を示している。
【0051】
図9に戻ると、540において、(たとえば、図1に示すCC計算部44によって)取得した入力信号の相互相関解析を実施できる。相互相関は、たとえば本例では最適化されたテンプレート信号とECG仮想リードとの間など、2つの信号間の一次従属性の強さを求めるための統計的な方法として利用できる。これらの信号はどちらも、本明細書で説明するように、PCAから計算できる。CC計算部は、仮想リードTPCA1上のテンプレートと仮想リードAPCA1上のECG信号との間のCC機能をコンピューター計算することによって、信号AでテンプレートT(式2および3)をローカライズして、CC信号を提供できる。CC信号の極大で着目領域(ROI)が設定され、テンプレートの長さを延長する。たとえば、相関係数は、−1から1の範囲であってもよく、この場合の−1は反相関または負の線形相関を示し、0が相関なし、1が完全な正の相関を表す。正の相関値は、CC計算部によって評価できる。相関係数閾値は、ユーザーがGUIを介して調節できるパラメーターとして設定可能であるか、自動化された方法を用いることができる。一例として、相関係数の閾値を、最初は0.93に設定しておくことができる。
【0052】
550では、(たとえば、図1に示すピーク相関係数検出部46によって)ピーク相互相関係数を検出できる。たとえば、仮想リードの長さについて相関係数を一度計算したら、ピーク相関係数検出部は、最大相関係数の位置を求めることができる。この作業を達成するために、たとえば、相関係数データについて滑らかな導関数をコンピューター計算することができ、この場合のx座標は、イベントが発生した時間的位置を表し、y座標は相関係数を表す。導関数がゼロと交わる時間的位置(たとえば、導関数の極性が変わるなど)は、ピークを表す。勾配が正から負に変わる交差についてのチェックを実施して、極大値を除外してもよい。ピーク値は、信号の加算平均用の潜在的開始配列点および/または「抽出点」としてメモリーに格納できる。このプロセスが仮想リードの長さに対して終了したら、それらの潜在的位置での相関係数値を、ユーザーが定義した(プログラム可能な)相関閾値と比較することができる。一例として、閾値は0.90に設定できる。
【0053】
560では、(たとえば、図1に示す振幅比較部48によって)振幅比較を実現できる。振幅比較では、PCA最適化されたテンプレート信号に関連して、決定されたROI各々の振幅を比較できる。また、振幅比較では、抽出点ごとにテンプレートと仮想リードROIとの誤差を計算できる。独特なガウス曲線(または他の曲線)での曲線適合技術を用いて、誤差値の分布をフィットさせることができる。曲線が1つだけ検出された場合、標準偏差の2.5倍をピーク値に加算することで、誤差限界を求めることができる。2つ以上の曲線が検出された場合、振幅比較部は、ガウス曲線間の交点を計算することができる。この交点が、信号間の形態の差を示せるだけの十分な大きさを持つものであると判断されると、振幅比較部は、この曲線間の点から誤差限界を計算することができる。しかしながら、曲線が互いに小さな範囲内におさまっている場合は、振幅比較部は、これらの曲線を1つの曲線として扱うことができ、単一の曲線から誤差限界を求めるための方法を適用できる。ROIを計算で得られた誤差限界と比較して、誤差の範囲から外れるようであれば、これを除外することができる。
【0054】
570では、(たとえば、図1に示すセグメント加算平均機能50によって)ROIを加算平均し、加算平均化データ(たとえば、図1に示す加算平均化データ32)を作成することができる。たとえば、粗悪チャネル検出によって特定のチャネルを除外し、信号内の信号品質の低い領域を識別するための方法を提供できるため、それぞれのチャネルでは、反復するごとに、得られる加算平均の数が変わることがある。このようなことから、変数を、各チャネルの加算平均の累積和を追跡する出力パラメーターのうちの1つとして渡すことができる。チャネルごとに加算平均されたセグメントの合計を、信号の加算平均の連続する反復に使用できる。
【0055】
(520での)粗悪チャネル検出による出力として、反復内での部分領域の受容性に関する情報を表す決定変数を供給できる。各抽出点は、フル信号内の位置(たとえば、時間基準の位置など)を表したそれぞれの決定変数と比較可能な時間基準の位置に対応でき、その領域が許容できるものであるかどうか、判断することができる。ある抽出点が加算平均に適しているだろうとみなされると、570でのセグメント加算平均機能は、抽出点から開始してテンプレートの長さを延長しながら、領域をアンサンブル平均することができる。加算平均プロセスは、そのチャネルに固有のすべてのROIについて実行可能である。たとえば、各チャネルが、加算平均機能570によって加算平均される異なるROIを有してもよい。このように、セグメントの加算平均は、チャネルごとに個別に実現できる。このプロセスの間、DCオフセットも除去することができ、これによってノイズゼロ平均となる。チャネルによって加算平均数が異なるため、チャネルごとに加算平均されるセグメント数の平均値は、ユーザーに対して加算平均されるセグメント数の全体としての出力に対応する。
【0056】
上記の例では、加算平均対象となる信号のP波とT波は、互いに大きく異なるであろうと仮定された。しかしながら、P波とT波の振幅および幅が類似になる場合があるとすれば、振幅比較方法は、誤検出数を制限するよう設計された。このような状況では、振幅比較部は、各ROIとテンプレート信号間の差異に基づいて、分布を作成できる。この分布によって、フィットする2つ以上のガウス曲線が有り得ることを明らかにできる。各曲線は、異なる波形に関連する特定の誤差の領域を表すであろう。これらの領域すなわち曲線が、標準偏差のあらかじめ定められた値(たとえば、約2.5)に入れば、誤差の差異を小さすぎるとみなすことができ、すべてのROIが加算平均用に選択される。しかしながら、これらの曲線があらかじめ定められた標準偏差よりも大きい場合、誤差が曲線同士の交点未満のROIが加算平均用に選択される。振幅比較部は、加算平均対象となるROIの振幅を比較することによって、その誤検出の数を減らすことのできる誤差比較を含んでもよい。
【0057】
このように、この振幅比較では、560において、信号の形態を区別するために分布を作成し、上限を決定することのできる自動化方法が可能になる。また、振幅比較は、(たとえば、先行するサイクルに対する)前の加算平均基準が満たされた場合にのみ用いられるものとして、プログラム可能である。
【0058】
590では、(たとえば、図1のマッピングシステム54によって)570で得られる加算平均化データに基づいて、マップデータを作成できる。たとえば、加算平均化データに対して逆転法を実施して、患者の着目領域(たとえば、心臓または脳など)のあらかじめ定められた表面領域に対する電気活動を再構成するようプログラムされた逆転法を用いて体表面での電気的測定値と患者の幾何学形状情報とを組み合わせ、電気生理学的データを作成することができる。たとえば、マップは、心外膜表面、心内膜表面または他の膜などの心臓の膜上の複数の点それぞれの電気活動を、時間の関数として(たとえば、電位マップおよび等時線マップの形で)同時に表すことができる。システム10で利用可能な逆アルゴリズムの例は、本明細書に援用する米国特許第7,983,743号および同第6,772,004号に開示されている。出力マップは、GUI(たとえば、図1に示すGUI26など)を介して、ユーザーに対して表示可能である。
【0059】
本明細書の方法およびシステムを採用することで、比較的正確な結果が得られる。たとえば、検出精度を測定するには、データケースから、256のチャネルにわたる75,000のデータ点のうちの10の信号を使用した。それぞれの信号について、P波テンプレートを選択することができ、このテンプレートを信号加算平均した。出力プロットで、特定のチャネルでテンプレートが検出された位置が示された。たとえば、基準試験のシナリオでは、セグメントの最大数は250加算平均で規定されたため、時間の75%を超える3μVの信号を検出するには、ノイズレベルが20μV未満であればよい。ノイズレベルが15μV未満であれば、3μVの信号を時間の89%で検出可能であり、ノイズレベルが10μV未満であれば、250の加算平均で信号を時間の98%で検出可能である。イベントを検出するための確率の統計解析を示す結果の例を、表1にあげておく。

【表1】


【0060】
図11および図12は、P波精度試験結果700および750を示す。これらの2つの例700および750から、P波テンプレートが検出されたことを確認できる。図11は、P波精度試験結果の例700を示し、ここではドット702がテンプレートの検出された場所をマークしている。図12は、別のP波精度試験結果の例750を示し、ここでは、ドット752がテンプレートの検出された場所をマークしている。いくつかの結果は、T波の振幅と幅がP波と似ているときに、T波がP波として検出されたことを示しており、これは仮説に反していた。本明細書で用いた加算平均方法は、約99.873%の精度以上を実証することができる。
【0061】
図13は、加算平均信号804に関連した第1の事例テンプレート802の例示的なグラフ800を示す。図14は、DCオフセットを除いて加算平均対象として検出されたすべての着目領域の(第1の事例に対する)合成プロットの例850を示す。図15は、第1の事例テンプレート902および加算平均信号904を比較した例900を示す。図16は、第2の事例テンプレート952と加算平均信号954とを比較した例950を示す。図17は、第2の事例に対して加算平均対象として検出されたすべての着目領域の合成プロットの例1000を示す。図18は、第2の事例テンプレート1052および加算平均信号比較1054の例1050を示す。図19は、第3の事例テンプレート1102と加算平均信号1104とを比較した例1100を示す。図20は、第3の事例に対して加算平均対象として検出されたすべての着目領域の合成プロットの例1150を示す。図21は、第3の事例に対するテンプレート信号1202および加算平均信号1204を比較した例1200を示す。
【0062】
図22は、サンプルテスト事例からの特定のチャネルに対する信号加算平均結果を示すのに利用可能なGUIを表示している例示的な画面1250を示す。本明細書に開示された信号加算平均システムおよび方法は、ECG信号の周波数スペクトル内の非相関ノイズの影響を軽減・低減し、低電圧信号を検出する。これらのシステムおよび方法は、検出された生体信号を解析するよう構成されたECGIシステムまたは他のシステムなどの解析システムを使用した、さらなる解析を可能にする。
【0063】
上記に鑑みて、信号品質の改善に加えて、本明細書に記載の方法には、診断上は重要な、小さいが極めて鍵になる信号を強めて引き出すという独特の利点がある。この手法を利用できる臨床用途のいくつかの例として、電位ベースの心電図記録の計算および肺静脈再接続の検出があげられる。
【0064】
また、本明細書に開示された信号加算平均システムおよび方法は、低信号品質領域およびチャネルの自動検出、主成分分析、ガウス曲線フィッティング振幅検出などの他の解析および信号処理技術と併用可能である。このアルゴリズムでは、計算された信号品質情報を利用して、低信号品質領域の加算平均を防ぐことができる。このアルゴリズムのさまざまな特徴によって、さまざまなサイクル長で形態的な特徴が複素信号内でのテンプレート検出が可能になるのみならず、誤検出が防止され、これが本方法を独特なものとしている。アルゴリズムの結果から、これが、非相関ノイズをテンプレート信号から除去するのみならず、(3μVと低い)低電圧信号を検出する機能を有することが示された。全体として、加算平均信号の加算平均によって、革新診断技術の一助となるための高品質の信号を生成できる。
【0065】
たとえば、肺静脈(PV)の異所性活動が発作性心房細動(AF)の主な引き金であることが立証されて以来、この不整脈の高周波アブレーション(RF)は、次第に多くの電気生理学研究所で人気のある主義となってきている。伝統的に、RFベースのPVIでは「点ごとの」アブレーション技術を使用するが、これがゆえに連続したアブレーションラインを作成するのが困難になり、不整脈の再発を容易にし得る伝導ギャップが生じる余地が出てしまう。不完全なアブレーション手技またはスウェリングの低減によって、電気チャネルが事後アブレーションを一掃する可能性が、この手技の成功を妨害する。目標は、肺静脈隔離後に心房細動(AF)の再発を予測するためのツールとして肺静脈の再接続を識別するための非侵襲的な心電図マッピング(ECM)を使用できるようにすることである。
【0066】
P波の幅と曲線下面積(AUC)は患者のPVI後に減少するのに対し、再接続PVを有する患者では、P波の幅とAUCの増加が認められることを実証できる。手技前と後のPVおよび同側静脈の隆起付近のエレクトログラムを調べるための方法では、振幅2〜4μV前後の信号を検出する必要があろう。組織がアブレーションされて瘢痕があるとすると、取得ノイズレベルが高い(たとえば、ノイズレベルが信号振幅の2〜5倍など)場合に、これらの低電圧信号の検出は困難であろう。本明細書で提案する信号加算平均システムおよび方法を、取得後の信号処理に利用して、信号品質を改善するとともに、これらの低電圧信号の検出を可能にすることができる。
【0067】
本明細書で開示するように、この方法は、検出プロセスの間はサイクル長が一定に保たれると想定した、あらかじめ指定された複素区間および複素振幅に依存しないテンプレート検出プロセスを含んでもよい。本明細書に記載の手法では、効率的な比較方法を利用して、検出される領域が確実に検出仕様の範囲内におさまるようにすることができる。また、この方法では、信号品質の低い領域を識別し、複数のチャネルで信号を効率的に加算平均できる信号加算平均技術を使用できる。このシステムおよび方法は、信号加算平均プロセスでの時間シフト相互相関検出を提供する。
【0068】
このように、ここに提案されたシステムおよび方法では、複数のチャネルを持ち得る大きなデータセット内のテンプレート信号を正確に検出し、入力チャネルごとに信号の検出された領域を加算平均することで、テンプレートの信号強度を改善(たとえば、測定数の平方根によって信号対雑音比ゲインを改善)することができる。
【0069】
図23は、信号(たとえば、生体電気信号など)を加算平均するために実現可能な例示的な方法1400の別のフローチャートを示す。方法1400は、たとえば、図1に示すシステム2によって実現可能である。1410では、複数の信号のサブセットおよび選択されたテンプレートに対応するデータに対し、(たとえば、図1に示すPCA機能42によって)PCAを実施して、仮想リードおよび最適化されたテンプレートを作成できる。この場合、複数の信号は各々、センサーによって検出される電気生体信号に対応する。1420では、仮想リードおよび最適化されたテンプレートの相互相関を計算し、仮想リードと最適化されたテンプレートとの間に一次従属性の強さを求めて、仮想リードのROIを求めることができる。1430では、(たとえば、図1に示すピーク相関係数検出部46によって)仮想リードのピーク相関係数を検出できる。1440では、テンプレートと仮想リードの各ROIとの間の誤差を求めるために選択されたテンプレートを用いて、(たとえば、図1に示す振幅比較部48によって)仮想リードの各ROIの振幅を比較できる。1450では、(たとえば、図1に示すセグメント加算平均機能50によって)ROIを加算平均し、加算平均化データを作成できる。
【0070】
図24は、信号を加算平均するためのシステム1500のもうひとつの例を示す。このシステムは、機械読み取り可能な指示を格納するためのメモリー1502と、メモリーにアクセスして機械読み取り可能な指示を実行するための処理装置1504(たとえば、プロセッサーコアなど)を含んでもよい。機械読み取り可能な指示は、複数の信号各々について信号品質の低い領域を検出するよう構成された信号加算平均部1506を含んでもよく、この場合、複数の信号各々が(たとえば、患者の身体の表面から同時に取得される)生体信号に対応する。また、信号加算平均部1506は、信号品質の低い被検出領域に基づいて、複数の信号のどれが粗悪チャネルと関連しているかを判断するよう構成されてもよい。信号加算平均部はさらに、仮想リードと最適化されたテンプレートとの間の一次従属性の強さに基づいて求められる着目領域(ROI)の加算平均に対応する加算平均化データを提供するよう構成されてもよく、この場合、仮想リードおよび最適化されたテンプレートは、粗悪チャネルとは関連せず、選択されたテンプレートに基づく複数の信号に基づいている。
【0071】
以上説明してきたものは、例である。もちろん、構成要素または方法論の考えられるすべての組み合わせを説明するのは不可能であるが、多くの他の組み合わせおよび入れ替えが可能であることは、当業者であれば認識するであろう。したがって、この開示は、添付の特許請求の範囲を含めて本出願の範囲に入るこのような変更、修正および改変をすべて包含することを意図している。
【0072】
本明細書で使用する場合、「含む」という表現は、含むがこれに限定されるものではないことを意味し、「含んでいる」という表現は、含んでいるがこれに限定されるものではないことを意味する。「基づく」という表現は、少なくとも部分的に基づくことを意味する。また、開示内容または特許請求の範囲で「不定冠詞a」、「不定冠詞an」、「第1の」または「もうひとつの」要素あるいはこれと同等のものが用いられる場合、これは、このような要素が1つまたは2つ以上含まれると解釈されるべきであり、このような要素が2つまたはそれ以上であることを求めるものでもなければ、排除するものでもない。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図22
図23
図24
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21