特許第6073552号(P6073552)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アーチャー−ダニエルズ−ミッドランド カンパニーの特許一覧

<>
  • 特許6073552-オルガノゲル組成物及び製造方法 図000004
  • 特許6073552-オルガノゲル組成物及び製造方法 図000005
  • 特許6073552-オルガノゲル組成物及び製造方法 図000006
  • 特許6073552-オルガノゲル組成物及び製造方法 図000007
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6073552
(24)【登録日】2017年1月13日
(45)【発行日】2017年2月1日
(54)【発明の名称】オルガノゲル組成物及び製造方法
(51)【国際特許分類】
   A61K 8/02 20060101AFI20170123BHJP
   A23D 7/01 20060101ALI20170123BHJP
   A23L 29/20 20160101ALI20170123BHJP
   A61K 8/37 20060101ALI20170123BHJP
   A61K 8/55 20060101ALI20170123BHJP
   A61K 8/64 20060101ALI20170123BHJP
   A61K 8/73 20060101ALI20170123BHJP
   A61K 9/14 20060101ALI20170123BHJP
   A61K 47/14 20060101ALI20170123BHJP
   A61K 47/24 20060101ALI20170123BHJP
   A61K 47/36 20060101ALI20170123BHJP
   A61K 47/42 20170101ALI20170123BHJP
【FI】
   A61K8/02
   A23D7/01
   A23L29/20
   A61K8/37
   A61K8/55
   A61K8/64
   A61K8/73
   A61K9/14
   A61K47/14
   A61K47/24
   A61K47/36
   A61K47/42
【請求項の数】14
【全頁数】18
(21)【出願番号】特願2011-536521(P2011-536521)
(86)(22)【出願日】2009年11月13日
(65)【公表番号】特表2012-508769(P2012-508769A)
(43)【公表日】2012年4月12日
(86)【国際出願番号】US2009064407
(87)【国際公開番号】WO2010057007
(87)【国際公開日】20100520
【審査請求日】2012年8月14日
【審判番号】不服2014-24447(P2014-24447/J1)
【審判請求日】2014年12月1日
(31)【優先権主張番号】61/114,510
(32)【優先日】2008年11月14日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】507303309
【氏名又は名称】アーチャー−ダニエルズ−ミッドランド カンパニー
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【弁理士】
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【弁理士】
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【弁理士】
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】バシース,シリーン,エス.
(72)【発明者】
【氏名】セブリー,ブルース,アール.
【合議体】
【審判長】 大熊 幸治
【審判官】 齊藤 光子
【審判官】 関 美祝
(56)【参考文献】
【文献】 特表2008−515911(JP,A)
【文献】 特表平10−500675(JP,A)
【文献】 米国特許第5639740(US,A)
【文献】 特開平5−39485(JP,A)
【文献】 特表2008−504271(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61K8/00-8/99
A61K9/00-9/72
A61K47/00-47/48
A61Q1/00-90/00
(57)【特許請求の範囲】
【請求項1】
熱可逆的で構造化されたリン脂質オルガノゲル組成物であって、
リン脂質組成物と;
ミリスチン酸イソプロピル、パルミチン酸イソプロピル、高オレイン酸ヒマワリ油、ポリグリコールエステル、モノグリセリド、ジグリセリド油、及びそれらの組み合わせから成る群から選択される有機溶媒と;
キサンタンガム、ジェランガム、デンプン、カラギーナン、アラビアゴム、アルギン酸、アカシアゴム、グアーゴム、寒天、ゼラチン、ローカストビーンガム、イヌリン、マルトデキストリン、ペクチン及びそれらの組み合わせから成る群から選択される水溶性ポリマーと;及び
である極性溶媒と;
を具え、
前記熱可逆的で構造化されたリン脂質オルガノゲル組成物に含まれる成分が液晶構造を形成し、
前記熱可逆的で構造化されたリン脂質オルガノゲル組成物を30−40℃の温度に加熱すると、前記熱可逆的で構造化されたリン脂質オルガノゲル組成物が融解し、前記熱可逆的で構造化されたリン脂質オルガノゲル組成物を30℃より低い温度に冷却すると、前記熱可逆で構造化されたリン脂質オルガノゲル組成物がゲルの形状を再形成することを特徴とする熱可逆的構造化されたリン脂質オルガノゲル組成物。
【請求項2】
前記水溶性ポリマーが、バイオベースであることを特徴とする請求項1に記載の熱可逆的で構造化されたリン脂質オルガノゲル組成物。
【請求項3】
更に、緑茶エキス、香料、アスコルビン酸、ソルビン酸カリウム、クエン酸、天然極性酸化防止剤、トコフェノール、ステロール、植物スレロール、ノコギリヤシ、カフェイン、海藻エキス、グレープシードエキス、ローズマリーエキス、アーモンドオイル、ラベンダーオイル、ペパーミントオイル、ブロメライン、カプサイシン、塩化ベンザルコニウム、トリクロサン、パラクロメタキシレノール(PCMX)、ヒアルロン酸、乳化剤、又はこれらの組み合わせから成る群から選択される化合物を具えることを特徴とする請求項1又は2に記載の熱可逆的で構造化されたリン脂質オルガノゲル組成物。
【請求項4】
更に、麻酔薬、非ステロイド性高炎症薬、筋弛緩剤、ステロイド、ホルモン、鎮痛剤、制吐剤、心・血管作動薬、抗甲状腺薬、神経障害薬、殺菌剤、消毒剤、又はこれらの組み合わせから成る群から選択される化合物を具えることを特徴とする請求項1又は2に記載の熱可逆的で構造化されたリン脂質オルガノゲル組成物。
【請求項5】
前記熱可逆的で構造化されたリン脂質オルガノゲル組成物が、ASTMラジオアイソトープ標準方法D6866により決定されるバイオベースであることを特徴とする請求項1〜4のいずれか1項に記載の熱可逆的で構造化されたリン脂質オルガノゲル組成物。
【請求項6】
前記リン脂質組成物が、90%より低いリン脂質、30%より低いホスファチジルコリン、又は10−95%のホスファチジルコリンを具えることを特徴とする請求項1又は2に記載の熱可逆的で構造化されたリン脂質オルガノゲル組成物。
【請求項7】
脱油レシチンと混合された前記水溶性ポリマーを含むことを特徴とする請求項1又は2に記載の熱可逆的で構造化されたリン脂質オルガノゲル組成物。
【請求項8】
請求項1又は2に記載の熱可逆的で構造化されたリン脂質オルガノゲル組成物の、食品、化粧品、パーソナルケア製品、又は工業製品における使用。
【請求項9】
請求項1〜7のいずれか1項に記載の熱可逆的構造化されたリン脂質オルガノゲル組成物を含む液晶製品を生産する方法であって、
有機溶媒とリン脂質組成物を混合して、有機相を生成するステップと;
水溶性ポリマーを極性溶媒に分散し、極性相を生成するステップと;及び
前記有機相と前記極性相を混合して、前記液晶製品を形成するステップと;
を具えることを特徴とする方法。
【請求項10】
更に、緑茶エキス、香料、アスコリビン酸、ソルビン酸カリウム、クエン酸、天然極性酸化防止剤、トコフェノール、ステロール、植物ステロール、ノコギリヤシ、カフェイン、海藻エキス、グレープシードエキス、ローズマリーエキス、アーモンドオイル、ラベンダーオイル、ペパーミントオイル、ブロメライン、カプサイシン、塩化ベンザルコニウム、トリクロサン、パラクロメタキシレノール(PCMX)、ヒアルロン酸、乳化剤、酵素、及びこれらの組み合わせから成る群から選択される化合物を前記有機相、前記極性相、又はこれらの組み合わせに添加するステップ、を更に具えることを特徴とする請求項9に記載の方法。
【請求項11】
前記有機溶媒と前記リン脂質組成物が、連続的に撹拌されて混合されることを特徴とする請求項9又は10に記載の方法。
【請求項12】
前記水溶性ポリマーが、連続的に撹拌されて前記極性溶媒に分散されることを特徴とする請求項9又は10に記載の方法。
【請求項13】
前記方法が、周囲温度と低剪断で行なわれることを特徴とする請求項9又は10に記載の方法。
【請求項14】
前記水溶性ポリマーがキサンタンガムである、請求項1〜7のいずれか1項に記載の熱可逆的で構造化されたリン脂質オルガノゲル組成物。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は概してオルガノゲルに関するものである。本開示はリン脂質組成物、有機溶媒、バイオベースの天然ポリマー及び極性溶媒を具える組成物を対象とする。本開示はリン脂質組成物、有機溶媒、バイオベースの天然ポリマー、及び極性溶媒を具える組成物の調整方法及び使用方法も対象とする。
【背景技術】
【0002】
液晶構造は一般に多くの有効成分を保持することができ、更に当該有効成分の拡散を制限して有効成分の放出を容易に制御することができる秩序構造となっている。しかし、これらの立方液晶相を作るために使用される成分のいくつかは、このような相に組み込むことが困難な場合がある。例えばモノグリセリドは、融点が高く室温でモノグリセリドペースト又はワックス状の固体となる、といったいくつかの望ましくない物理的特性を具えている。更に、モノグリセリドをそのような構造に形成するのに必要な平衡時間は、固体グリセリドを通過する水の拡散が遅れるため数時間又は数日かかる場合がある。
【0003】
もう一つの問題は、このような工程が経済的にも商業的にも実行可能でない、より長い保持時間、より高い製造温度、及び高剪断工程を必要とするので、立方液晶相を形成するための工程が煩雑であることである。
【0004】
レシチンオルガノゲルは、一般に水酸化、精製リン脂質、有機液体、及びゲル化剤から成る透明で熱力学的に安定な粘弾性及び生体適合性を有するゼリー状の相である。一般に用いられる精製リン脂質は、オルガノゲルを調整するために少なくとも80−95%のホスファチジルコリンを含有している。従来のオルガノゲル形成の欠点は、高価で容易に入手することのできない非常に高純度のレシチンを使用する必要があることである。合成ポリマー、プルロニックはレシチンオルガノゲルに用いられていた。使用されるプルロニックの量は、一般に約30−40%の間である。しかしプルロニックは、皮膚刺激性物質として特徴付けられることがある非イオン系トリブロック共重合体であり、バイオベースではなく、食品システムでは認可されておらず、及び安価な化合物ではない。
【発明の概要】
【0005】
本発明は従来技術の欠点を克服し、大気温度で高エネルギーを投入することなく、数分又は数時間の低平衡時間で立方液晶相を作る、より商業的に実行可能な方法を開示している。本明細書で開示したリン脂質オルガノゲルは、高秩序の液晶構造が独特であり、一般に高粘性の固体様ゲルであり、有効成分などの化合物を大量に運ぶ能力を有する。このように構造化されたリン脂質オルガノゲルは熱可逆的である。
【0006】
一の実施例では、組成物はリン脂質組成物、有機溶媒、バイオベースの天然ポリマー及び極性溶媒を具える。
【0007】
他の実施例では、製品を製造する工程が、有機溶媒とリン脂質組成物を混合し、有機相を生成するステップと;極性溶媒中でバイオベースの天然ポリマーを分散させ、極相を生成するステップと;有機相と極相を混合するステップと;を具える。
【0008】
追加の実施例では、組成物はリン脂質組成物、有機溶媒、キサンタンガム、及び極性溶媒を具える。リン脂質組成物、有機溶媒、キサンタンガム、及び極性溶媒は、組成物が透明で熱力学的に安定なゼリー状の粘弾性相となるような量存在し、そのような相を形成するように処理される。
【0009】
別の実施例では、熱可逆的で構造化されたリン脂質オルガノゲル組成物が、リン脂質組成物、有機溶媒、水溶性ポリマー、及び極性溶媒を具えている。
【0010】
更なる実施例では、製品を製造する工程が、有機溶媒とリン脂質組成物を混合し、有機相を製造するステップと;極性溶媒中で水溶性ポリマーを分散させ、極相を生成するステップと;有機相と極相を混合するステップと;を具える。
【0011】
追加の実施例では、熱可逆的で構造化されたリン脂質オルガノゲルを装填する方法を具え、その方法は熱可逆的で構造化されたリン脂質オルガノゲルを融解させるステップと、化合物を融解した熱可逆的で構造化されたリン脂質オルガノゲルと混合するステップと、及び融点より低い温度に熱可逆的で構造化されたリン脂質オルガノゲルを冷却してオルガノゲルがゲル形状を再形成するステップと、を具える。
【図面の簡単な説明】
【0012】
図1図1は、本発明のレシチンオルガノゲルの一実施例の代表的な粘度プロファイルである。
図2図2は、本発明のレシチンオルガノゲルの一の実施例の小角X線散乱を示している。
図3図3A及び図3Bは、本発明の有効成分を具えるレシチンオルガノゲルの実施例の粘度プロファイルである。
図4図4は、本発明のレシチンオルガノゲルの一実施例の小角X線錯乱を示す図である。
【発明を実施するための形態】
【0013】
一の実施例では、本発明はレシチンオルガノゲルを製造する工程、並びにそこから製造されたオルガノゲルを対象としている。
【0014】
別の実施例では、本発明はリン脂質組成物、有機溶媒、バイオベースの天然ポリマー、及び極性溶媒を具える組成物を具える。
【0015】
更に別の実施例では、この組成物は透明で熱力学的に安定なゼリー状の粘弾性相という形をとる。これは、リン脂質組成物、有機溶媒、バイオベースの天然ポリマー、及び極性溶媒を組成物内にそのような量配置して、組成物をそのような相を生成するように処理することによって達成できる。
【0016】
レシチンオルガノゲルは、化粧品やパーソナルケア製品においても広い適用範囲を有していると共に、膜を介して有効成分を輸送する経皮薬物送達システムにも有用である。精製されたリン脂質の浸透剤、可溶化剤としての優れた能力と膜形成特性が、精製されたリン脂質を生物活性輸送のアプリケーション用の優れた組成物にする。これらのオルガノゲルの局所適用は、傑出した小型化、皮膚バリアの強化、及び有効成分の均一な送達がもたらす利益を享受する。
【0017】
更なる実施例では、組成物は局所薬剤又は化粧品として構成してもよい。この実施例では、組成物は更に緑茶エキス、香料、アスコリビン酸、ソルビン酸カリウム、クエン酸、天然極性酸化防止剤、トコフェノール、ステロール又は植物ステロール、ノコギリヤシ、カフェイン、海藻エキス、グレープシードエキス、ローズマリーエキス、アーモンドオイル、ラベンダーオイル、ペパーミントオイル、ブロメライン、カプサイシン、塩化ベンザルコニウム、トリクロサン、パラクロメタキシレノール(PCMX)、ヒアルロン酸、乳化剤、又はこれらの組み合わせから成る群から選択される化合物を具える。他の実施例では、本発明のオルガノゲルを用いて、極性、非極性及び/又は両親媒性ゲスト分子を可溶化することができる。別の実施例では、本発明のオルガノゲルを用いて可溶化したり又は酵素を担持することができる。
【0018】
更に追加の実施例では、組成物を医薬送達組成物として構成することができる。このような実施例では、組成物は更に麻酔薬、非ステロイド性高炎症薬、筋弛緩剤、ステロイド、ホルモン、鎮痛剤、制吐剤、心・血管作動薬、抗甲状腺薬、高分子、神経障害薬、殺菌剤、消毒剤、又はこれらの組み合わせから成る群から選択される化合物を具える。
【0019】
別の実施例では、組成物を食品に使用することができる。このような実施例では、組成物の非限定的使用には、例えばスプレッド、マヨネーズ、ドレッシング、ショートニング、流体油、フィリング、アイシング、及びフロスティングなど食品に構造を提供し又は強化する構造化剤;ベーキングのアプリケーションなどで有効成分又は酵素を担持するのに使用できる乳化剤;有効成分を保持することができる膜形成組成物;スパイス又は調味料を保持する食品のコーティングまたは味付け;離型剤として用いることのできる膜形成組成物;飲料エマルション;又は栄養素若しくは生体活性化合物を送達する担体;が含まれるが、これに限定されない。
【0020】
一の実施例では、リン脂質組成物は様々な工程により製造されるレシチンを具える。開示された組成物及び方法における使用に適するレシチンには、粗フィルタレシチン、標準化された流体レシチン、脱油レシチン、化学的に及び酵素的に調整されたレシチン、アルコール分画レシチン、クロマトグラフィーにより精製されたレシチン、精製レシチン、及びこれらの混合が含まれるが、これらに限定されない。HLB値が約4.0の粗フィルタレシチンを用いることができる。標準化されたレシチンはHLB値10.0から24.0の添加物を具えており、その結果、HLB値7.0から10.0を有するレシチン組成物を用いることができる。レシチンの初期HLB値にかかわらず、いかなるレシチン又はレシチンの組み合わせも、開示された組成物および方法における使用に適している。
【0021】
別の実施例では、リン脂質組成物はいくらかの純度を具えている。様々な実施例では、リン脂質組成物は90%より低いリン脂質、30%より低いホスファチジルコリン、10−95%の間のホスファチジルコリン含有量、又はそれらの組み合わせを具える。90%より低いリン脂質又は30%より低いホスファチジルコリンを具えるレシチンの使用は、そのような組成物は90%より多いリン脂質又は30%より多いホスファチジルコリンを具えるレシチン組成物より、製造がより経済的であるので、有益である。
【0022】
一の実施例では、レシチンはイリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なULTRALEC Pブランドの脱油レシチンを具える。脱油レシチンは、通常粉末、細粒、又は顆粒状の乾燥した形状であり、最低97.0%(AOCS Ja 4−46により決定)のアセトン不溶性分、最大1.0%(AOCS Ja 2b−87により決定)の水分、最大0.05%(AOCS Ja 3−87により決定)のヘキサン不溶性分、及び約7の有効HLB値を有する。
【0023】
別の実施例では、レシチンはイリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なYEKLIN SSブランドのレシチンを具える。このレシチンは明るい琥珀色の液体であり、最低62.00%(AOCS Ja 4−46により決定)のアセトン不溶性分を具え、30.00mg KOH/g(AOCS Ja 6−55により決定)の最大酸値、最大1.0%(AOCS Ja 2b−87により決定)の水分、14.00(AOCS Ja 9−87により決定)の最大表示色(ガードナー色数で)、最大0.05%(AOCS Ja 3−87により決定)のヘキサン不溶性分、77度における最大粘度100ストークス(AOCS Ja−87により決定)、及び約4の有効HLB値を有する。
【0024】
更に別の実施例では、レシチンはイリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なTHERMOLEC WFCブランドの水酸化大豆レシチンを具える。このレシチンは半透明の液体であり、最低60.00%(AOCS Ja 4−46により決定)のアセトン不溶性分を具え、30.00mg KOH/g(AOCS Ja 6−55により決定)の最大酸値、最大1.0%(AOCS Ja 2b−87により決定)の水分、13.00(AOCS Ja 9−87により決定)の最大表示色(ガードナー色数で)、最大0.05%(AOCS Ja 3−87により決定)のヘキサン不溶性分、最大10.0(AOCS Ja 8−87により決定)の過酸化物価、77度における最大粘度100ストークス(AOCS Ja 11−87により決定)を有する。
【0025】
追加の実施例では、レシチンはイリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手できるTHERMOLEC 200ブランドの大豆レシチンを具える。このレシチンは明るい琥珀色の液体であり、最小62.00%(AOCS Ja 4−46により決定)のアセトン不溶性分を具え、30.00mg KOH/g(AOCS Ja 6−55により決定)の最大酸値、最大0.8%(AOCS Ja 2b−87により決定)の水分、14.00(AOCS Ja 9−87により決定)の最大表示色(ガードナー色数で)、最大0.05%(AOCS Ja 3−87により決定)のヘキサン不溶性分、最大5.0(AOCS Ja 8−87により決定)の過酸化物価、77度における最大粘度75ストークス(AOCS Ja11−87により決定)、及び約7の有効HLB値を有する。
【0026】
更に別の実施例では、バイオベースの天然ポリマーはキサンタンガム、ジェランガム、セルロースと変性セルロース産物、デンプン、キチン、カラギーナン、アラビアゴム、アルギン酸、アカシアゴム、グアーゴム、寒天、ゼラチン、ローカスビーンガム、イヌリン、マルトデキストリン、ペクチン、ベータグルカン、又はそれらの組み合わせを具える。追加の実施例では、バイオベースの天然高分子が0.5−1.0%の濃度で含まれていてもよい。他の実施例では、合成又は天然の水溶性ポリマーを用いることができる。
【0027】
一の実施例では、有機溶媒はミリスチン酸イソプロピル、ラウリン酸エチル、ミリスチン酸エチル、パルミチン酸イソプロピル、シクロペンタン、シクロオクタン、トランス−デカリン、トランス−ピナン、n−ペンタン、n−ヘキサン、n−ヘキサデカン、トリプロピルアミン、1,7−オクタジエン、ラウリン酸ブチル、シクロドデカン、ジブチルエーテル、イソオクタン、n−オクタン、トリブチルアミン、トリイソブチルアミン、鉱油、トリグリセリド及び/又はジグリセリド油などの植物油、ポリオールエステル、モノグリセリド、ジグリセリド、脂肪酸エステル、又はそれらの組み合わせを具える。
【0028】
一の実施例では、極性溶媒は水、グリセロール、エチレングリコロール、プロピレングリコロール、ホルムアミド、イソソルビド、イソソルビド誘導体、ソルビトール、エリスリトール、その他の多価アルコール、又はそれらの組み合わせを具える。
【0029】
一の実施例では、本明細書に記載された組成物はバイオベースである。製品のバイオベース含有量はASTM国際ラジオアイソトープ標準方法D6866によって検証することができる。ASTM国際ラジオアイソトープ標準方法D6866は、材料や製品中のバイオベースの炭素量に基づいて、材料のバイオベース含有量を、材料又は製品中の全有機炭素の重量(質量)パーセントとして決定する。バイオ由来及びバイオベース製品は、生物学的に由来する組成物の炭素同位体比特性を有する。
【0030】
追加的な実施例において、本発明の組成物の成分は食用及び/又は食品での使用が認可されている。
【0031】
本発明を更に以下の実施例を用いて説明する。
【実施例1】
【0032】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なYEKLIN SSブランドの80重量%の濃度のレシチンを16%のミリスチン酸イソプロピルに添加して、室温で連続的に撹拌しミリスチン酸イソプロピル中にレシチンを溶解させて有機相を調整した。
【0033】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なNOVAXAN Dブランドのキサンタンガムである、0.6−1.0%の水分散性透明キサンタンガムを室温で蒸留水中に分散させて極性相を調整した。
【0034】
4%の濃度のこの極性相を室温で連続的に撹拌し、ゆっくりと有機相に導入した。この時点でレシチン有機相は、ニュートン流体からレシチンオルガノゲルと呼ばれる粘性ゲル相に自然に変化した。レシチンオルガノゲルは加熱すると流体になり、冷却するとレシチンオルガノゲルに戻って自己集合し、レシチンオルガノゲルの熱可逆的な特性を示した。
【実施例2】
【0035】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なTHERMOLEC WFCブランドのレシチンである、85重量%の濃度のアセチル化及びヒドロキシル化耐熱性レシチンを11重量%濃度のミリスチン酸イソプロピルに添加して、室温で連続的に撹拌しレシチンをミリスチン酸イソプロピル中に溶解させて有機相を調整した。
【0036】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なNOVAXAN Dブランドのキサンタンガムである、0.6−1.0%の水分散性透明キサンタンガムを室温で蒸留水中に分散させて極性相を調整した。
【0037】
4%の濃度のこの極性相を室温で連続的に撹拌し、ゆっくりと有機相に導入した。この時点でレシチン有機相は、ニュートン流体からレシチンオルガノゲルと呼ばれる粘性ゲル相に自然に変化した。レシチンオルガノゲルは加熱すると流体になり、冷却するとレシチンオルガノゲルに戻って自己集合し、レシチンオルガノゲルの熱可逆的な特性を示した。
【実施例3】
【0038】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なTHERMOLEC 200ブランドのレシチンである、80重量%の濃度のアセチル化耐熱性レシチンをミリスチン酸イソプロピルに添加して、室温で連続的に撹拌しレシチンをミリスチン酸イソプロピル中に溶解させて有機相を調整した。
【0039】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なNOVAXAN Dブランドのキサンタンガムである、0.6−1.0%の水分散性透明キサンタンガムをに室温で蒸留水中に分散させて極性相を調整した。
【0040】
4%の濃度のこの極性相を室温で連続的に撹拌し、ゆっくりと有機相に導入した。この時点でレシチン有機相は、ニュートン流体からレシチンオルガノゲルと呼ばれる粘性ゲル相に自然に変化した。レシチンオルガノゲルは加熱すると流体になり、冷却するとレシチンオルガノゲルに戻って自己集合し、レシチンオルガノゲルの熱可逆的な特性を示した。
【実施例4】
【0041】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なULTRALEC Pブランドのレシチンである、80重量%の濃度の脱油レシチンをミリスチン酸イソプロピルに添加して、室温で連続的に撹拌しレシチンをミリスチン酸イソプロピル中に溶解させて有機相を調整した。
【0042】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なNOVAXAN Dブランドのキサンタンガムである、0.6−1.0%の水分散性透明キサンタンガムを室温で蒸留水中に分散させて極性相を調整した。
【0043】
4%の濃度のこの極性相を室温で連続的に撹拌し、ゆっくりと有機相に導入した。この時点でレシチン有機相は、ニュートン流体からレシチンオルガノゲルと呼ばれる粘性ゲル相に自然に変化した。レシチンオルガノゲルは加熱すると流体になり、冷却するとレシチンオルガノゲルに戻って自己集合し、レシチンオルガノゲルの熱可逆的な特性を示した
【実施例5】
【0044】
85重量%の濃度のアルコール分画レシチン(約40%のホスファチジルコリン)を11重量%の濃度のミリスチン酸イソプロピルに添加して、室温で連続的に撹拌しレシチンをミリスチン酸イソプロピル中に溶解させて有機相を調整した。
【0045】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なNOVAXAN Dブランドのキサンタンガムである、0.6−1.0%の水分散性透明キサンタンガムを室温で蒸留水中に分散させて有機相を調整した。
【0046】
4%の濃度のこの極性相を室温で連続的に撹拌し、ゆっくりと有機相に導入した。この時点でレシチン有機相は、ニュートン流体からレシチンオルガノゲルと呼ばれる粘性ゲル相に自然に変化した。レシチンオルガノゲルは加熱すると流体になり、冷却するとレシチンオルガノゲルに戻って自己集合し、レシチンオルガノゲルの熱可逆的な特性を示した。
【実施例6】
【0047】
コネチカット州、オックスフォードのアメリカンレシチンカンパニー社から入手可能な高純度のレシチンである、85重量%の濃度のPHOSPHOLIPON 90ブランドのレシチン(約90%のホスファチジルコリン)を11重量%の濃度のミリスチン酸イソプロピルに添加して、室温で連続的に撹拌しレシチンをミリスチン酸イソプロピル中に溶解させて有機相を調整した。
【0048】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なNOVAXAN Dブランドのキサンタンガムである、0.6−1.0%の水分散性透明キサンタンガムを室温で蒸留水中に分散させて極性相を調整した。
【0049】
4%の濃度のこの極性相を室温で連続的に撹拌し、ゆっくりと有機相に導入した。この時点でレシチン有機相は、ニュートン流体からレシチンオルガノゲルと呼ばれる粘性ゲル相に自然に変化した。レシチンオルガノゲルは加熱すると流体になり、冷却するとレシチンオルガノゲルに戻って自己集合し、レシチンオルガノゲルの熱可逆的な特性を示した。
【実施例7】
【0050】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なYELKIN SSブランドのレシチンである、80重量%の濃度の標準化された液体レシチンをリスチン酸イソプロピルに添加して、室温で連続的に撹拌しレシチンをミリスチン酸イソプロピル中に溶解させて有機相を調整した。イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能な2%の濃度のビタミンEをこの有機相に添加し撹拌した。
【0051】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なNOVAXAN Dブランドのキサンタンガムである、0.6−1.0%の水分散性透明キサンタンガムを室温で蒸留水中に分散させて極性相を調整した。カンザス州、ニューセンチュリー、米国ドニスコ社より入手可能なGUARDIANブランドの2%の濃度の緑茶エキスを極性相に添加した。
【0052】
4%の濃度のこの極性相を室温で連続的に撹拌し、ゆっくりと有機相に導入した。この時点でレシチン有機相は、ニュートン流体からレシチンオルガノゲルと呼ばれる粘性ゲル相に自然に変化した。レシチンオルガノゲルは加熱すると流体になり、冷却するとレシチンオルガノゲルに戻って自己集合し、レシチンオルガノゲルの熱可逆的な特性を示した。
【実施例8】
【0053】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なYELKIN SSブランドの80重量%の濃度のレシチンをミリスチン酸イソプロピルに添加して、室温で連続的に撹拌しレシチンをミリスチン酸イソプロピル中に溶解させて、有機相を調整した。イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なCARDIOAIDブランドの2%の濃度の植物ステロールをこの有機相に添加し、加熱及び撹拌して固体を溶解させた。一旦固体が溶解したら、固体相を室温まで冷ましてもよい。
【0054】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なNOVAXAN Dブランドのキサンタンガムである、0.6−1.0%の水分散性透明キサンタンガムを室温で蒸留水中に分散させて極性相を調整した。カンザス州、ニューセンチュリー、米国ドニスコ社より入手可能なGUARDIANブランドの2%の濃度の緑茶エキスを極性相に添加した。
【0055】
4%の濃度のこの極性相を室温で連続的に撹拌し、ゆっくりと有機相に導入した。この時点でレシチン有機相は、ニュートン流体からレシチンオルガノゲルと呼ばれる粘性ゲル相に自然に変化した。レシチンオルガノゲルは加熱すると流体になり、冷却するとレシチンオルガノゲルに戻って自己集合し、レシチンオルガノゲルの熱可逆的な特性を示した
【実施例9】
【0056】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なULTRALEC Pブランドの脱油レシチン約5グラムをパルミチン酸イソプロピル中で高剪断下で分散させて有機相を調整した。
【0057】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なNOVAXAN 80ブランドの透明なキサンタンガムである、2%の水分散性キサンタンガムを室温で水中に分散させて極性相を調整して、透明なゲルを製造した。
【0058】
有機相を穏やかに混合して極性相に組み込み、キサンタン−レシチンオルガノゲルを調整した。
【実施例10】
【0059】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なYELKIN SSブランドの80重量%の濃度のレシチンをミリスチン酸イソプロピルに添加して有機相を調整した。室温で連続的に撹拌してレシチンをミリスチン酸イソプロピル中に溶解した。
【0060】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なNOVAXAN Dブランドのキサンタンガムである、0.75%(w/v)の水分散性透明キサンタンガムを、イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能な水分散性粉末レシチンである、1%(w/v)のULTRALEC Pと、0.5%のソルビン酸カリウムと共に室温で蒸留水中に分散させて極性相を調整した。
【0061】
4−25%(w/v)の濃度のこの極性相を室温で連続的に撹拌し、ゆっくりと有機相に導入した。レシチン有機相は、ニュートン流体からレシチンオルガノゲルと呼ばれる粘性ゲル相に自然に変化した。レシチンオルガノゲルは加熱すると流体になり、冷却するとレシチンオルガノゲルに戻って自己集合し、レシチンオルガノゲルの熱可逆的な特性を示した。
【実施例11】
【0062】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なYELKIN SSブランドの70重量%の濃度のレシチンを、花王株式会社から入手可能な10%(w/v)のパルミチン酸イソプロピルと10%(w/v)のジグリセリド油に添加して有機相を調整した。有機相を形成させるため、室温で連続的に撹拌しながらレシチンをパルミチン酸イソプロピルとジグリセリド油の混合液中に溶解させた。
【0063】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なNOVAXAN Dブランドのキサンタンガムである、0.75%(w/v)の水分散性透明キサンタンガムを、イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能な水分散性粉末レシチンである、1%(w/v)のULTRALEC Pと共に、0.5%のソルビン酸カリウムと室温で蒸留水中に分散させて極性相を調整した。
【0064】
10%(w/v)の濃度のこの極性相を室温で連続的に撹拌し、ゆっくりと有機相に導入した。レシチン有機相は、ニュートン流体からレシチンオルガノゲルと呼ばれる粘性ゲル相に自然に変化した。レシチンオルガノゲルは加熱すると流体になり、冷却するとレシチンオルガノゲルに戻って自己集合し、レシチンオルガノゲルの熱可逆的な特性を示した。
【実施例12】
【0065】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なYELKIN SSブランドの70重量%の濃度のレシチンを、10%(w/v)のパルミチン酸イソプロピルと10%(w/v)の高オレイン酸ヒマワリ油に添加して有機相を調整した。室温で連続的に撹拌しながらレシチンをパルミチン酸イソプロピルと高オレイン酸ヒマワリ油の混合液中に溶解させた。
【0066】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なNOVAXAN Dブランドのキサンタンガムである、0.75%(w/v)の水分散性透明キサンタンガムを、イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能な水分散性粉末レシチンである、ULTRALEC Pと共に、0.5%のソルビン酸カリウムと室温で蒸留水中に分散させて極性相を調整した。
【0067】
10%(w/v)の濃度のこの極性相を室温で連続的に撹拌し、ゆっくりと有機相に導入した。レシチン有機相は、ニュートン流体からレシチンオルガノゲルと呼ばれる粘性ゲル相に自然に変化した。レシチンオルガノゲルは加熱すると流体になり、冷却するとレシチンオルガノゲルに戻って自己集合し、レシチンオルガノゲルの熱可逆的な特性を示した。
【実施例13】
【0068】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なYELKIN SSブランドの70重量%の濃度のレシチンを、花王株式会社から入手可能な20%(w/v)のジグリセリド油に添加して有機相を調整し、室温で連続的に撹拌しながらレシチンをジグリセリド油の中に溶解させた。
【0069】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なNOVAXAN Dブランドのキサンタンガムである、0.75%(w/v)の水分散性透明キサンタンガムを、イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能な水分散性粉末レシチンである、1%(w/v)のULTRALEC Pと共に、0.5%のソルビン酸カリウムと室温で分散させて極性相を調整した。
【0070】
10%(w/v)の濃度のこの極性相を室温で連続的に撹拌し、ゆっくりと有機相に導入した。このレシチン有機相は、ニュートン流体からレシチンオルガノゲルと呼ばれる粘性ゲル相に自然に変化した。レシチンオルガノゲルは加熱すると流体になり、冷却するとレシチンオルガノゲルに戻って自己集合し、レシチンオルガノゲルの熱可逆的な特性を示した。
【実施例14】
【0071】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なYELKIN SSブランドの75重量%の濃度のレシチンを、ポリグリコールエステルである、20%(w/v)のPGE 3−4−0(スイス、バーゼル、ロンザグループ社から入手可能なPolyaldo 3−4−0)に添加して、室温で連続的に撹拌しながらレシチンをPGE 3−4−0の中に溶解させて有機相を調整した。
【0072】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なNOVAXAN Dブランドのキサンタンガムである、0.75%(w/v)の水分散性透明キサンタンガムと、イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能な水分散性粉末レシチンである、ULTRALEC Pと0.5%のソルビン酸カリウムを室温で蒸留水中に分散させて極性相を調整した。
【0073】
5%(w/v)の濃度のこの極性相を室温で連続的に撹拌し、 ゆっくりと有機相に導入した。レシチン有機相は、ニュートン流体からレシチンオルガノゲルと呼ばれる粘性ゲル相に自然に変化した。レシチンオルガノゲルは加熱すると流体になり、冷却するとレシチンオレガノゲルに戻って自己集合し、レシチンオルガノゲルの熱可逆的な特性を示した。
【実施例15】
【0074】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なYELKIN SSブランドの75重量%の濃度のレシチンを、ポリグリコールエステルである、10%(w/v)のPGE 3−4−0(スイス、バーゼル、ロンザグループ社から入手可能なPolyaldo 3−4−0)と花王株式会社から入手可能な10%(w/v)のジグリセリド油に添加して、室温で連続的に撹拌しながらレシチンをPGE 3−4−0とジグリセリド油の混合液中に溶解させて有機相を調整した。
【0075】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なNOVAXAN Dブランドのキサンタンガムである、0.75%(w/v)の水分散性透明キサンタンガムを、イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能な水分散性粉末レシチンである、ULTRALEC Pと共に、防腐剤としての0.5%のソルビン酸カリウムと室温で蒸留水中に分散させることにより極性相を調整した。
【0076】
5%(w/v)の濃度のこの極性相を室温で連続的に撹拌し、ゆっくりと有機相に導入した。レシチン有機相は、ニュートン流体からレシチンオルガノゲルと呼ばれる粘性ゲル相に自然に変化した。レシチンオルガノゲルは加熱すると流体になり、冷却するとレシチンオルガノゲルに戻って自己集合し、レシチンオルガノゲルの熱可逆的な特性を示した。
【0077】
レオロジー測定は、円錐状/プレート状のジオメトリー(角度が2°で直径が40mm;ギャップが51mm)を有するAR−2000応力制御レオメーター(TA)上で行った。発振周波数掃引は、25℃で0.1−500ラジアン/秒の範囲の角周波数で、12%の歪み率で行われた。図1は、角周波数(ラジアン/秒)に対して貯蔵弾性率(G’)と損失弾性率(G”)をプロットしたものを示している。損失弾性率、G”は、常に貯蔵弾性率、G’より高く、検討した全周波数範囲にわたって、より高いゲルの粘性挙動を示した。
【0078】
偏光顕微鏡法(PLM)を用いて、組成物が立方液晶相を形成するか否かをみることができる。この顕微鏡で得られる構造からコロイド相を規定することができる。異方性相構造(ラメラと六方晶系)とは異なり、立方晶液相は複屈折性を示さず、顕微鏡内で暗く見えた。
【0079】
小角散乱X線(SAXS)によっても立方液晶相を確認することができる。イスラエル、ヘブライ大学のバサリ応用化学研究所で構造とバルク液体結晶相の内部秩序度を同定する研究が行われた。図2に、SAXS散乱曲線を示している。0.999、1.1403、1.6205、1.9137、1.9916、及び2.3134nmは間隔比率
に変換されている。逆格子空間のプロットである1/dh、k、l 対6つのすべての回折ピークの(h+k+l1/2の値は、R=0.9984の直線性を示している。インデックススペースは、格子定数104Åを有する立方体対称の空間群Fm3mに変換できる。この値は、R.Efat、A、Aserin、E.Kesselman、D.Danino、E.Wachtel、及びN.Garti著、コロイド及び表面 A:物理化学と工学的側面 299(2007)、133−145頁で測定されたモノオレイン−水−エタノールの立方体共連続相から導き出されたものに類似していた。
【実施例16】
【0080】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なYELKIN SSブランドの65重量%の濃度のレシチンを、花王株式会社から入手可能な10%(w/v)のパルミチン酸イソプロピルと10%(w/v)のジグリセリド油に添加して、室温で連続的に撹拌しながらレシチンをパルミチン酸イソプロピルとジグリセリド油の混合液中に溶解させた。撹拌時にビタミンE6グラムとグリセロール6グラムを添加した。
【0081】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なNOVAXAN Dブランドのキサンタンガムである、0.75%(w/v)の水分散性透明キサンタンガムを、イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能な水分散性粉末レシチンである、1%(w/v)のULTRALEC Pと共に、0.5%のソルビン酸カリウムと室温で蒸留水中に分散させて極性相を調整した。
【0082】
15%(w/v)の濃度のこの極性相を室温で連続的に撹拌し、ゆっくりと有機相に導入した。レシチン有機相は、ニュートン流体からレシチンオルガノゲルと呼ばれる粘性ゲル相に自然に変化した。レシチンオルガノゲルは加熱すると流体になり、冷却するとレシチンオルガノゲルに戻って自己集合し、レシチンオルガノゲルの熱可逆的な特性を示した。
【実施例17】
【0083】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なYELKIN SSブランドの70重量%の濃度のレシチンと、ポリグリコールエステルである、10%(w/v)のPGE 3−4−0(スイス、バーゼル、ロンザグループ社から入手可能なPolyaldo 3−4−0)と、10%(w/v)の高オレイン酸ヒマワリ油と5グラムのモノグリセリド(Dimodan SO/D K−A、カンザス州、ニューセンチュリー、米国ドニスコ社より入手可能)を添加して有機相を調整した。室温で連続的に撹拌しながらレシチンを、PGE 3−4−0と、高オレイン酸ヒマワリ油と、モノグリセリド油の混合液中に溶解させた。
【0084】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なNOVAXAN Dブランドのキサンタンガムである、0.75%(w/v)の水分散性透明キサンタンガムを、イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能な水分散性粉末レシチンである、1%(w/v)のULTRALEC Pと共に、0.5%のソルビン酸カリウムと室温で蒸留水中に分散させることにより極性相を調整した。
【0085】
10%(w/v)の濃度のこの極性相を室温で連続的に撹拌して、ゆっくりと有機相に導入した。レシチン有機相は、ニュートン流体からレシチンオルガノゲルと呼ばれる粘性ゲル相に自然に変化した。レシチンオルガノゲルは加熱すると流体になり、冷却するとレシチンオルガノゲルに戻って自己集合し、レシチンオルガノゲルの熱可逆的な特性を示した。
【実施例18】
【0086】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なYELKIN SSブランドの75重量%の濃度のレシチンを、ポリグリコールエステルである、10%(w/v)のPGE 3−4−0(スイス、バーゼル、ロンザグループ社から入手可能なPolyaldo 3−4−0)と、10%(w/v)の高オレイン酸ヒマワリ油と、5グラムのモノグリセリド(Dimodan SO/D K−A、カンザス州、ニューセンチュリー、米国ドニスコ社より入手可能)に添加して有機相を調整した。室温で連続的に撹拌しながらレシチンを、PGE 3−4−0と、高オレイン酸ヒマワリ油と、モノグリセリド油の混合液中に溶解させた。撹拌しながら6%のグリセロールを混合液に添加した。
【0087】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なNOVAXAN Dブランドのキサンタンガムである、0.75%(w/v)の水分散性透明キサンタンガムを、イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能な水分散性粉末レシチンである、1%(w/v)のULTRALEC Pと共に、0.5%のソルビン酸カリウムと室温で蒸留水中に分散させて極性相を調整した。
【0088】
5%(w/v)の濃度のこの極性相を室温で連続的に撹拌し、ゆっくりと有機相に導入した。レシチン有機相は、ニュートン流体からレシチンオルガノゲルとも呼ばれる粘性ゲル相に自然に変化した。レシチンオルガノゲルは加熱すると流体になり、冷却するとレシチンオルガノゲルに戻って自己集合し、レシチンオルガノゲルの熱可逆的な特性を示した。
【実施例19】
【0089】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なYELKIN SSブランドの67重量%の濃度のレシチンを、ポリグリコールエステルである、8.4%(w/v)のPGE 3−4−0(スイス、バーゼル、ロンザグループ社から入手可能なPolyaldo 3−4−0)と、17.6%(w/v)の高オレイン酸ヒマワリ油と、イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なCARDIOAIDブランドの10グラムのステロールに添加して有機相を調整し、これを26グラムの油相に添加した。このレシチンは、室温で連続的に撹拌して、PGE 3−4−0と、CARDIOAIDブランドのステロールを含んだ高オレイン酸ヒマワリ油の混合液中に溶解させた。
【0090】
イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能なNOVAXAN Dブランドのキサンタンガムである、0.75%(w/v)の水分散性透明キサンタンガムを、イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能な水分散性粉末レシチンである、1%(w/v)のULTRALEC Pと共に0.5%のソルビン酸カリウムと室温で蒸留水中に分散させて極性相を調整した。
【0091】
7%(w/v)の濃度のこの極性を室温で連続的に撹拌し、ゆっくりと有機相に導入した。レシチン有機相は、ニュートン流体からレシチンオルガノゲルと呼ばれる粘性ゲル相に自然に変化した。レシチンオルガノゲルは加熱すると流体になり、冷却するとレシチンオルガノゲルに戻って自己集合し、レシチンオルガノゲルの熱可逆的な特性を示した。
【実施例20】
【0092】
ポリグリコールエステル及び/又は植物油を具えるオルガノゲルの食用バージョンを、10−40%の割合で高オレインヒマワリ油に配合する。得られた混合物を40−50℃に加熱して冷却すると基質上に膜を形成するようなオイル状の稠度の鮮明で透明な液体を得る。これはとりわけ、限定するものではないがチップスを含むスナック食品のアプリケーション用の香辛料、香料及び/又は着色料の担体としての噴霧可能な油として使用することができる。
【実施例21】
【0093】
本明細書で調整されたオルガノゲルは、全て熱可逆的である。これらのゲルの熱可逆的な性質を生かして、レシチンオルガノゲルを作った後生理活性物質を装填した。レシチンオルガノゲルは実施例6に記載されているように調整した。
【0094】
このレシチンオルガノゲルを40℃に加熱し完全に融解させて、連続的に撹拌し、イリノイ州、ジケーター、アーチャー ダニエルズ ミッドランド社から入手可能な非極性の酸化防止剤である、NOVATOL 6−92ブランドのビタミンEをゆっくりと融解レクチンオルガノゲルに導入し、続いてUSPグレードのグリセロールに15%の濃度の緑茶エキスを徐々に添加した。融解レシチンオルガノゲルを室温まで冷却すると、それぞれの相においてレシチンのオルガノゲルの性質を変化させることなく、グリセロール中に緑茶エキスを有するレシチンオルガノゲルが、ビタミンEと極性相を分割して再形成された。ビタミンEと緑茶エキスを具えるレクチンオルガノゲルの熱可逆的な性質は、様々な濃度でビタミンEと緑茶エキスを添加する前と後に粘度を測定することにより確認される。
【0095】
レオロジー測定は、円錐状/プレート状のジオメトリー(角度が2°で直径が40mm;ギャップが51mm)を有するAR−2000 応力制御レオメーター(TA)上で行った。発振周波数掃引は、25℃で0.1−500ラジアン/秒の範囲の角周波数で、12%の歪み率で行った。
【0096】
図3A図3Bに示すように、粘性プロファイルは一定である。図3A図3Bは、角周波数(ラジアン/秒)に対して貯蔵弾性率(G’)と損失弾性率(G”)をプロットしたものを示している。損失弾性率、G”は、常に貯蔵弾性率、G’より高く、検討した全周波数範囲にわたり、より高いレシチンオルガノゲルの粘性挙動を示した。
【0097】
レシチンオルガノゲルを調整した後は、いつでもあらゆる所望の有効成分をレシチンオレガノゲルに添加することができ、この特性は本発明のレシチンオルガノゲル固有のものである。
【0098】
偏光顕微鏡法(PLM)を用いて、組成物が立方液晶相を形成するか否かをみることができる。この顕微鏡で得られる構造からコロイド相を規定することができる。異方性相構造(ラメラと六方晶系)とは異なり、立方液晶相は複屈折性を示さず、顕微鏡内で暗く見えた。
【0099】
小角散乱X線(SAXS)によっても立方液晶相を確認することができる。イスラエル、ヘブライ大学のバサリ応用化学研究所で、構造とバルク液体結晶相の内部秩序度を同定する研究が行われた。図4で、SAXS散乱曲線を間隔比率
に変換されている。0.692、0.7783、1.1288、1.318、1.3763、1.7759、1.9531、及び2.0606nmにおける8つの大きなピークをもって示している。逆格子空間のプロットである1/dh、k、l 対6つのすべての回折ピークの(h+k+l1/2の値は、R=0.9999の直線性を示している。インデックススペースは、格子定数157Åを有する立方対称の空間群Fm3mと変換できる。この値は、130Å格子定数を有する立方体共連続相の存在のためのGMO−水−混合物から導き出されたものに類似していた。これは、R.Efat、A、Aserin、E.Kesselman、D.Danino、E.Wachtel、及びN.Garti著、コロイド及び表面A:物理化学と工学的側面299(2007)、133−145頁で述べられているように、添加されたグリセロールと立方液晶に組み込まれたビタミンEアセテートのより大きい分子の影響といえる。
【0100】
本発明を特定の実施例、組成物、及びその使用を用いて記載した。しかし、発明の精神及び範囲を逸脱することなく、あらゆる例示の実施例の様々な置換、変更、又は組み合わせがなされることは、当業者に認識されている。従って、本発明は例示の実施例の明細書に限定されるのではなく、別記の出願当初の特許請求の範囲に制限されるものである。
図1
図2
図3
図4