特許第6075722号(P6075722)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三星テクウィン株式会社の特許一覧

<>
  • 特許6075722-作業機械 図000002
  • 特許6075722-作業機械 図000003
  • 特許6075722-作業機械 図000004
  • 特許6075722-作業機械 図000005
  • 特許6075722-作業機械 図000006
  • 特許6075722-作業機械 図000007
  • 特許6075722-作業機械 図000008
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6075722
(24)【登録日】2017年1月20日
(45)【発行日】2017年2月8日
(54)【発明の名称】作業機械
(51)【国際特許分類】
   H05K 13/04 20060101AFI20170130BHJP
   B23Q 3/08 20060101ALI20170130BHJP
【FI】
   H05K13/04 Z
   B23Q3/08 A
【請求項の数】3
【全頁数】8
(21)【出願番号】特願2012-140139(P2012-140139)
(22)【出願日】2012年6月21日
(65)【公開番号】特開2014-7200(P2014-7200A)
(43)【公開日】2014年1月16日
【審査請求日】2015年4月10日
(73)【特許権者】
【識別番号】500548884
【氏名又は名称】ハンファテクウィン株式会社
【氏名又は名称原語表記】HANWHA TECHWIN CO.,LTD.
(74)【代理人】
【識別番号】100082164
【弁理士】
【氏名又は名称】小堀 益
(74)【代理人】
【識別番号】100105577
【弁理士】
【氏名又は名称】堤 隆人
(74)【代理人】
【識別番号】100182707
【弁理士】
【氏名又は名称】小原 博生
(72)【発明者】
【氏名】朴 敬聖
【審査官】 中田 誠二郎
(56)【参考文献】
【文献】 特開2012−110118(JP,A)
【文献】 特開2004−006605(JP,A)
【文献】 特開平04−261722(JP,A)
【文献】 特開2006−173442(JP,A)
【文献】 特開2005−210078(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H05K 13/04
B23Q 3/08
(57)【特許請求の範囲】
【請求項1】
作業ヘッドがガイドビームに沿って移動、前記ガイドビームに送電部を有するとともに、前記送電部から電力を受電する受電部を前記作業ヘッドに有し、前記作業ヘッドが、前記送電部から非接触で前記受電部を介して受電した電力により駆動す作業機械において、
前記送電部から前記受電部への非接触での電力の伝送が電界結合方式であり、前記送電部は、前記ガイドビームの上面及び下面から垂直に突き出すように設置した送電電極を備え、前記受電部は、前記送電電極と対向するように前記作業ヘッドの上面及び下面から垂直に突き出して設置した受電電極を備えることを特徴とする作業機械。
【請求項2】
複数の作業ヘッドが同一のガイドビームに沿って移動する請求項に記載の作業機械。
【請求項3】
前記作業ヘッドが、無線通信手段、正圧発生手段及び負圧発生手段を備える請求項1又は2に記載の作業機械。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、作業ヘッドがガイドビームに沿って移動する作業機械に関する。
【背景技術】
【0002】
かかる作業機械の一例として、ICチップ等の電子部品をプリント基板上に実装する電子部品実装装置が挙げられる。
【0003】
電子部品実装装置は、図7に示すように、作業ヘッドとして、ノズルを備えた実装ヘッド100を有する。実装ヘッド100はガイドビームとしてのX方向ビーム200に沿ってX方向に移動可能に取り付けられている。また、X方向ビーム200は、これと直交しX方向に所定の間隔をおいて配置された一対(2本)のY方向ビーム300間に架け渡されるとともに、Y方向ビーム300にY方向に沿って移動可能に取り付けられている。このように、X方向ビーム200とY方向ビーム300の組合せにより、実装ヘッド100は、水平面内でX方向及びY方向に自在に移動可能である。そして、実装ヘッド100は、X方向及びY方向の移動の組合せにより、部品供給部(図示省略)に移動してそのノズルによって電子部品を吸着し、更に実装位置に搬送されてきたプリント基板(図示省略)上の所定位置に移動してそのプリント基板上の所定位置に電子部品を実装する。
【0004】
このような電子部品実装装置を駆動させるには、実装ヘッド100等に電力を供給する必要がある。従来、実装ヘッド100への電力の供給は、外部電源からケーブルを介して行っており、このとき、実装ヘッド100のX方向の可動範囲をケーブルやスリップリング等の直接給電手段が移動可能なようにケーブルベア(登録商標)210が設置される(例えば特許文献1)。
【0005】
しかし、これらの電力供給方法では摩耗や断線を完全になくすことはできず、実装ヘッド毎にケーブルベア(登録商標)を設置する場合は、実装ヘッドのX−Y方向への可動範囲を制限する要因となっていた。したがって、実装効率を向上させるために、1本のX方向ビームに複数の実装ヘッドを搭載しようとしても、各実装ヘッドの可動範囲を十分に確保することができず、現実的には1本のX方向ビームに複数の実装ヘッドを搭載することは困難であった。
【0006】
このような電力供給上の問題は、電子部品実装装置に限定されず、作業ヘッドがガイドビームに沿って移動する作業機械に共通の問題である。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2008−243839号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明が解決しようとする課題は、作業ヘッドがガイドビームに沿って移動する作業機械において、直接給電手段を設置することなく、作業ヘッドへの電力の供給を可能にすることにある。
【課題を解決するための手段】
【0009】
本発明は、作業ヘッドがガイドビームに沿って移動、前記ガイドビームに送電部を有するとともに、前記送電部から電力を受電する受電部を前記作業ヘッドに有し、前記作業ヘッドが、前記送電部から非接触で前記受電部を介して受電した電力により駆動す作業機械において、前記送電部から前記受電部への非接触での電力の伝送が電界結合方式であり、前記送電部は、前記ガイドビームの上面及び下面から垂直に突き出すように設置した送電電極を備え、前記受電部は、前記送電電極と対向するように前記作業ヘッドの上面及び下面から垂直に突き出して設置した受電電極を備えることを特徴とするものである。
【0010】
前記送電部から前記受電部への非接触方式(ワイヤレス方式)での電力の伝送は、電界結合方式、磁界結合方式、電磁誘導方式等で行うことができるが、特に電力伝送効率の点から電界結合方式が好まし
【0011】
また、本発明においては、同一のガイドビームに複数の作業ヘッドを搭載した構成とすることができる。
【0012】
更に本発明では、作業ヘッドが、無線通信手段、正圧発生手段及び負圧発生手段を備えたものとすることができる。
【発明の効果】
【0013】
本発明によれば、ガイドビームに設けた送電部から、非接触で、作業ヘッドに設けた受電部に電力を伝送するので、摩耗や断線等のトラブルを起こすことなく、作業ヘッドへの電力の供給が可能となる。また、同一のガイドビームに複数の作業ヘッドを搭載しても、その給電手段が相互干渉することがなくなる。
【図面の簡単な説明】
【0014】
図1】本発明を適用した電子部品実装装置の基本構成を示す概念図である。
図2図1の電子部品実装装置において、実装ヘッドに電力を供給するための構成の一例を示す断面視による説明図である。
図3図2の電力伝送系の等価回路を示す。
図4図1の電子部品実装装置において、実装ヘッドに電力を供給するための構成の他の例(参考例)を示す断面視による説明図である。
図5】正圧発生手段の構成例を示す断面図である。
図6】正圧発生手段の構成例を示す断面図である。
図7】従来の電子部品実装装置の基本構成を示す概念図である。
【発明を実施するための形態】
【0015】
以下、本発明を電子部品実装装置に適用した実施例に基づき、本発明の実施の形態を説明する。
【0016】
図1は、電子部品実装装置の基本構成を示す概念図である。電子部品実装装置は、電子部品を吸着しプリント基板上に実装するために実装ヘッド10を有する。実装ヘッド10には、1本又は複数本のノズル11がX方向及びY方向に直交するZ方向に移動可能、すなわち上下移動可能に組み込まれている。
【0017】
図1の電子部品実装装置は、1本のX方向ビーム20に3個の実装ヘッド10を、それぞれX方向ビーム20に沿ってX方向に移動可能に搭載している。これらの3個の実装ヘッドの種類としては、複数本のノズルを備えたロータリー式又はリニア式、あるいは1本のノズルを備えたものなど、公知のものとすることができ、3個の実装ヘッド10は、複数種類の組合せ、又は全て同一種類とすることができる。これらの実装ヘッド10は、X方向ビーム20に沿って、隣り合う実装ヘッドとの衝突及び干渉を避けながら、公知の最適化されたプログラムにより自在に移動する。
【0018】
X方向ビーム20は、これと直交しX方向に所定の間隔をおいて配置された一対(2本)のY方向ビーム30間に架け渡されるとともに、Y方向ビーム30にY方向に沿って移動可能に取り付けられている。このように、X方向ビーム20とY方向ビーム30の組合せにより、実装ヘッド10は、水平面内でX方向及びY方向に自在に移動可能である。そして、実装ヘッド10は、X方向及びY方向の移動の組合せにより、部品供給部(図示省略)に移動してそのノズル11によって電子部品を吸着し、更に実装位置に搬送されてきたプリント基板(図示省略)上の所定位置に移動してそのプリント基板上の所定位置に電子部品を実装する。
【0019】
なお、図1では、X方向ビームを1本のみ示すが、図7に示したように一対(2本)のX方向ビーム20をY方向ビーム30間に架け渡し、各X方向ビーム20に一又は複数の実装ヘッド10を搭載することもできる。
【0020】
図2は、実装ヘッド10に電力を供給するための構成の一例を示す断面視による説明図である。図2に示すように、実装ヘッド10は、その基板プレート12に設けたリニアガイド13を介して、X方向ビーム20に、その長手方向(X方向)に沿って移動可能に取り付けられている。すなわち、実装ヘッド10は、X方向ビーム20と常に一定の間隔を保ちながらX方向に自在に移動する。
【0021】
図2の例では、実装ヘッド10に電力を供給する方式として、非接触方式(ワイヤレス方式)の一つである電界結合方式を採用している。電界結合方式とは、送電側に送電電極、受電側に受電電極を設置し、送電電極と受電電極が近接したときに発生する電界を利用して電力を伝送する方式である。
【0022】
図2の例では、X方向ビーム20が送電側、実装ヘッド10が受電側であり、X方向ビーム20に送電部、実装ヘッド10に受電部を設けている。そして、X方向ビーム20の送電部に送電電極21、実装ヘッド10の受電電極14を設置している。具体的には、送電電極21はX方向ビームの上面及び下面から垂直に突き出すように設置し、受電電極14は、送電電極21と対向するように、実装ヘッド10の基板プレート12の上面及び下面から垂直に突き出すように設置している。この図2の電力伝送系は図3に示す等価回路で表すことができる。すなわち、送電電極21と受電電極14との電界結合により、電力が送電部から受電部に伝送され、その電力により、実装ヘッド10が駆動する。
【0023】
ここで、前述のとおり実装ヘッド10は、X方向ビーム20と常に一定の間隔を保ちながらX方向に移動するので、送電電極21と受電電極14との間隔も常に一定であり、その間隔を容易に小さくすることができる。このことは、電界結合方式による電力の電送において好都合である。
【0024】
図4は、実装ヘッド10に電力を供給するための構成の他の例(参考例)を示す断面視による説明図である。図4の例では、実装ヘッド10に電力を供給する方式として、非接触方式(ワイヤレス方式)の一つである電磁誘導方式を採用している。電磁誘導方式とは、送電側に送電コイル、受電側に受電コイルを設置し、電磁誘導により電力を伝送する方式である。
【0025】
図4の例においても実装ヘッド10は、その基板プレート12に設けたリニアガイド13を介して、X方向ビーム20に、その長手方向(X方向)に沿って移動可能に取り付けられている。
【0026】
図4の例では、送電部としてX方向ビーム20の長手方向に沿って電源レール22を設置している。電源レール22には電源が供給され、この電源レール22上を実装ヘッド10の基板プレート12とX方向に同期して移動するローラ15が電気的に接触しながら回転する。ローラ15には送電コイル16が取り付けられており、送電コイル16と対向する位置に受電コイル17が配置されている。受電コイル17は実装ヘッド10の基板プレート12に取り付けられており、送電コイル16との間で電磁誘導により発生した電力を実装ヘッド10に供給する。
【0027】
図2及び図4の例のように、X方向ビームに送電部(送電電極14、電源レール22)を設け、この送電部から非接触方式(ワイヤレス方式)で電力を受電する受電部(受電電極14、受電コイル17)を実装ヘッド10に設け、実装ヘッド10が、前記送電部から前記受電部を介して受電した電力により駆動されることで、直接給電手段を設置することなく、作業ヘッド10への電力の供給が可能になる。
【0028】
実装ヘッド10が駆動して電子部品を吸着及び実装するには、電力のほか、真空及び圧縮空気の供給が必要である。すなわち、真空は、実装ヘッド10のノズル11が電子部品を吸着するために必要であり、圧縮空気は、実装時に電子部品を吸着したノズルの真空を破壊(微弱ブロー)するために必要である。従来の電子部品実装装置は、真空を供給するための負圧発生手段、圧縮空気を供給するための正圧発生手段を実装ヘッド10の外部に設置するのが一般的であり、外部の正圧発生手段及び負圧発生手段から、実装ヘッド10までをそれぞれ空気配管により接続している。
【0029】
また、実装ヘッド10の制御を行うには信号の供給も必要である。この信号の供給は、従来の電子部品実装装置では有線で行うのが主流であり、制御部から実装ヘッド10までを信号ケーブルで接続している。
【0030】
これらの空気配管及び信号ケーブルも、電力供給用のケーブルと同様に、図7に示したケーブルベア(登録商標)210を介して実装ヘッドに接続されている。したがって、ケーブルベア210(登録商標)をなくすには、空気配管及び信号ケーブルもなくすことが求められる。
【0031】
信号ケーブルについては、実装ヘッド10に無線通信手段を内蔵させることでなくすことができる。無線通信手段自体は周知であり、説明をするまでもない。
【0032】
空気配管については、実装ヘッド10に正圧発生手段及び負圧発生手段を内蔵させることでなくすことができる。
【0033】
正圧発生手段は、図5に示すマイクロブロアで構成できる。図5に示すマイクロブロア40は、可撓性を有する膜又は薄板からなる振動板41と、振動板に貼付された圧電素子42と、振動板41とともに空気室43a及び空気流入室43bを構成する構造体43とを備える。圧電素子42により振動板41を振動させると、空気室42aから連続的に吐出される空気によって空気流入室42b内の空気が一緒に、構造体43に設けた吐出部43cから吐出される。この吐出部43cから吐出される空気を実装ヘッドの各ノズルに供給することで、実装時に電子部品を吸着したノズルの真空を破壊(微弱ブロー)することができる。
【0034】
負圧発生手段は、マイクロブロア40を使用して構成できる。その構成例を図6に示す。図6に示す負圧発生手段50は、真っ直ぐな主管路51と主管路51に対して直交して分岐した分岐管路52とを備え、主管路51の一端部は図5で説明したマイクロブロア40の吐出部43cに接続され、他端部は大気に開放されている。また、分岐管路52は実装ヘッドの各ノズル11に接続されている。このような構成により、主管路51内をマイクロブロア40からの吐出空気が流動すると、その流速に応じて主管路51内が負圧となり、これに伴って分岐管路52も負圧となることで、ノズル11に負圧を供給することが可能となる。
【0035】
なお、マイクロブロア40は、縦横寸法が20mm×20mm程度、吐出部43c部分を除く厚みが2mm程度と小型であるので、実装ヘッド10に容易に内蔵させることができる。また、マイクロブロア40は、小型ながら、空気吐出圧は1900Pa程度、
風量は毎分1L程度の性能を有するので、本発明における正圧発生手段及びこれを使用した負圧発生手段としての機能を果たしうる。
【0036】
以上のように、先に説明した実装ヘッド10への非接触方式(ワイヤレス方式)での給電手段を使用するとともに、実装ヘッド10に、無線通信手段、正圧発生手段(マイクロブロア40)及び負圧発生手段50を内蔵させることで、ケーブルベア(登録商標)を使用せずに、電力、信号、圧縮空気及び真空を供給することができる。このようにケーブルベア(登録商標)を使用しないで済むようにすることで、図1に示したように、同一のX方向ビーム20に複数の実装ヘッド10を問題なく搭載できるようになる。
【産業上の利用可能性】
【0037】
本発明は、電子部品実装装置のみならず、溶接ヘッドがガイドビームに沿って移動する溶接装置など、作業ヘッドがガイドビームに沿って移動する作業機械に適用可能である。
【符号の説明】
【0038】
10 実装ヘッド
11 ノズル
12 基板プレート
13 リニアガイド
14 受電電極(受電部)
15 ローラ
16 送電コイル
17 受電コイル(受電部)
20 X方向ビーム
21 送電電極(送電部)
22 電源レール(送電部)
30 Y方向ビーム
40 マイクロブロア(正圧発生手段)
41 振動板
42 圧電素子
43 構造体
43a 空気室
43b 空気流入室
43c 吐出部
50 負圧発生手段
51 主管路
52 分岐管路
図1
図2
図3
図4
図5
図6
図7