特許第6076199号(P6076199)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ノバルティス アーゲーの特許一覧

特許6076199水分含量の多い表面を有するシリコーンヒドロゲルレンズ
<>
  • 特許6076199-水分含量の多い表面を有するシリコーンヒドロゲルレンズ 図000052
  • 特許6076199-水分含量の多い表面を有するシリコーンヒドロゲルレンズ 図000053
  • 特許6076199-水分含量の多い表面を有するシリコーンヒドロゲルレンズ 図000054
  • 特許6076199-水分含量の多い表面を有するシリコーンヒドロゲルレンズ 図000055
  • 特許6076199-水分含量の多い表面を有するシリコーンヒドロゲルレンズ 図000056
  • 特許6076199-水分含量の多い表面を有するシリコーンヒドロゲルレンズ 図000057
  • 特許6076199-水分含量の多い表面を有するシリコーンヒドロゲルレンズ 図000058
  • 特許6076199-水分含量の多い表面を有するシリコーンヒドロゲルレンズ 図000059
  • 特許6076199-水分含量の多い表面を有するシリコーンヒドロゲルレンズ 図000060
  • 特許6076199-水分含量の多い表面を有するシリコーンヒドロゲルレンズ 図000061
  • 特許6076199-水分含量の多い表面を有するシリコーンヒドロゲルレンズ 図000062
  • 特許6076199-水分含量の多い表面を有するシリコーンヒドロゲルレンズ 図000063
  • 特許6076199-水分含量の多い表面を有するシリコーンヒドロゲルレンズ 図000064
  • 特許6076199-水分含量の多い表面を有するシリコーンヒドロゲルレンズ 図000065
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6076199
(24)【登録日】2017年1月20日
(45)【発行日】2017年2月8日
(54)【発明の名称】水分含量の多い表面を有するシリコーンヒドロゲルレンズ
(51)【国際特許分類】
   G02C 7/04 20060101AFI20170130BHJP
【FI】
   G02C7/04
【請求項の数】35
【外国語出願】
【全頁数】83
(21)【出願番号】特願2013-115452(P2013-115452)
(22)【出願日】2013年5月31日
(62)【分割の表示】特願2013-521992(P2013-521992)の分割
【原出願日】2011年7月29日
(65)【公開番号】特開2013-190822(P2013-190822A)
(43)【公開日】2013年9月26日
【審査請求日】2014年7月2日
(31)【優先権主張番号】61/448,478
(32)【優先日】2011年3月2日
(33)【優先権主張国】US
(31)【優先権主張番号】61/369,102
(32)【優先日】2010年7月30日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】504389991
【氏名又は名称】ノバルティス アーゲー
(74)【代理人】
【識別番号】110001508
【氏名又は名称】特許業務法人 津国
(74)【代理人】
【識別番号】100078662
【弁理士】
【氏名又は名称】津国 肇
(74)【代理人】
【識別番号】100135873
【弁理士】
【氏名又は名称】小澤 圭子
(74)【代理人】
【識別番号】100116528
【弁理士】
【氏名又は名称】三宅 俊男
(74)【代理人】
【識別番号】100122736
【弁理士】
【氏名又は名称】小國 泰弘
(74)【代理人】
【識別番号】100122747
【弁理士】
【氏名又は名称】田中 洋子
(74)【代理人】
【識別番号】100132540
【弁理士】
【氏名又は名称】生川 芳徳
(74)【代理人】
【識別番号】100146031
【弁理士】
【氏名又は名称】柴田 明夫
(74)【代理人】
【識別番号】100125106
【弁理士】
【氏名又は名称】石岡 隆
(72)【発明者】
【氏名】チュ,ユンシン
(72)【発明者】
【氏名】プルーイット,ジョン・ダラス
(72)【発明者】
【氏名】ザクヴェリ,シビチェン
(72)【発明者】
【氏名】タッカー,ロバート・キャリー
(72)【発明者】
【氏名】ネルソン,ジャレッド
【審査官】 廣田 健介
(56)【参考文献】
【文献】 特表2002−513668(JP,A)
【文献】 特開平04−316013(JP,A)
【文献】 特表2003−508125(JP,A)
【文献】 特開2002−047365(JP,A)
【文献】 特表2009−540369(JP,A)
【文献】 特開2001−075060(JP,A)
【文献】 特表2003−534860(JP,A)
【文献】 特表2010−508563(JP,A)
【文献】 特表2010−518436(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02C 1/00−13/00
(57)【特許請求の範囲】
【請求項1】
層状構造形状及びシリコーンヒドロゲルコンタクトレンズの内側から外側への含水率勾配を有するシリコーンヒドロゲルコンタクトレンズであり、
完全に水和した状態のシリコーンヒドロゲルコンタクトレンズの後面から前面の断面にわたって原子間力顕微鏡法で測定したとき、少なくとも0.1μmの厚みを有する外部ヒドロゲル層で完全に覆われているシリコーンヒドロゲルバルク材料を含み、
外部ヒドロゲル層が、非水溶性であり、且つ、完全に水和した場合に外部ヒドロゲル層のポリマーマトリックス中に少なくとも10%(重量)の水を含有する架橋ポリマー材料からなり、乾燥状態のシリコーンヒドロゲルコンタクトレンズをXPS分析により測定したとき、全元素%の4%以下のケイ素原子%を有し、
外部ヒドロゲル層の含水率が、完全に水和された場合に、シリコーンヒドロゲルバルク材料の含水率の少なくとも1.2倍(又は120%)である、シリコーンヒドロゲルコンタクトレンズ。
【請求項2】
完全に水和した状態のシリコーンヒドロゲルコンタクトレンズの後面から前面の断面にわたって原子間力顕微鏡法で測定したとき、外部ヒドロゲル層が0.1μm〜20μmの厚みを有する、請求項1に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項3】
完全に水和した状態のシリコーンヒドロゲルコンタクトレンズの後面から前面の断面にわたって原子間力顕微鏡法で測定したとき、外部ヒドロゲル層が0.25μm〜15μmの厚みを有する、請求項1に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項4】
完全に水和した状態のシリコーンヒドロゲルコンタクトレンズの後面から前面の断面にわたって原子間力顕微鏡法で測定したとき、外部ヒドロゲル層が0.5μm〜12.5μの厚みを有する、請求項1に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項5】
完全に水和した状態のシリコーンヒドロゲルコンタクトレンズの後面から前面の断面にわたって原子間力顕微鏡法で測定したとき、外部ヒドロゲル層が1μm〜10μmの厚みを有する、請求項1に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項6】
前記外部ヒドロゲル層が、乾燥状態のシリコーンヒドロゲルコンタクトレンズをXPS分析により測定したとき、全元素%の3%以下のケイ素原子%を有する、請求項1〜5のいずれか1項に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項7】
外部ヒドロゲル層の含水率が、完全に水和された場合に、シリコーンヒドロゲルバルク材料の含水率の少なくとも1.3倍(又は130%)である、請求項1〜のいずれか1項に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項8】
外部ヒドロゲル層の含水率が、完全に水和された場合に、シリコーンヒドロゲルバルク材料の含水率の少なくとも1.4倍(又は140%)である、請求項1〜のいずれか1項に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項9】
外部ヒドロゲル層の含水率が、完全に水和された場合に、シリコーンヒドロゲルバルク材料の含水率の少なくとも1.5倍(又は150%)である、請求項1〜のいずれか1項に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項10】
外部ヒドロゲル層の含水率が、完全に水和された場合に、シリコーンヒドロゲルバルク材料の含水率の少なくとも2倍(又は200%)である、請求項1〜のいずれか1項に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項11】
外部ヒドロゲル層が、シリコーンヒドロゲルコンタクトレンズの周辺端部で融合している2つの外部層を有し、2つの外部層が互いに実質的に同一である、請求項1〜10のいずれか1項に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項12】
完全に水和された場合に、シリコーンヒドロゲルバルク材料が、10%〜70%(重量)の含水率(WCSiHyと表される)を有する、請求項1〜11のいずれか1項に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項13】
完全に水和された場合に、シリコーンヒドロゲルバルク材料が、10%〜65%(重量)の含水率(WCSiHyと表される)を有する、請求項12に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項14】
完全に水和された場合に、シリコーンヒドロゲルバルク材料が、10%〜60%(重量)の含水率(WCSiHyと表される)を有する、請求項12に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項15】
完全に水和された場合に、シリコーンヒドロゲルバルク材料が、15%〜55%(重量)の含水率(WCSiHyと表される)を有する、請求項12に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項16】
完全に水和された場合に、シリコーンヒドロゲルバルク材料が、15%〜50%(重量)の含水率(WCSiHyと表される)を有する、請求項12に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項17】
完全に水和された場合に、シリコーンヒドロゲルバルク材料が、0.3MPa〜1.8MPaのバルク弾性率を有する、請求項1〜16のいずれか1項に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項18】
完全に水和された場合に、シリコーンヒドロゲルバルク材料が、0.4MPa〜1.5MPaのバルク弾性率を有する、請求項17に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項19】
完全に水和された場合に、シリコーンヒドロゲルバルク材料が、0.5MPa〜1.2MPaのバルク弾性率を有する、請求項17に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項20】
シリコーンヒドロゲルコンタクトレンズが、(a)完全に水和した場合に、少なくとも40barrer/mmの酸素伝達率;(b)完全に水和された場合に、少なくとも10秒の水崩壊時間を有することを特徴とする表面親水性;(c)完全に水和された場合に、90degree以下の平均水接触角を有することを特徴とする表面湿潤性;(d)完全に水和された場合に、0.046以下の臨界摩擦係数(CCOFと表される)を有することを特徴とする表面潤滑性;及び(e)それらの組み合わせからなる群より選択される少なくとも1つの性質を有する、請求項1〜19のいずれか1項に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項21】
シリコーンヒドロゲルコンタクトレンズが、完全に水和した場合に、少なくとも60barrer/mmの酸素伝達率を有する、請求項20に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項22】
シリコーンヒドロゲルコンタクトレンズが、完全に水和した場合に、少なくとも80barrer/mmの酸素伝達率を有する、請求項20に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項23】
シリコーンヒドロゲルコンタクトレンズが、完全に水和した場合に、少なくとも100barrer/mmの酸素伝達率を有する、請求項20に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項24】
シリコーンヒドロゲルコンタクトレンズが、完全に水和した場合に、少なくとも120barrer/mmの酸素伝達率を有する、請求項20に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項25】
シリコーンヒドロゲルコンタクトレンズが、完全に水和された場合に、80degree以下の平均水接触角を有することを特徴とする表面湿潤性を有する、請求項20に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項26】
シリコーンヒドロゲルコンタクトレンズが、完全に水和された場合に、70degree以下の平均水接触角を有することを特徴とする表面湿潤性を有する、請求項20に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項27】
シリコーンヒドロゲルコンタクトレンズが、完全に水和された場合に、60degree以下の平均水接触角を有することを特徴とする表面湿潤性を有する、請求項20に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項28】
シリコーンヒドロゲルコンタクトレンズが、完全に水和された場合に、50degree以下の平均水接触角を有することを特徴とする表面湿潤性を有する、請求項20に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項29】
シリコーンヒドロゲルコンタクトレンズが、完全に水和された場合に、0.043以下の臨界摩擦係数(CCOFと表される)を有することを特徴とする表面潤滑性を有する、請求項20に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項30】
シリコーンヒドロゲルコンタクトレンズが、完全に水和された場合に、0.040以下の臨界摩擦係数(CCOFと表される)を有することを特徴とする表面潤滑性を有する、請求項20に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項31】
完全に水和された場合に、外部ヒドロゲル層は、シリコーンヒドロゲルバルク材料に対して少なくとも20%低下した表面係数(RSMと表される)を有し、
RSMは、下記の式:
【数31】

に基づいて計算される値であり、
【数32】

は、後面又は前面外部ヒドロゲル層の平均表面係数であり、
【数33】

は、内部層の平均表面係数であり、
【数34】

は、接触モード、ナノインデンテーション法、Peakforce QNM法又はHarmonic Force法を用いて、原子間力顕微鏡法により測定される弾性特性の平均値であり、完全に水和した状態のシリコーンヒドロゲルコンタクトレンズの断面の表面について、前記断面の表面の前面と後面間の最短線に沿って原子間力顕微鏡法により弾性特性を測定した値を平均することで得られる、請求項1〜30のいずれか1項に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項32】
完全に水和された場合に、外部ヒドロゲル層は、シリコーンヒドロゲルバルク材料に対して少なくとも25%低下した表面係数を有する、請求項31に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項33】
完全に水和された場合に、外部ヒドロゲル層は、シリコーンヒドロゲルバルク材料に対して少なくとも30%低下した表面係数を有する、請求項31に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項34】
完全に水和された場合に、外部ヒドロゲル層は、シリコーンヒドロゲルバルク材料に対して少なくとも35%低下した表面係数を有する、請求項31に記載のシリコーンヒドロゲルコンタクトレンズ。
【請求項35】
完全に水和された場合に、外部ヒドロゲル層は、シリコーンヒドロゲルバルク材料に対して少なくとも40%低下した表面係数を有する、請求項31に記載のシリコーンヒドロゲルコンタクトレンズ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般的に、眼科用デバイス、特に、含水率勾配を生成するレンズ構造形状を有し、そして、約10%〜約70%(重量)の含水率(WCSiHyと表される)を有するシリコーンヒドロゲルバルク材料と、約0.1〜約20μmの厚さを有し、該シリコーンヒドロゲルバルク材料を完全に覆い、完全に又は実質的にシリコーンを含有しないヒドロゲル材料からなり、そして、完全に水和した状態のシリコーンヒドロゲルコンタクトレンズの断面をAFMで測定したとき、WCSiHy≦45%である場合、少なくとも約100%の水膨張率を特徴とするか、又はWCSiHy>45%である場合、少なくとも約[120・WCSiHy/(1−WCSiHy)]%の水膨張率を特徴とするより高い含水率を有する外部表面層とを含む、シリコーンヒドロゲルコンタクトレンズに関する。
【0002】
背景
シリコーンヒドロゲル(SiHy)コンタクトレンズは、様々な種類の視力異常を矯正するために広く使用されている。これらは、レンズポリマーマトリックス内にシリコーン及び一定量の水を平衡状態で含有する水和した架橋ポリマー材料からなる。FDAのコンタクトレンズの分類によれば、ヒドロゲルコンタクトレンズは、一般的に、2種類の主要なカテゴリー:低含水率コンタクトレンズ(50%未満の水を含有)及び高含水率コンタクトレンズ(50%超の水を含有)に分類される。SiHyコンタクトレンズの場合、角膜の健康に及ぼすコンタクトレンズの有害作用を最小にするために必要な高い酸素透過度は、含水率を高めるのではなく、架橋ポリマー材料中にシリコーンを組み込むことにより達成される。結果として、従来のヒドロゲルコンタクトレンズとは異なり、SiHyコンタクトレンズは、比較的高い酸素透過度(Dk)を依然として有しながら、低含水率を有することができる。例えば、CIBA Vision Corporation社のFocus(登録商標)Night&Day(登録商標)(約23.5%HO及びDk〜140Barrer;CIBA Vision Corporation社のAir Optix(登録商標)(約33%HO及びDk〜110Barrer);Bausch&Lomb社のPureVision(登録商標)(約36%HO及びDk〜100Barrer);Johnson&Johnson社のAcuvue(登録商標)Oasys(登録商標)(約38%HO、Dk〜105Barrer);Johnson&Johnson社のAcuvue(登録商標)Advance(登録商標)(約47%HO、Dk〜65Barrer);Johnson&Johnson社のAcuvue(登録商標)TruEye(商標)(約46%HO、Dk〜100Barrer);CooperVision社のBiofinity(登録商標)(約48%HO、Dk〜128Barrer);CooperVision社のAvaira(商標)(約46%HO、Dk〜100Barrer);及びMenicon社のPremiO(商標)(約40%HO、Dk〜129Barrer)。
【0003】
SiHyコンタクトレンズ中の水分は、SiHyレンズの十分長い期間の装着を可能にし、そして、患者に、適度な初期快適性(すなわち、レンズ挿入直後)、患者がこれらに順応するのに必要な適応時間が比較的短時間であること、及び/又は適切な適合性などの利益を提供する、所望の柔軟性を提供することができる。より高い含水率は、生体適合性及び快適性を有するSiHyコンタクトレンズを提供するために望ましいであろう。しかし、従来のヒドロゲルコンタクトレンズのようにコンタクトレンズに必要な十分な機械的強度及び剛性を依然として有しながら、SiHyコンタクトレンズが含有することができる水分量には制限がある(80%であると考えられる)。さらに、高い含水率は、また、望ましくない影響を及ぼす可能性がある。例えば、SiHyコンタクトレンズの酸素透過度は、含水率を高めることにより低下する可能性がある。さらに、高い含水率を有するSiHyコンタクトレンズは、眼の限られた供給量の涙液(水)を失わせる恐れがあるため、SiHyレンズの高い含水率は、眼内脱水をより高め、その結果として脱水により生じる装着不快感をもたらす可能性がある。眼内脱水がコンタクトレンズの前面における蒸発(すなわち、水分の喪失)から生じる可能性があり、そのような水分の喪失が、レンズの後面から前面へ経由する水の拡散により主に制御されていること、そして、拡散の速度は、平衡状態のレンズバルク材料の含水率に密接に比例していると考えられている(L. Jones et al., Contact Lens & Anterior Eye 25 (2002) 147-156、参照によりその全体が本明細書に組み込まれる)。
【0004】
コンタクトレンズ材料にシリコーンを組み込むことは、また、シリコーンが疎水性であり、且つ、空気に曝されているレンズ表面に移動する傾向が強いため、コンタクトレンズの生体適合性に望ましくない効果を及ぼす。結果として、SiHyコンタクトレンズは、一般的に、コンタクトレンズのシリコーンの曝露を排除又は最小にするために、そして、親水性表面を維持するために、例えば、様々なプラズマ処理(例えば、CIBA Vision Corporation社のFocus(登録商標)Night&Day(登録商標)及びAir Optix(登録商標);Bausch&Lomb社のPureVision(登録商標);ならびにMenicon社のPremiO(商標));SiHyポリマーマトリックス中に物理的及び/又は化学的に埋め込まれた内部湿潤剤(例えば、Johnson&Johnson社のAcuvue(登録商標)Oasys(登録商標)、Acuvue(登録商標)Advance(登録商標)及びAcuvue(登録商標)TruEye(商標);CooperVision社のBiofinity(登録商標)及びAvaira(商標))などの表面修飾プロセスが必要であろう。市販のSiHyレンズの製造に使用される表面修飾技術は、適度な親水性表面を有する新しい(未使用)SiHyレンズを提供することができるが、眼内に装着されるSiHyレンズは、空気の曝露、眼瞼のせん断力(shearing force)、シリコーン移動及び/又はシリコーンの曝露の部分的な保護不良のため生じるドライスポット及び/又は疎水性表面領域を有する可能性がある。これらのドライスポット及び/又は疎水性表面領域は、非湿潤性で、眼内環境から脂質又はタンパク質を吸着しやすく、そして、眼に付着して、患者に不快感を与える可能性がある。
【0005】
従って、眼内で一日を通して維持することができる持続的な親水性、湿潤性及び潤滑性を有する、親水性表面を有するSiHyコンタクトレンズが求められている。
【0006】
発明の概要
本発明は、眼内で一日を通して持続的な表面親水性、表面湿潤性及び表面潤滑性を有する親水性表面を有する、SiHyコンタクトレンズの必要性を満たすことができる。
【0007】
一態様においては、本発明は、前(凸)面及び反対の後(凹)面;ならびに前面から後面の層状構造形状を含む水和シリコーンヒドロゲルコンタクトレンズであって、層状構造形状が、前面外部ヒドロゲル層、シリコーンヒドロゲル材料の内部層及び後面外部ヒドロゲル層を含み、シリコーンヒドロゲル材料が、少なくとも約50、好ましくは、少なくとも約60、より好ましくは、少なくとも約70、さらにより好ましくは、少なくとも約90barrer、最も好ましくは、少なくとも約110barrerの酸素透過度(Dk)、及び約10%〜約70%、好ましくは、約10%〜約65%、より好ましくは、約10%〜約60%、さらにより好ましくは、約15%〜約55%、最も好ましくは、約15%〜約50%(重量)の第一含水率(WCSiHyと表される)を有し、前面及び後面外部ヒドロゲル層が、実質的に均一な厚さであり、且つ、シリコーンヒドロゲル材料の内部層を完全に包み込むようにコンタクトレンズの周辺端部で融合しており、前面及び後面外部ヒドロゲル層が、互いに独立して、WCSiHy≦45%である場合、少なくとも約100%(好ましくは、少なくとも約150%、より好ましくは、少なくとも約200%、さらにより好ましくは、少なくとも約250%、最も好ましくは、少なくとも約300%)の水膨張率(WSRと表される)を有すること、又はWC>45%である場合、少なくとも約[120・WCSiHy/(1−WCSiHy)]%(好ましくは、[130・WCSiHy/(1−WCSiHy)]%、より好ましくは、[140・WCSiHy/(1−WCSiHy)]%、さらにより好ましくは、[150・WCSiHy/(1−WCSiHy)]%)の水膨張率を有することを特徴とする、WCSiHyより高い第二含水率を有し、前面及び後面外部ヒドロゲル層の各々の厚さが、約0.1μm〜約20μm、好ましくは、約0.25μm〜約15μm、より好ましくは、約0.5μm〜約12.5μm、さらにより好ましくは、約1μm〜約10μmである(完全に水和した状態のシリコーンヒドロゲルコンタクトレンズの後面から前面の断面にわたって原子間力顕微鏡法で測定したとき)、水和シリコーンヒドロゲルコンタクトレンズを提供する。
【0008】
別の態様においては、本発明は、水和シリコーンヒドロゲルコンタクトレンズを提供する。本発明の水和シリコーンヒドロゲルコンタクトレンズは、バルク材料としてのシリコーンヒドロゲル材料、前面及び反対の後面を含み;該コンタクトレンズは、少なくとも約40、好ましくは、少なくとも約60、より好ましくは、少なくとも約80、さらにより好ましくは、少なくとも約110barrer/mmの酸素伝達率、及び断面表面係数(surface modulus)プロファイル(コンタクトレンズの断面の表面の前面と後面間の最短線に沿って、前面を含み、且つ、その近傍の前面外部域;最短線の中心を含み、且つ、その周囲の内部域;及び後面を含み、且つ、その近傍の後面外部域を含み、該前面外部域は、平均前面係数
【数1】

を有し、該後面外部域は、平均後面係数
【数2】

を有し、該内部域は、平均内部表面係数
【数3】

を有し、
【数4】

の少なくとも1つは、少なくとも約20%、好ましくは、少なくとも約25%、より好ましくは、少なくとも約30%、さらにより好ましくは、少なくとも約35%、最も好ましくは、少なくとも約40%である)を有する。
【0009】
さらなる態様においては、本発明は、水和シリコーンヒドロゲルコンタクトレンズを提供する。本発明の水和シリコーンヒドロゲルコンタクトレンズは、バルク材料としてのシリコーンヒドロゲル材料、前面及び反対の後面を含み;該コンタクトレンズは、(1)少なくとも約40、好ましくは、少なくとも約60、より好ましくは、少なくとも約80、さらにより好ましくは、少なくとも約110barrer/mmの酸素伝達率、及び(2)約0.046以下、好ましくは、約0.043以下、より好ましくは、約0.040以下の臨界摩擦係数(CCOFと表される)を有することを特徴とする表面潤滑性を有し、前面及び後面は、正電荷粒子付着試験において、最大約200、好ましくは、最大約160、より好ましくは、最大約120、さらにより好ましくは、最大約90、最も好ましくは、最大約60個の正電荷粒子を引き付けることを特徴とする、低い表面濃度のカルボン酸基などの負電荷基を有する。
【0010】
様々な好ましい実施態様を任意の組み合わせで含む本発明のこれらの及び他の態様は、下記の本発明の好ましい実施態様の説明から明らかになるであろう。詳細な説明は、本発明を単に説明するためのものであり、添付の特許請求の範囲及びその均等物により定義される本発明の範囲を限定するものではない。当業者にとって明らかであるように、本開示の新規概念の精神及び範囲から逸脱することなく、本発明の多くの変形及び改変を実施することができる。
【図面の簡単な説明】
【0011】
図1図1は、本発明の好ましい実施態様に係る、SiHyコンタクトレンズの構造形状の断面図を概略的に示す。
図2図2は、本発明の別の好ましい実施態様に係る、SiHyコンタクトレンズの構造形状の断面図を概略的に示す。
図3A図3Aは、共焦点レーザー蛍光顕微鏡法でのSiHyコンタクトレンズの断面にわたる蛍光強度プロファイルを示す。
図3B図3Bは、共焦点レーザー蛍光顕微鏡法でのSiHyコンタクトレンズの断面にわたる蛍光強度プロファイルを示す。
図4A図4Aは、凍結乾燥状態の本発明のSiHyコンタクトレンズのSEM(走査電子顕微鏡)画像を示す。
図4B図4Bは、凍結乾燥状態の本発明のSiHyコンタクトレンズのSEM(走査電子顕微鏡)画像を示す。
図4C図4Cは、凍結乾燥状態の本発明のSiHyコンタクトレンズのSEM(走査電子顕微鏡)画像を示す。
図5図5は、好ましい実施態様に係る、傾斜平板法の設定を概略的に説明する。
図6A図6Aは、正電荷粒子(DOWEX(商標)1×4 20〜50メッシュ樹脂)の分散物中に浸漬した後の様々なコーティングをその上に有するコンタクトレンズの光学顕微鏡画像を示す。
図6B図6Bは、正電荷粒子(DOWEX(商標)1×4 20〜50メッシュ樹脂)の分散物中に浸漬した後の様々なコーティングをその上に有するコンタクトレンズの光学顕微鏡画像を示す。
図6C図6Cは、正電荷粒子(DOWEX(商標)1×4 20〜50メッシュ樹脂)の分散物中に浸漬した後の様々なコーティングをその上に有するコンタクトレンズの光学顕微鏡画像を示す。
図7図7は、AFM試験のために、本発明のSiHyコンタクトレンズの断面片を金属クランプ中に垂直に備え付ける方法を概略的に説明する。
図8図8は、本発明の好ましい実施態様に係る、完全に水和した状態(リン酸緩衝生理食塩水中、pH〜7.3)のSiHyコンタクトレンズの断面の一部のAFM(原子間力顕微鏡法)画像を示す。
図9図9は、距離の関数としてのカンチレバーのたわみをプロットすることにより近似的に表される、本発明の好ましい実施態様に係る、SiHyコンタクトレンズの断面の表面の前面と後面間の2つの最短線に沿った、完全に水和した状態(リン酸緩衝生理食塩水中、pH〜7.3)の本発明のSiHyコンタクトレンズの断面表面係数プロファイルを示す。
【0012】
発明の実施態様の詳細な説明
ここで、本発明の実施態様について詳細に言及する。当業者であれば、本発明において、本発明の範囲又は精神から逸脱することなく、様々な改変、変形及び組み合わせを実施することができることが明らかであろう。例えば、一実施態様の一部として例示又は記載される特徴を別の実施態様に使用して、なおさらなる実施態様を得ることができる。従って、添付の特許請求の範囲及びそれらの等価物の範囲内となるように、本発明がこのような改変、変形及び組み合わせを包含することが意図される。本発明の他の目的、特徴及び態様は、下記の詳細な説明において開示されるか、又はそこから明らかである。当業者であれば、本発明の考察が単に例示的な実施態様を記載するものであり、本発明のより広範な態様を限定するものではないことを理解されたい。
【0013】
特に指定しない限り、本明細書において使用される全ての技術及び科学用語は、本発明が属する技術分野の当業者に通常理解されるものと同一の意味を有する。一般的に、本明細書において使用される命名法及び実験室手順は、当技術分野においてよく知られており、一般的に使用されている。当技術分野及び様々な一般参考文献において与えられるようなこれらの手順には従来の方法が用いられる。用語が単数形で与えられる場合、本発明者らはその用語の複数形も想定している。本明細書において使用される命名法及び下記の実験室手順は、当技術分野においてよく知られており、一般的に使用されている。
【0014】
本願で使用されるように、用語「シリコーンヒドロゲルコンタクトレンズ」は、シリコーンヒドロゲル材料を含むコンタクトレンズを指す。
【0015】
本願で使用されるように、用語「ヒドロゲル」又は「ヒドロゲル材料」は、非水溶性であり、且つ、完全に水和した場合にそのポリマーマトリックス中に少なくとも10%(重量)の水を含有することができる架橋ポリマー材料を指す。
【0016】
本願で使用されるように、用語「非シリコーンヒドロゲル」は、シリコーンを理論上含有しないヒドロゲルを指す。
【0017】
本願で使用されるように、用語「シリコーンヒドロゲル」は、シリコーンを含有するヒドロゲルを指す。シリコーンヒドロゲルは、典型的には、少なくとも1つのシリコーン含有ビニルモノマー又は少なくとも1つのシリコーン含有ビニルマクロマー又はエチレン性不飽和基を有する少なくとも1つのシリコーン含有プレポリマーを含む重合性組成物の共重合により得られる。
【0018】
本願で使用されるように、用語「ビニルモノマー」は、1つの単一エチレン性不飽和基を有し、且つ、化学線又は熱により重合することができる化合物を指す。
【0019】
本願で使用されるように、用語「オレフィン性不飽和基」又は「エチレン性不飽和基」は、本明細書において広い意味で使用され、少なくとも1つの>C=C<基を含有する任意の基を包含することを意図する。典型的なエチレン性不飽和基には、
【化1】

スチレニル又は他のC=C含有基が含まれるが、これらに限定されない。
【0020】
本願で使用されるように、用語「(メタ)アクリルアミド」は、メタクリルアミド及び/又はアクリルアミドを指す。
【0021】
本願で使用されるように、用語「(メタ)アクリレート」は、メタクリレート及び/又はアクリレートを指す。
【0022】
本願で使用されるように、用語「親水性ビニルモノマー」は、ホモポリマーとして、典型的には、水溶性であるか、又は少なくとも10%(重量)の水を吸収することができるポリマーを生成するビニルモノマーを指す。
【0023】
本願で使用されるように、用語「疎水性ビニルモノマー」は、ホモポリマーとして、典型的には、水に不溶性であり、且つ、10%(重量)未満の水を吸収することができるポリマーを生成するビニルモノマーを指す。
【0024】
本願で使用されるように、用語「マクロマー」又は「プレポリマー」は、2つ以上のエチレン性不飽和基を含有する中分子量〜高分子量化合物又はポリマーを指す。中分子量〜高分子量は、典型的には、700ダルトン超の平均分子量を意味する。
【0025】
本願で使用されるように、用語「架橋剤」は、少なくとも2つのエチレン性不飽和基を有する化合物を指す。「架橋剤」は、約700ダルトン以下の分子量を有する架橋剤を指す。
【0026】
本願で使用されるように、用語「ポリマー」は、1つ又は複数のモノマー又はマクロマー又はプレポリマーを重合/架橋することにより形成される材料を意味する。
【0027】
本願で使用されるように、ポリマー材料(モノマー又はマクロマー材料を含む)の用語「分子量」は、具体的に別途指示のない限り、又は試験条件が別途指示されない限り、重量平均分子量を指す。
【0028】
本願で使用されるように、用語「アミノ基」は、具体的に別途指示のない限り、式−NHR’(式中、R’は、水素又はC−C20非置換もしくは置換、直鎖もしくは分岐鎖アルキル基である)で表される、第一級又は第二級アミノ基を指す。
【0029】
本願で使用されるように、用語「エピクロロヒドリン官能化ポリアミン」又は「エピクロロヒドリン官能化ポリアミドアミン」は、ポリアミン又はポリアミドアミンをエピクロロヒドリンと反応させて、ポリアミン又はポリアミドアミンの全て又はかなりの割合のアミン基をアゼチジニウム基に変換することにより得られるポリマーを指す。
【0030】
本願で使用されるように、用語「アゼチジニウム基」は、
【化2】

で表される正電荷基を指す。
【0031】
本願で使用されるように、用語「熱架橋性」は、ポリマー材料又は官能基に関して、ポリマー材料又は官能基と別の材料又は官能基との架橋(又はカップリング)反応を、比較的高温(約40℃〜約140℃)で行うことができるが、一方で、ポリマー材料又は官能基と別の材料又は官能基との同じ架橋反応(又はカップリング反応)を、室温(すなわち、約22℃〜約28℃、好ましくは、約24℃〜約26℃、特に、約25℃)で行うことができない(約1時間かけて検出可能な程度(すなわち、約5%超)になるまで)ことを意味する。
【0032】
本願で使用されるように、用語「ホスホリルコリン」は、
【化3】

(式中、nは、1〜5の整数であり、R、R及びRは、互いに独立して、C−Cアルキル又はC−Cヒドロキシアルキルである)
で表される両性イオン基を指す。
【0033】
本願で使用されるように、用語「反応性ビニルモノマー」は、カルボキシル基又はアミノ基(すなわち、第一級又は第二級アミノ基)を有するビニルモノマーを指す。
【0034】
本願で使用されるように、用語「非反応性親水性ビニルモノマー」は、任意のカルボキシル基又はアミノ基(すなわち、第一級又は第二級アミノ基)を含有しない親水性ビニルモノマーを指す。非反応性ビニルモノマーは、第三級又は第四級アミノ基を含むことができる。
【0035】
本願で使用されるように、用語「水溶性」は、ポリマーに関して、室温(上記で定義)で、最大約30%(重量)の濃度を有するポリマーの水溶液を生成するのに十分な程度まで、ポリマーを水に溶解させることができることを意味する。
【0036】
本願で使用されるように、用語「水接触角」は、接触角の測定値を平均することにより得られる、平均水接触角(すなわち、液滴法により測定される接触角)を指す。
【0037】
本願で使用されるように、用語「無損傷」は、SiHyコンタクトレンズ上のコーティングに関して、コンタクトレンズを、実施例1に記載のSudan Black染色試験において、Sudan Blackによりどの程度染色することができるかを表すことを意図する。SiHyコンタクトレンズ上のコーティングの良好な無損傷は、コンタクトレンズが実質的にSudan Blackにより染色されないことを意味する。
【0038】
本願で使用されるように、用語「耐久性」は、SiHyコンタクトレンズ上のコーティングに関して、SiHyコンタクトレンズ上のコーティングがデジタル摩擦試験を耐え抜くことができることを表すことを意図する。
【0039】
本願で使用されるように、用語「デジタル摩擦試験を耐え抜く」又は「耐久性試験を耐え抜く」は、コンタクトレンズ上のコーティングに関して、実施例1に記載の手順に従ってレンズを指で摩擦した後の指で摩擦したレンズの水接触角が、依然として約100degree以下、好ましくは、約90degree以下、より好ましくは、約80degree以下、最も好ましくは、約70degree以下であることを意味する。
【0040】
材料の固有の「酸素透過度」Dkは、酸素が材料を透過する割合である。本願で使用されるように、用語「酸素透過度(Dk)」は、ヒドロゲル(シリコーン又は非シリコーン)又はコンタクトレンズに関して、本明細書下記の実施例に示される手順に従って境界層効果により生じる酸素フラックスに対する表面抵抗について補正された測定された酸素透過度(Dk)を意味する。酸素透過度は、従来より、barrer単位で表され、「barrer」は、[(酸素cm3)(mm)/(cm)(秒)(mmHg)]×10−10として定義される。
【0041】
レンズ又は材料の「酸素伝達率」Dk/tは、酸素が、測定される面積にわたって平均厚さt[mm単位]を有する特定のレンズ又は材料を透過する割合である。酸素伝達率は、従来より、barrer/mm単位で表され、「barrer/mm」は、[(酸素cm)/(cm)(秒)(mmHg)]×10−9として定義される。
【0042】
レンズを透過する「イオン透過性」は、イオノフラックス拡散係数と相関する。イオノフラックス拡散係数D([mm/分]単位)は、下記のようなFickの法則を適用することによって決定される:
D=−n’/(A×dc/dx)
(式中、n’=イオン輸送の割合[mol/分];A=曝露されたレンズの面積[mm];dc=濃度差[mol/L];dx=レンズの厚さ[mm])
【0043】
本願で使用されるように、用語「眼科適合性」は、眼内環境に重大な損傷及び使用者に重度の不快感を与えることなく、眼内環境と長期間密接に接触することができる材料又は材料の表面を指す。
【0044】
本願で使用されるように、用語「眼科的に安全」は、コンタクトレンズを殺菌及び保存するためのパッケージング溶液に関して、該溶液中に保存されたコンタクトレンズを、オートクレーブ後にリンスしなくても眼の上に直接配置した際に安全であること、そして、該溶液が、コンタクトレンズを介した眼との毎日の接触に対して安全であり、十分に快適であることを意味することを意図する。オートクレーブ後の眼科的に安全なパッケージング溶液は、眼と適合する浸透圧及びpHを有し、国際ISO標準及び米国FDA規制による眼に刺激性又は眼に細胞毒性の材料を実質的に含有しない。
【0045】
本願で使用されるように、SiHyコンタクトレンズの用語「断面」は、ナイフ又は切断道具を用いて、レンズの前面あるいは後面に対して実質的に垂直な角度でレンズを切断することにより得られるレンズ断面を指す。当業者であれば、コンタクトレンズの断面を得るために、コンタクトレンズを手動(すなわち、手で切断)又はCryosta Microtomeもしくはラスで切断することをよく知っている。得られたコンタクトレンズの断面は、イオンエッチング又は類似の技術を用いて研磨することができる。
【0046】
用語「表面係数」、「表面柔軟性」、「表面弾性率」、「表面ヤング係数」又は「表面圧縮係数」は本願において互換的に使用され、当業者に公知のように、接触モード、ナノインデンテーション法、Peakforce QNM法又はHarmonic Force法を用いて、完全に水和した状態(リン酸緩衝液中、pH〜7.3±0.2)の材料の表面又はコンタクトレンズの断面を、原子間力顕微鏡法(AFM)により測定されるナノメカニカル特性(弾性特性)を意味する。Jan Domke及びManfred Radmacherは、薄層の弾性特性をAMFで測定することができることを報告した(Langmuir 1998, 14, 3320-3325、参照によりその全体が本明細書に組み込まれる)。AFMナノインデンテーションは、Gonzalez-Meijome JM, Almeida JB and Parafita MA in Microscopy: Science, Technology, Applications and Education, 「Analysis of Surface Mechanical Properties of Unworn and Worn Silicone Hydrogel Contact Lenses Using Nanoindentation with AFM」, pp554-559, A. Mendez-Vilas and J. Diaz (Eds.), FormatexResearch Center, Badajoz, Spain (2010)、参照によりその全体が本明細書に組み込まれる)により記載される実験手順に従って実施することができる。コンタクトレンズの前面又は後面ではなく、コンタクトレンズの断面の表面(これらの論文中のGonzalez-Meijome JM, Almeida JB and Parafita MAにより実施)が、AFMでのナノインデンテーションを用いて分析されることに留意されたい。ナノインデンテーション法、Peakforce QNM法及びHarmonic Force法は、Kim Sweers, et al. in Nanoscale Research Letters 2011, 6:270の論文において、タイトル「Nanomechanical properties of a-synuclein amyloid fibrils: a comparative study by nanoindentation, harmonic force microscopy, and Peakforce QNM」で記載されている(参照によりその全体が本明細書に組み込まれる)。また、完全に水和したSiHyコンタクトレンズの断面の前面からバルク又はバルクから後面(逆もまた同様)にわたって、AFMを用いて表面弾性率の測定を実施した際、コンタクトレンズの断面にわたる表面係数プロファイルは、コンタクトレンズの断面の表面の前面と後面間の最短線に沿って確定することができることを理解されたい。さらに、良好な近似として、任意の実験的及び直接的に測定された量を、測定された量が表面係数に比例する範囲で表面係数を表すために使用することができることを理解されたい。
【0047】
本願で使用されるように、用語「前面外部ヒドロゲル層」は、本発明のSiHyコンタクトレンズに関して、コンタクトレンズの前面を含み、実質的に均一の厚さであり(すなわち、厚さの変動は、その層の平均厚さの約10%以下である)、そして、少なくとも約0.1μmの平均厚さを有するヒドロゲル層を意味する。前面外部ヒドロゲル層の「平均厚さ」は、本願において、単に「前面外部ヒドロゲル層の厚さ」とも呼ぶ。
【0048】
本願で使用されるように、用語「後面外部ヒドロゲル層」は、本発明のSiHyコンタクトレンズに関して、コンタクトレンズの後面を含み、実質的に均一の厚さであり(すなわち、厚さの変動は、その層の平均厚さの約10%以下である)、そして、少なくとも約0.1μmの平均厚さを有するヒドロゲル層を意味する。後面外部ヒドロゲル層の「平均厚さ」は、本願において、単に「後面外部ヒドロゲル層の厚さ」とも呼ぶ。
【0049】
本願で使用されるように、用語「内部層」は、本発明のSiHyコンタクトレンズに関して、中央の曲線状の面(コンタクトレンズを2つの部分に分割し、一方は前面を含有し、他方は後面を含有する)を含み、可変の厚さを有する層を意味する。
【0050】
本願で使用されるように、用語「架橋コーティング」又は「ヒドロゲルコーティング」は、完全に水和した場合に水を含有することができる三次元網目構造を有する架橋ポリマー材料を表すために互換的に使用される。架橋ポリマー材料の三次元網目構造は、2つ以上の直鎖又は分岐鎖ポリマーを架橋することにより架橋連結を介して形成することができる。
【0051】
本願で使用されるように、用語「水膨張率」は、本発明のSiHyコンタクトレンズのヒドロゲル材料の前面又は後面外部ヒドロゲル層に関して、WSR=LWet/LDry×100%に従って、AFMにより決定される値を意味する(式中、WSRは、前面及び後面外部ヒドロゲル層の1つの水膨張率であり、LWetは、完全に水和した状態(すなわち、リン酸緩衝液中、pH〜7.3±0.2)のSiHyコンタクトレンズの断面をAFMで測定したときの、完全に水和した状態のSiHyコンタクトレンズの外部ヒドロゲル層の平均厚さであり、そして、LDryは、乾燥状態(ヒドロゲル材料の多孔性を保持することなく乾燥、例えば、真空乾燥)及び実質的に乾燥雰囲気中のSiHyコンタクトレンズの断面をAFMで測定したときの、乾燥状態のSiHyコンタクトレンズの外部ヒドロゲル層の平均厚さである)。各外部ヒドロゲル層(本発明のSiHyコンタクトレンズの)の水膨張率が、各外部ヒドロゲル層が有する含水率に比例しており、そして、少なくとも約100%又は
【数5】

(いずれもより大きい、WCSiHyは、本発明のSiHyコンタクトレンズのバルク(又は内部層)シリコーンヒドロゲル材料の含水率である)の水膨張率は、本発明のSiHyコンタクトレンズのバルク(又は内部層)シリコーンヒドロゲル材料に対して、より高い含水率を有する外部ヒドロゲル層の性質の良好な指標となることができると考えられる。
【0052】
本願において使用されるように、用語「低下した表面係数」は、本発明のSiHyコンタクトレンズの前面及び後面外部ヒドロゲル層のいずれか又は両方に関して、下記の式:
【数6】

(式中、RSMは、内部層に対して低下した前面又は後面外部ヒドロゲル層の係数であり、
【数7】

は、後面又は前面外部ヒドロゲル層の平均表面係数であり、そして
【数8】

は、内部層の平均表面係数である)
に基づいて計算される値を意味することを意図する。
【数9】

は、上述したように、完全に水和した状態のSiHyコンタクトレンズの断面表面係数プロファイルから得られる(表面機械特性、すなわち、完全に水和したSiHyコンタクトレンズの断面表面係数を、AFMを用いて分析することにより測定される)。断面表面係数プロファイル(すなわち、表面係数対完全に水和した状態のSiHyレンズの断面の表面の前面と後面間の最短線に沿った前面及び後面の1つから他の表面までの距離のグラフ)が、少なくとも2つの外部域(一方が前面を含み、他方が後面を含む)及び1つの内部域(バルクシリコーンヒドロゲル材料に相当する)を有するものと予想される。外部域(すなわち、外部ヒドロゲル層)の平均表面係数は、外部域と内部域(すなわち、境界領域又は移行域内及び/又は近傍)間の約1〜約2ミクロンの領域を除く外部域内の全ての表面係数を平均することにより得られる。
【0053】
「臨界摩擦係数」は、レンズが押された後傾斜面上を滑り始めるが、止まるか、又は端に到達する前に10秒超かかる、傾斜面の最大傾斜角である臨界角のタンジェントである。臨界摩擦係数(CCOF)を決定するための手順は、実施例29に記載している。コンタクトレンズの臨界摩擦係数(CCOF)がそのコンタクトレンズの表面潤滑性と相関し、そして、コンタクトレンズの表面潤滑性を定量化するために使用することができると考えられる。
【0054】
本願で使用されるように、「正電荷粒子付着試験」は、水和SiHyコンタクトレンズの負電荷基(例えば、カルボン酸基)の表面濃度を特徴づけるための試験を指す。正電荷粒子付着試験は下記のように実施される。DOWEX(商標)1×4 20〜50メッシュ樹脂(球状のI型強塩基性樹脂(N(CHCl官能基及び4%ジビニルベンゼンを含有するスチレン/ジビニルベンゼンコポリマー)である)の水性分散物を、所定量のDOWEX(商標)1×4 20〜50メッシュ樹脂をリン酸緩衝生理食塩水(pH〜7.3)に5%(重量)の樹脂濃度を有するように分散させた後、約1000rpmで10秒間振とう又は撹拌又はボルテックスにより十分に混合することにより調製する。水和シリコーンヒドロゲルコンタクトレンズを、上記で調製したDOWEX(商標)1×4 20〜50メッシュ樹脂の水性分散物に浸漬し、約1000〜1100rpmで約1分間、ボルテックスで撹拌して、次いで、DI水でリンスし、DI水中で約1分間ボルテックスする。次に、レンズをガラスペトリディッシュ内の水に入れ、Nikon光学顕微鏡で下部照明を使用してレンズの画像を撮る。各レンズ表面に付着した正電荷粒子の数をカウントすることができる。レンズ表面に付着した正電荷粒子の数は、コンタクトレンズの負電荷基の表面濃度に比例する。
【0055】
本願で使用されるように、用語「カルボン酸含有率」は、本発明のSiHyコンタクトレンズの架橋コーティング又は外部ヒドロゲル層に関して、SiHyコンタクトレンズの架橋コーティング又は外部ヒドロゲル層の重量に基づくカルボン酸基(COOH)の重量(%)を意味する。架橋コーティング又は外部ヒドロゲル層のカルボン酸含有率は、架橋コーティング又は外部ヒドロゲル層を作製するための出発材料の組成及び各出発材料のカルボン酸含有率に基づいて理論的に推定することができる。
【0056】
本発明は、層状構造形状及びSiHyコンタクトレンズの内側から外側への特有の水勾配を有し:より高い含水率及び適度な厚さ(少なくとも約0.1μm)を有し、且つ、実質的にシリコーンを含有しない(好ましくは、完全にシリコーンを含有しない)外部(表面)ヒドロゲル層で完全に覆われている、より低い含水率のシリコーンヒドロゲル核(又はバルク材料);及びバルク材料の含水率の少なくとも約1.2倍(又は120%)、好ましくは、少なくとも約1.3倍(又は130%)、より好ましくは、少なくとも約1.4倍(又は140%)、さらにより好ましくは、少なくとも約1.5倍(150%)、最も好ましくは、少なくとも約2倍(又は200%)である含水率の外部ヒドロゲル層を有するSiHyコンタクトレンズに関する。図1は、好ましい実施態様に係る、層状構造形状を有するSiHyコンタクトレンズを概略的に説明する。本発明のこの好ましい実施態様によれば、SiHyコンタクトレンズ100は、前面(又はフロントカーブもしくは凸面)101及び使用者が装着した際に眼の角膜上に静止する反対の後面(又はベースカーブもしくは凹面)102を有する。SiHyコンタクトレンズ100は、内部(又は中間)層110及び2つの外部層120を含む。内部層110は、SiHyコンタクトレンズ100のバルク材料であり、SiHyコンタクトレンズ100に非常に近接している3次元形状を有する。内部層110は、好ましくは、より低い含水率のシリコーンヒドロゲルからなる。実質的に同一である2つの外部層120は、実質的に均一の厚さであり、内部層110の含水率に対してより高い含水率を有する実質的にシリコーンを含有しない(好ましくは、完全にシリコーンを含有しない)ヒドロゲル材料からなる。2つの外部層120は、コンタクトレンズ100の周辺端部103で融合し、内部層110を完全に覆っている。
【0057】
本発明の層状構造形状を有するSiHyコンタクトレンズは、従来のコンタクトレンズと比較して、いくつかの利点を提供することができる。第一に、このようなSiHyコンタクトレンズは、眼の角膜の健康を維持するために必要な高い酸素透過度を依然として有することができる。第二に、内部層(バルク材料)が、コンタクトレンズに必要なバルクの機械的強度及び剛性を提供するので、外部ヒドロゲル層は、含水率に関して制限されることなく、可能な限りの水を含有することができる。そのため、外部ヒドロゲル層は、水を多く含む膜又はレンズ構造形状に含水率勾配(レンズ表面の近傍及びそれを含む領域において最高の含水率ならびにレンズ核において最低の含水率)を有するコンタクトレンズを提供することができる。第三に、本発明の層状構造形状を有するSiHyコンタクトレンズは、低い眼内脱水を有し、眼に低乾燥の感覚をもたらし、そして、結果として、終日の装着快適性を改善することができる。低い含水率を有する内部層(すなわち、レンズのバルク材料)は、レンズの後面から前面へ経由する水の拡散率、そして、レンズの前面の蒸発(水分喪失)を制御(制限)すると考えられる。また、本発明の層状構造形状は、内部の水濃度勾配(すなわち、前面からレンズ核へ内部に進むに従って含水率が低下する)を生じさせる可能性があるが、これは、拡散のFickの法則によるとレンズの後面から前面へ経由する水の拡散には好ましくないと考えられる。第四に、本発明の層状構造形状を有するSiHyコンタクトレンズは、水が涙液と高い生体適合性であるため、そして、外部ヒドロゲル層中の高い含水率(例えば、好ましくは、>75%HO)が、眼が直接接触し、生体適合性が最大になる前面及び後面の内部及び近傍に位置するため、高い生体適合性を提供することができる。第五に、適度な厚さを有する外部ヒドロゲル層中の高い含水率は、柔軟性の高い表面、すなわち、「水のクッション」を有するSiHyコンタクトレンズを提供することができる。第六に、本発明の層状構造形状を有するSiHyコンタクトレンズは、高い潤滑面を有することができる。非常に高い含水率及び適度な厚さを有する外部ヒドロゲル層は、レンズ表面に広がる涙液を引き付けることができる「水を好む」表面を提供するであろうと考えられる。バルクレンズ材料(内部層)よりもかなり高い柔軟性を有する外部ヒドロゲル層は、圧力(すなわち、眼瞼のせん断力)下で非常に変形しやすく、そのようなSiHyコンタクトレンズが眼内に装着された場合、弾性流体潤滑をもたらすことができると考えられる。第七に、本発明のSiHyコンタクトレンズ中の層状構造形状は、シリコーンの曝露を防ぐことができる。適度な厚さを有する外部ヒドロゲル層の三次元メッシュ網目構造(すなわち、ポリマーマトリックス)は、シリコーンを覆うことができ、シリコーンのレンズ表面への移動を防ぐことができると考えられる。第八に、本発明のSiHyコンタクトレンズは、低い表面濃度の負電荷基(例えば、カルボン酸基)を有することができ、患者の取り扱い中での重度の残屑付着及び装着中の重度のタンパク質付着の影響を受けにくい(涙液中のタンパク質の大部分は正電荷であると考えられる)。
【0058】
一態様においては、本発明は、前(凸)面及び反対の後(凹)面;ならびに前面から後面の層状構造形状を含む水和シリコーンヒドロゲルコンタクトレンズであって、層状構造形状が、前面外部ヒドロゲル層、シリコーンヒドロゲル材料の内部層及び後面外部ヒドロゲル層を含み、シリコーンヒドロゲル材料が、少なくとも約50、好ましくは、少なくとも約60、より好ましくは、少なくとも約70、さらにより好ましくは、少なくとも約90、最も好ましくは、少なくとも約110barrerの酸素透過度(Dk)、及び約10%〜約70%、好ましくは、約10%〜約65%、より好ましくは、約10%〜約60%、さらにより好ましくは、約15%〜約55%、最も好ましくは、約15%〜約50%(重量)の第一含水率(WCSiHyと表される)を有し、前面及び後面外部ヒドロゲル層が、実質的に均一な厚さであり、且つ、シリコーンヒドロゲル材料の内部層を完全に包み込むようにコンタクトレンズの周辺端部で融合しており、そして、前面及び後面外部ヒドロゲル層が、互いに独立して、WCSiHy≦45%である場合、少なくとも約100%(好ましくは、少なくとも約150%、より好ましくは、少なくとも約200%、さらにより好ましくは、少なくとも約250%、最も好ましくは、少なくとも約300%)の水膨張率を有すること、又はWCSiHy>45%である場合、少なくとも約
【数10】

の水膨張率を有することを特徴とする、WCSiHyより高い第二含水率を有し、各外部ヒドロゲル層の厚さが、約0.1μm〜約20μm、好ましくは、約0.25μm〜約15μm、より好ましくは、約0.5μm〜約12.5μm、さらにより好ましくは、約1μm〜約10μmである(完全に水和した状態のシリコーンヒドロゲルコンタクトレンズの後面から前面の断面にわたって原子間力顕微鏡法で測定したとき)、水和シリコーンヒドロゲルコンタクトレンズを提供する。好ましくは、前面及び後面は、正電荷粒子付着試験において、最大約200、好ましくは、最大約160、より好ましくは、最大約120、さらにより好ましくは、最大約90、最も好ましくは、最大約60個の正電荷粒子を引き付けることを特徴とする、低い表面濃度の負電荷基(例えば、カルボン酸基)を有する。また、好ましくは、水和シリコーンヒドロゲルコンタクトレンズは、約0.046以下、好ましくは、約0.043以下、より好ましくは、約0.040以下の臨界摩擦係数(CCOFと表される)を有することを特徴とする表面潤滑性を有する。
【0059】
本発明によれば、SiHyコンタクトレンズの内部層は、実質的にレンズのバルク材料である。これは、2つの外部ヒドロゲル層を事前に形成するSiHyコンタクトレンズ上に直接的及び/又は間接的に適用し、接着させる表面修飾プロセスで、事前に形成するSiHyコンタクトレンズから直接誘導することができる。事前に形成するSiHyコンタクトレンズは、任意の市販のSiHyレンズ、例えば、上述したレンズの1つであってよい。あるいは、事前に形成するSiHyは、当業者によく知られる任意の方法に従って製造することができる。例えば、事前に形成するコンタクトレンズは、例えば、米国特許第3,408,429号に記載の従来の「スピンキャスト成形」で、又は米国特許第4,347,198号;第5,508,317号;第5,583,463号;第5,789,464号;及び第5,849,810号に記載の静止状態でのフルキャスト成形プロセスにより、又はカスタマイズコンタクトレンズの製造で使用されるシリコーンヒドロゲル下部の旋盤切断(lathe cutting)により製造することができる。キャスト成形では、レンズ調合物は、典型的には、コンタクトレンズを製造するための成形用型に分注し、成形用型中で硬化(すなわち、重合及び/又は架橋)させる。事前に形成するSiHyコンタクトレンズを製造するために、キャスト成形もしくはスピンキャスト成形のための、又はコンタクトレンズの旋盤切断で使用されるSiHyロッドを製造するためのSiHyレンズ調合物は、一般的に、当業者によく知られているように、シリコーン含有ビニルモノマー、シリコーン含有ビニルマクロマー、シリコーン含有プレポリマー、親水性ビニルモノマー、疎水性ビニルモノマー、架橋剤(約700ダルトン以下の分子量を有し、且つ、少なくとも2つのエチレン性不飽和基を含有する化合物)、フリーラジカル開始剤(光開始剤又は熱開始剤)、親水性ビニルマクロマー/プレポリマー及びそれらの組み合わせからなる群より選択される少なくとも1つの成分を含む。SiHyコンタクトレンズ調合物は、また、当業者に公知のように、当業者に公知の他の必要な成分、例えば、UV吸収剤、可視性着色剤(例えば、染料、色素又はそれらの混合物)、抗菌剤(例えば、好ましくは、銀ナノ粒子)、生物活性剤、浸出性潤滑剤、漏出性涙液安定化剤(leachable tear-stabilizing agent)及びそれらの混合物などを含むことができる。得られた事前に形成するSiHyコンタクトレンズは、次に、当業者に公知のように、得られたレンズから非重合成分を除去するための抽出溶媒を用いた抽出及び水和プロセスに供することができる。また、事前に形成するSiHyコンタクトレンズは、着色コンタクトレンズ(すなわち、当業者によく知られている、プリントされた少なくとも1つの色パターンを有するSiHyコンタクトレンズ)であってよい。
【0060】
任意の適切なシリコーン含有ビニルモノマーを本発明において使用することができる。好ましいシリコーン含有ビニルモノマーの例には、N−[トリス(トリメチルシロキシ)シリルプロピル]−(メタ)アクリルアミド、N−[トリス(ジメチルプロピルシロキシ)−シリルプロピル]−(メタ)アクリルアミド、N−[トリス(ジメチルフェニルシロキシ)シリルプロピル](メタ)アクリルアミド、N−[トリス(ジメチルエチルシロキシ)シリルプロピル](メタ)アクリルアミド、N−(2−ヒドロキシ−3−(3−(ビス(トリメチルシリルオキシ)メチルシリル)プロピルオキシ)プロピル)−2−メチルアクリルアミド;N−(2−ヒドロキシ−3−(3−(ビス(トリメチルシリルオキシ)メチルシリル)プロピルオキシ)プロピル)アクリルアミド;N,N−ビス[2−ヒドロキシ−3−(3−(ビス(トリメチルシリルオキシ)メチルシリル)プロピルオキシ)プロピル]−2−メチルアクリルアミド;N,N−ビス[2−ヒドロキシ−3−(3−(ビス(トリメチルシリルオキシ)メチルシリル)プロピルオキシ)プロピル]アクリルアミド;N−(2−ヒドロキシ−3−(3−(トリス(トリメチルシリルオキシ)シリル)プロピルオキシ)プロピル)−2−メチルアクリルアミド;N−(2−ヒドロキシ−3−(3−(トリス(トリメチルシリルオキシ)シリル)プロピルオキシ)プロピル)アクリルアミド;N,N−ビス[2−ヒドロキシ−3−(3−(トリス(トリメチルシリルオキシ)シリル)プロピルオキシ)プロピル]−2−メチルアクリルアミド;N,N−ビス[2−ヒドロキシ−3−(3−(トリス(トリメチルシリルオキシ)シリル)プロピルオキシ)プロピル]アクリルアミド;N−[2−ヒドロキシ−3−(3−(t−ブチルジメチルシリル)プロピルオキシ)プロピル]−2−メチルアクリルアミド;N−[2−ヒドロキシ−3−(3−(t−ブチルジメチルシリル)プロピルオキシ)プロピル]アクリルアミド;N,N−ビス[2−ヒドロキシ−3−(3−(t−ブチルジメチルシリル)プロピルオキシ)プロピル]−2−メチルアクリルアミド;N,N−ビス[2−ヒドロキシ−3−(3−(t−ブチルジメチルシリル)プロピルオキシ)プロピル]アクリルアミド;3−メタクリルオキシプロピルペンタメチルジシロキサン、トリス(トリメチルシリルオキシ)シリルプロピルメタクリレート(TRIS)、(3−メタクリルオキシ−2−ヒドロキシプロピルオキシ)プロピルビス(トリメチルシロキシ)メチルシラン)、(3−メタクリルオキシ−2−ヒドロキシプロピルオキシ)プロピルトリス(トリメチルシロキシ)シラン、3−メタクリルオキシ−2−(2−ヒドロキシエトキシ)−プロピルオキシ)プロピルビス(トリメチルシロキシ)メチルシラン、N−2−メタクリルオキシエチル−O−(メチル−ビス−トリメチルシロキシ−3−プロピル)シリルカルバメート、3−(トリメチルシリル)プロピルビニルカルボネート、3−(ビニルオキシカルボニルチオ)プロピル−トリス(トリメチル−シロキシ)シラン、3−[トリス(トリメチルシロキシ)シリル]プロピルビニルカルバメート、3−[トリス(トリメチルシロキシ)シリル]プロピルアリルカルバメート、3−[トリス(トリメチルシロキシ)シリル]プロピルビニルカルボネート、t−ブチルジメチル−シロキシエチルビニルカルボネート;トリメチルシリルエチルビニルカルボネート及びトリメチルシリルメチルビニルカルボネート)が含まれるが、これらに限定されない。最も好ましい式(1)のシロキサン含有(メタ)アクリルアミドモノマーは、N−[トリス(トリメチルシロキシ)シリルプロピル]アクリルアミド、TRIS、N−[2−ヒドロキシ−3−(3−(t−ブチルジメチルシリル)プロピルオキシ)プロピル]アクリルアミド又はそれらの組み合わせである。
【0061】
好ましいシリコーン含有ビニルモノマー又はマクロマーのクラスは、ポリシロキサン含有ビニルモノマー又はマクロマーである。そのようなポリシロキサン含有ビニルモノマー又はマクロマーの例は、様々な分子量のモノメタクリレート又はモノアクリレートポリジメチルシロキサン(例えば、モノ−3−メタクリルオキシプロピル末端、モノ−ブチル末端ポリジメチルシロキサン又はモノ−(3−メタクリルオキシ−2−ヒドロキシプロピルオキシ)プロピル末端、モノ−ブチル末端ポリジメチルシロキサン);様々な分子量のジメタクリレート又はジアクリレートポリジメチルシロキサン;ビニルカルボネート末端ポリジメチルシロキサン;ビニルカルバメート末端ポリジメチルシロキサン;様々な分子量のビニル末端ポリジメチルシロキサン;メタクリルアミド末端ポリジメチルシロキサン;アクリルアミド末端ポリジメチルシロキサン;アクリレート末端ポリジメチルシロキサン;メタクリレート末端ポリジメチルシロキサン;ビス−3−メタクリルオキシ−2−ヒドロキシプロピルオキシプロピルポリジメチルシロキサン;N,N,N’,N’−テトラキス(3−メタクリルオキシ−2−ヒドロキシプロピル)−α,ω−ビス−3−アミノプロピル−ポリジメチルシロキサン;ポリシロキサニルアルキル(メタ)アクリルモノマー;米国特許第5,760,100号(参照によりその全体が本明細書に組み込まれる)に記載のマクロマーA、マクロマーB、マクロマーC及びマクロマーDからなる群より選択されるシロキサン含有マクロマー;グリシジルメタクリレートとアミノ官能化ポリジメチルシロキサンの反応生成物;ヒドロキシル官能化シロキサン含有ビニルモノマー又はマクロマー;米国特許第4,136,250号、第4,153,641号、第4,182,822号、第4,189,546号、第4,343,927号、第4,254,248号、第4,355,147号、第4,276,402号、第4,327,203号、第4,341,889号、第4,486,577号、第4,543,398号、第4,605,712号、第4,661,575号、第4,684,538号、第4,703,097号、第4,833,218号、第4,837,289号、第4,954,586号、第4,954,587号、第5,010,141号、第5,034,461号、第5,070,170号、第5,079,319号、第5039,761号、第5,346,946号、第5,358,995号、第5,387,632号、第5,416,132号、第5,451,617号、第5,486,579号、第5,962,548号、第5,981,675号、第6,039,913号及び第6,762,264号(参照によりその全体が本明細書に組み込まれる)に開示のポリシロキサン含有マクロマー;米国特許第4,259,467号、第4,260,725号及び第4,261,875号(参照によりその全体が本明細書に組み込まれる)に開示のポリシロキサン含有マクロマーである。ポリジメチルシロキサンとポリアルキレンオキシドからなるジ−及びトリ−ブロックマクロマーも使用することができる。例えば、酸素透過度を改善するために、メタクリレートで末端キャップしたポリエチレンオキシド−ブロック−ポリジメチルシロキサン−ブロック−ポリエチレンオキシドを使用してもよい。適切な一官能化ヒドロキシル官能化シロキサン含有ビニルモノマー/マクロマー及び適切な多官能化ヒドロキシル官能化シロキサン含有ビニルモノマー/マクロマーは、Gelest, Inc, Morrisville, PAから市販されている。
【0062】
別のクラスの好ましいシリコーン含有マクロマーは、親水性セグメント及び疎水性セグメントを含むシリコン(silicon)含有プレポリマーである。任意の適切な親水性セグメント及び疎水性セグメントを有するシリコーン含有プレポリマーを本発明において使用することができる。そのようなシリコーン含有プレポリマーの例には、所有者が同じ米国特許第6,039,913号、第7,091,283号、第7,268,189号及び第7,238,750号、第7,521,519号;所有者が同じ米国特許出願公報第US 2008-0015315 A1号、第US 2008-0143958 A1号、第US 2008-0143003 A1号、第US 2008-0234457 A1号、第US 2008-0231798 A1号ならびに所有者が同じ米国特許出願第61/180,449号及び第61/180,453号に記載のものが含まれる。これらの全てが、参照によりその全体が本明細書に組み込まれる。
【0063】
好ましい親水性ビニルモノマーの例は、N,N−ジメチルアクリルアミド(DMA)、N,N−ジメチルメタクリルアミド(DMMA)、2−アクリルアミドグリコール酸、3−アクリロイルアミノ−1−プロパノール、N−ヒドロキシエチルアクリルアミド、N−[トリス(ヒドロキシメチル)メチル]−アクリルアミド、N−メチル−3−メチレン−2−ピロリドン、1−エチル−3−メチレン−2−ピロリドン、1−メチル−5−メチレン−2−ピロリドン、1−エチル−5−メチレン−2−ピロリドン、5−メチル−3−メチレン−2−ピロリドン、5−エチル−3−メチレン−2−ピロリドン、1−n−プロピル−3−メチレン−2−ピロリドン、1−n−プロピル−5−メチレン−2−ピロリドン、1−イソプロピル−3−メチレン−2−ピロリドン、1−イソプロピル−5−メチレン−2−ピロリドン、1−n−ブチル−3−メチレン−2−ピロリドン、1−tert−ブチル−3−メチレン−2−ピロリドン、2−ヒドロキシエチルメタクリレート(HEMA)、2−ヒドロキシエチルアクリレート(HEA)、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート(HPMA)、2−ヒドロキシプロピルメタクリレートトリメチルアンモニウム塩酸塩、アミノプロピルメタクリレート塩酸塩、ジメチルアミノエチルメタクリレート(DMAEMA)、グリセロールメタクリレート(GMA)、N−ビニル−2−ピロリドン(NVP)、アリルアルコール、ビニルピリジン、最大1500の重量平均分子量を有するC−C−アルコキシポリエチレングリコール(メタ)アクリレート、メタクリル酸、N−ビニルホルムアミド、N−ビニルアセトアミド、N−ビニルイソプロピルアミド、N−ビニル−N−メチルアセトアミド、アリルアルコール、N−ビニルカプロラクタム及びそれらの混合物である。
【0064】
好ましい疎水性ビニルモノマーの例には、メチルアクリレート、エチルアクリレート、プロピルアクリレート、イソプロピルアクリレート、シクロへキシルアクリレート、2−エチルへキシルアクリレート、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、吉草酸ビニル、スチレン、クロロプレン、塩化ビニル、塩化ビニリデン、アクリロニトリル、1−ブテン、ブタジエン、メタクリロニトリル、ビニルトルエン、ビニルエチルエーテル、ペルフルオロへキシルエチル−チオ−カルボニル−アミノエチル−メタクリレート、イソボルニルメタクリレート、トリフルオロエチルメタクリレート、ヘキサフルオロ−イソプロピルメタクリレート、ヘキサフルオロブチルメタクリレートが含まれる。
【0065】
好ましい架橋剤の例には、テトラエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、テトラエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロプロパントリメタクリレート、ペンタエリスリトールテトラメタクリレート、ビスフェノールAジメタクリレート、ビニルメタクリレート、エチレンジアミンジメチルアクリルアミド、エチレンジアミンジアクリルアミド、グリセロールジメタクリレート、トリアリルイソシアヌレート、トリアリルシアヌレート、アリルメタクリレート、アリルメタクリレート、1,3−ビス(メタクリルアミドプロピル)−1,1,3,3−テトラキス(トリメチルシロキシ)ジシロキサン、N,N’−メチレンビスアクリルアミド、N,N’−メチレンビスメタクリルアミド、N,N’−エチレンビスアクリルアミド、N,N’−エチレンビスメタクリルアミド,1,3−ビス(N−メタクリルアミドプロピル)−1,1,3,3−テトラキス−(トリメチルシロキシ)ジシロキサン、1,3−ビス(メタクリルアミドブチル)−1,1,3,3−テトラキス(トリメチルシロキシ)−ジシロキサン、1,3−ビス(アクリルアミドプロピル)−1,1,3,3−テトラキス(トリメチルシロキシ)ジシロキサン、1,3−ビス(メタクリルオキシエチルウレイドプロピル)−1,1,3,3−テトラキス(トリメチルシロキシ)ジシロキサン及びそれらの組み合わせが含まれるが、これらに限定されない。好ましい架橋剤は、テトラ(エチレングリコール)ジアクリレート、トリ(エチレングリコール)ジアクリレート、エチレングリコールジアクリレート、ジ(エチレングリコール)ジアクリレート、メチレンビスアクリルアミド、トリアリルイソシアヌレート又はトリアリルシアヌレートである。使用される架橋剤の量は、全ポリマーに対する重量含有率として表され、好ましくは、約0.05%〜約4%の範囲、より好ましくは、約0.1%〜約2%の範囲である。
【0066】
適切な熱開始剤の例には、2,2’−アゾビス(2,4−ジメチルペンタンニトリル)、2,2’−アゾビス(2−メチルプロパンニトリル)、2,2’−アゾビス(2−メチルブタンニトリル)、過酸化ベンゾイルなどの過酸化物などが含まれるが、これらに限定されない。好ましくは、熱開始剤は、2,2’−アゾビス(イソブチロニトリル)(AIBN)である。
【0067】
適切な光開始剤は、ベンゾインメチルエーテル、ジエトキシアセトフェノン、ベンゾイルホスフィンオキシド、1−ヒドロキシシクロへキシルフェニルケトンならびにDarocur及びIrgacur型、好ましくは、Darocur 1173(登録商標)及びDarocur 2959(登録商標)である。ベンゾイルホスフィンオキシド開始剤の例には、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシド;ビス−(2,6−ジクロロベンゾイル)−4−N−プロピルフェニルホスフィンオキシド;及びビス−(2,6−ジクロロベンゾイル)−4−N−ブチルフェニルホスフィンオキシドが含まれる。例えば、マクロマーに組み入れ可能であるか、又は特殊なモノマーとして使用することができる反応性光開始剤も適している。反応性光開始剤の例は、欧州特許出願第632 329号(参照によりその全体が本明細書に組み込まれる)に開示されるものである。次に、化学線、例えば、光、特に、適切な波長のUV光により重合を開始することができる。適宜、適切な光増感剤を加えることでスペクトル要件を制御することができる。
【0068】
任意の適切な重合性UV吸収剤を本発明において使用することができる。好ましくは、重合性UV吸収剤は、ベンゾトリアゾール部分又はベンゾフェノン部分を含む。好ましい重合性UV吸収剤の例には、2−(2−ヒドロキシ−5−ビニルフェニル)−2H−ベンゾトリアゾール、2−(2−ヒドロキシ−5−アクリリルオキシフェニル)−2H−ベンゾトリアゾール、2−(2−ヒドロキシ−3−メタクリルアミドメチル−5−tertオクチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−メタクリルアミドフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−5’−メタクリルアミドフェニル)−5−メトキシベンゾトリアゾール、2−(2’−ヒドロキシ−5’−メタクリルオキシプロピル−3’−t−ブチル−フェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−5’−メタクリルオキシエチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−メタクリルオキシプロピルフェニル)ベンゾトリアゾール、2−ヒドロキシ−4−アクリルオキシアルコキシベンゾフェノン、2−ヒドロキシ−4−メタクリルオキシアルコキシベンゾフェノン、アリル−2−ヒドロキシベンゾフェノン、2−ヒドロキシ−4−メタクリルオキシベンゾフェノンが含まれるが、これらに限定されない。
【0069】
生物活性剤は、眼の病気を予防し、眼の病気の症状を軽減することができる任意の化合物である。生物活性剤は、薬物、アミノ酸(例えば、タウリン、グリシンなど)、ポリペプチド、タンパク質、核酸又はこれらの組み合わせであってよい。本明細書において有用な薬物の例には、レバミピド、ケトチフェン、オラプチジン、クロモグリコラート、シクロスポリン、ネドクロミル、レボカバスチン、ロドキサミド、ケトチフェン又はその薬学的に許容しうる塩もしくはエステルが含まれるが、これらに限定されない。生物活性剤の他の例には、2−ピロリドン−5−カルボン酸(PCA)、α−ヒドロキシル酸(例えば、グリコール酸、乳酸、リンゴ酸、酒石酸、マンデル酸及びクエン酸ならびにその塩など)、リノール酸及びγ−リノール酸ならびにビタミン類(例えば、B5、A、B6など)が含まれる。
【0070】
浸出性潤滑剤の例には、ムチン様材料(例えば、ポリグリコール酸)及び非架橋性親水性ポリマー(すなわち、エチレン不飽和基を含有しない)が含まれるが、これらに限定されない。任意のエチレン性不飽和基を含有しない任意の親水性ポリマー又はコポリマーを、浸出性潤滑剤として使用することができる。非架橋性親水性ポリマーの好ましい例には、ポリビニルアルコール(PVA)、ポリアミド、ポリイミド、ポリラクトン、ビニルラクタムのホモポリマー、1つ又は複数の親水性ビニルコモノマーの存在下又は非存在下での少なくとも1つのビニルラクタムのコポリマー、アクリルアミド又はメタクリルアミドのホモポリマー、アクリルアミド又はメタクリルアミドと1つ又は複数の親水性ビニルモノマーのコポリマー、ポリエチレンオキシド(すなわち、ポリエチレングリコール(PEG))、ポリオキシエチレン誘導体、ポリ−N−N−ジメチルアクリルアミド、ポリアクリル酸、ポリ−2−エチルオキサゾリン、ヘパリン多糖類、多糖類及びそれらの混合物が含まれるが、これらに限定されない。非架橋性親水性ポリマーの重量平均分子量Mは、好ましくは、5,000〜1,00,000である。
【0071】
漏出性涙液安定化剤の例には、リン脂質、モノグリセリド、ジグリセリド、トリグリセリド、糖脂質、グリセロ糖脂質、スフィンゴ脂質、スフィンゴ糖脂質、脂肪族アルコール、脂肪酸、鉱油及びそれらの混合物が含まれるが、これらに限定されない。好ましくは、涙液安定化剤は、リン脂質、モノグリセリド、ジグリセリド、トリグリセリド、糖脂質、グリセロ糖脂質、スフィンゴ脂質、スフィンゴ糖脂質、8〜36個の炭素原子を有する脂肪酸、8〜36個の炭素原子を有する脂肪族アルコール又はそれらの混合物である。
【0072】
本発明によれば、SiHyレンズ調合物は、約20℃〜約85℃の温度で溶液又は溶融物であってよい。好ましくは、重合性組成物は、適切な溶媒又は適切な溶媒の混合物中の全ての所望の成分の溶液である。
【0073】
SiHyレンズ調合物は、当業者に公知のように、全ての所望の成分を、任意の適切な溶媒、例えば、水、水と水に混和性の1つもしくは複数の有機溶媒の混合物、有機溶媒又は1つもしくは複数の有機溶媒の混合物に溶解させることにより調製することができる。
【0074】
好ましい有機溶媒の例には、テトラヒドロフラン、トリプロピレングリコールメチルエーテル、ジプロピレングリコールメチルエーテル、エチレングリコールn−ブチルエーテル、ケトン(例えば、アセトン、メチルエチルケトンなど)、ジエチレングリコールn−ブチルエーテル、ジエチレングリコールメチルエーテル、エチレングリコールフェニルエーテル、プロピレングリコールメチルエーテル、酢酸プロピレングリコールメチルエーテル、酢酸ジプロピレングリコールメチルエーテル、プロピレングリコールn−プロピルエーテル、ジプロピレングリコールn−プロピルエーテル、トリプロピレングリコールn−ブチルエーテル、プロピレングリコールn−ブチルエーテル、ジプロピレングリコールn−ブチルエーテル、トリプロピレングリコールn−ブチルエーテル、プロピレングリコールフェニルエーテル、ジプロピレングリコールジメチルエーテル、ポリエチレングリコール、ポリプロピレングリコール、酢酸エチル、酢酸ブチル、酢酸アミル、乳酸メチル、乳酸エチル、乳酸i−プロピル、塩化メチレン、2−ブタノール、1−プロパノール、2−プロパノール、メントール、シクロヘキサノール、シクロペンタノール及びエクソノルボルネオール、2−ペンタノール、3−ペンタノール、2−ヘキサノール、3−ヘキサノール、3−メチル−2−ブタノール、2−ヘプタノール、2−オクタノール、2−ノナノール、2−デカノール、3−オクタノール、ノルボルネオール、tert−ブタノール、tert−アミルアルコール、2−メチル−2−ペンタノール、2,3−ジメチル−2−ブタノール、3−メチル−3−ペンタノール、1−メチルシクロヘキサノール、2−メチル−2−ヘキサノール、3,7−ジメチル−3−オクタノール、1−クロロ−2−メチル−2−プロパノール、2−メチル−2−ヘプタノール、2−メチル−2−オクタノール、2−2−メチル−2−ノナノール、2−メチル−2−デカノール、3−メチル−3−ヘキサノール、3−メチル−3−ヘプタノール、4−メチル−4−ヘプタノール、3−メチル−3−オクタノール、4−メチル−4−オクタノール、3−メチル−3−ノナノール、4−メチル−4−ノナノール、3−メチル−3−オクタノール、3−エチル−3−ヘキサノール、3−メチル−3−ヘプタノール、4−エチル−4−ヘプタノール、4−プロピル−4−ヘプタノール、4−イソプロピル−4−ヘプタノール、2,4−ジメチル−2−ペンタノール、1−メチルシクロペンタノール、1−エチルシクロペンタノール、1−エチルシクロペンタノール、3−ヒドロキシ−3−メチル−1−ブテン、4−ヒドロキシ−4−メチル−1−シクロペンタノール、2−フェニル−2−プロパノール、2−メトキシ−2−メチル−2−プロパノール、2,3,4−トリメチル−3−ペンタノール、3,7−ジメチル−3−オクタノール、2−フェニル−2−ブタノール、2−メチル−1−フェニル−2−プロパノール及び3−エチル−3−ペンタノール、1−エトキシ−2−プロパノール、1−メチル−2−プロパノール、t−アミルアルコール、イソプロパノール、1−メチル−2−ピロリドン、N,N−ジメチルプロピオンアミド、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルプロピオンアミド、N−メチルピロリジノン及びそれらの混合物が含まれるが、これらに限定されない。
【0075】
多くのSiHyレンズ調合物が、本願の出願日までに発表された多くの特許及び特許出願に記載されている。本発明のSiHyコンタクトレンズの内部層になる事前に形成するSiHyレンズを得る際に、上記に指定のDk及び含水率を有するSiHy材料を生成する範囲で、これらの全てを使用することができる。lotrafilcon A、lotrafilcon B、balafilcon A、galyfilcon A、senofilcon A、narafilcon A、narafilcon B、comfilcon A、enfilcon A、asmofilcon A、filcon II 3などの市販のSiHyレンズを製造するためのSiHyレンズ調合物は、また、事前に形成するSiHyコンタクトレンズ(本発明のSiHyコンタクトレンズの内部層)の製造に使用することができる。
【0076】
コンタクトレンズを製造するためのレンズ成形用型は、当業者によく知られており、例えば、キャスト成形又はスピンキャスティングにおいて使用される。例えば、成形用型(キャスト成形の場合)は、一般的に、少なくとも2つの成形用型部位(又は部分)又は成形用型半部、すなわち、第一及び第二の成形用型半部を含む。第一の成形用型半部は、第一の成形(又は光学)面を規定し、第二の成形用型半部は、第二の成形(又は光学)面を規定する。第一及び第二の成形用型半部は、第一の成形面と第二の成形面の間にレンズ形成キャビティが形成されるように互いを合わせるように構成される。成形用型半部の成形面は、成形用型のキャビティ形成表面であり、レンズ形成材料と直接接触する。
【0077】
コンタクトレンズをキャスト成形するための成形用型部位を製造する方法は、一般的に、当業者によく知られている。本発明のプロセスは、任意の特定の成形用型形成方法に限定されない。実際に、成形用型を形成する任意の方法を、本発明において使用することができる。第一及び第二の成形用型半部は、射出成形又は旋盤加工などの様々な技術により形成することができる。成形用型半部を形成するための適切なプロセスの例は、米国特許第4,444,711号(Schad);第4,460,534号(Boehm等);第5,843,346号(Morrill);及び第5,894,002号(Boneberger等)に開示されており、これらは、また、参照により本明細書に組み込まれる。
【0078】
実質的には、当技術分野で知られている成形用型を製造するための全ての材料を使用して、コンタクトレンズを作製するための成形用型を製造することができる。例えば、ポリエチレン、ポリプロピレン、ポリスチレン、PMMA、Topas(登録商標)COCグレード8007-S10(エチレンとノルボルネンの透明な非晶質コポリマー、Ticona GmbH of Frankfurt, Germany and Summit, New Jersey)などのポリマー材料を使用することができる。石英ガラス及びサファイアなどのUV光透過性の他の材料を使用してもよい。
【0079】
好ましい実施態様においては、再利用可能な成形用型を使用して、シリコーンハイドロゲルレンズ形成組成物を空間的に制限した化学線下で化学線により硬化させることにより、SiHyコンタクトレンズを形成する。好ましい再利用可能な成形用型の例は、米国特許出願第08/274,942号(1994年7月14日出願)、第10/732,566号(2003年、10月10日出願)、第10/721,913号(2003年11月25日出願)及び米国特許第6,627,124号(参照によりその全体が組み込まれる)に開示されるものである。再利用可能な成形用型は、石英、ガラス、サファイア、CaF、環状オレフィンコポリマー(例えば、Topas(登録商標)COCグレード8007-S10(エチレンとノルボルネンの透明な非晶質コポリマー)(Ticona GmbH of Frankfurt, Germany and Summit, New Jersey)、Zeonex(登録商標)及びZeonor(登録商標)(Zeon Chemicals LP, Louisville, KY))、ポリメチルメタクリレート(PMMA)、DuPont社のポリオキシメチレン(Delrin)、G.E. Plastics社のUltem(登録商標)(ポリエーテルイミド)、PrimoSpire(登録商標)などから製造することができる。
【0080】
本発明によれば、内部層のシリコーンヒドロゲル(バルク材料)は、少なくとも約50、好ましくは、少なくとも約60、より好ましくは、少なくとも約70、さらにより好ましくは、少なくとも約90barrer、最も好ましくは、少なくとも約110barrerの酸素透過度を有する。シリコーンヒドロゲル材料は、また、約10%〜約70%、好ましくは、約10%〜約65%、より好ましくは、約10%〜約60%;さらにより好ましくは、約15%〜約55%、最も好ましくは、約15%〜約50%(重量)の(第一)含水率WCSiHyを有することができる。シリコーンヒドロゲル材料は、約0.3MPa〜約1.8MPa、好ましくは、0.4MPa〜約1.5MPa、より好ましくは、約0.5MPa〜約1.2MPaのバルク弾性率又はバルクヤング係数(下記で、用語「柔軟性」、「弾性率」及び「ヤング係数」は、その用語が語「表面」により修飾されない場合、本願において互換的に使用して、バルク弾性率を意味する)をさらに有することができる。本発明のSiHyコンタクトレンズのシリコーンヒドロゲル材料の内部層の酸素透過度、弾性率及び含水率は、内部層が誘導される事前に形成するSiHyレンズの酸素透過度、弾性率及び含水率を測定することにより決定することができる。外部ヒドロゲル層が非常に薄いため、妥当な近似として、本発明のSiHyコンタクトレンズの弾性率が、内部層のシリコーンヒドロゲル材料の弾性率であると考えることができることを理解されたい。SiHyコンタクトレンズのシリコーンヒドロゲル材料の弾性率及び含水率をどのように決定すればよいかは、当業者であればよく知っている。例えば、全ての市販のSiHyコンタクトレンズの弾性率及び含水率の値が報告されている。
【0081】
本発明のSiHyコンタクトレンズの2つの外部ヒドロゲル層は、好ましくは、互いに実質的に同一であり、所望のDk、含水率及びバルク弾性率を有する事前に形成するSiHyコンタクトレンズ上に適用される架橋コーティングである。
【0082】
本発明のSiHyコンタクトレンズの層状構造形状は、上述したように、完全に水和した状態(すなわち、水又は緩衝生理食塩水中に直接)のSiHyコンタクトレンズの断面を、原子間力顕微鏡法(AFM)を用いて分析することにより確定することができ、これを実施例に示す。断面の後面側から前面側にわたって表面係数の任意の変化を可視化するために、断面表面係数を、AFM(例えば、フォース−ボリュームモード)を用いて特徴付ける(画像化する)ことができる。完全に水和した状態のSiHyコンタクトレンズの断面にわたる前面と後面間の最短線に沿って、約0.04μm、好ましくは、約0.03μm、より好ましくは、約0.02μm、さらにより好ましくは、約0.01μmの厚さにわたる、表面係数において観測される有意な変化(例えば、約20%以上、好ましくは、約30%以上)(AFM画像を調査することによる)は、1つの層から異なる層への移行部を示す。各外部ヒドロゲル層の平均厚さは、当業者によく知られているように、AFM画像から決定することができる。
【0083】
本発明のSiHyコンタクトレンズの2つの外部ヒドロゲル層は、実質的に均一の厚さである。これらは、シリコーンヒドロゲル材料の内部層を完全に取り込むようにコンタクトレンズの周辺端部で融合している。各外部ヒドロゲル層の厚さは、約0.1μm〜約20μm、好ましくは、約0.25μm〜約15μm、さらにより好ましくは、約0.5μm〜約12.5μm、最も好ましくは、約1μm〜約10μmである。本発明のSiHyコンタクトレンズの外部ヒドロゲル層(又は架橋コーティング)の厚さは、上述したように、完全に水和した状態のSiHyコンタクトレンズの断面のAFM分析により決定される。より好ましい実施態様においては、各外部ヒドロゲル層の厚さは、完全に水和した状態のSiHyコンタクトレンズの中心厚の、好ましくは、最大約30%(すなわち、30%以下)、好ましくは、最大約20%(20%以下)、より好ましくは、最大約10%(10%以下)である。
【0084】
本発明のSiHyコンタクトレンズの層状構造形状が、また、実施例に示すように、走査電子顕微鏡(SEM)を用いた凍結乾燥SiHyコンタクトレンズの断面の分析により定性的に確定することができることを理解されたい。SEMは、凍結乾燥状態のSiHyコンタクトレンズの断面の各層の様々な組成及び/又は構造を示すことができる。凍結乾燥状態のSiHyコンタクトレンズの断面にわたる約0.04μm、好ましくは、約0.03μm、より好ましくは、約0.02μm、さらにより好ましくは、約0.01μmの厚さにわたる、組成において観測される有意な変化(例えば、約20%以上、好ましくは、約30%以上)及び/又は構造における有意な(視覚的に顕著)変化(SEM画像を調査することによる)は、1つの層から異なる層への移行部を示す。しかし、凍結乾燥状態のSiHyレンズの断面のSEM分析に基づく厚さの値は、典型的には、凍結乾燥後、外部ヒドロゲル層、もしあれば移行層及び内部層の崩壊のために実際の値より低い。
【0085】
本発明のこの態様によれば、本発明のSiHyコンタクトレンズの2つの外部ヒドロゲル層(前面及び後面外部ヒドロゲル層)は、シリコーンヒドロゲル材料の内部層の(第一)含水率(WCSiHy)より高い必要がある、より具体的には、シリコーンヒドロゲル材料の内部層の(第一)含水率(WCSiHy)の少なくとも約1.2倍(すなわち、120%)である必要がある(第二)含水率を含む。各外部ヒドロゲル層の水膨張率が、その含水率と相関し、良好な近似として、外部ヒドロゲル層の含水率を適切に表すことができると考えられる。別の好ましい実施態様において、シリコーンヒドロゲル材料の内部層の含水率(WCSiHy)が約55%以下である場合、各外部ヒドロゲル層の水膨張率が少なくとも約150%であり;シリコーンヒドロゲル材料の内部層の含水率(WCSiHy)約60%以下である場合、各外部ヒドロゲル層の水膨張率が少なくとも約200%であり;シリコーンヒドロゲル材料の内部層の含水率(WCSiHy)が約65%以下である場合、各外部ヒドロゲル層の水膨張率が少なくとも約250%であり;シリコーンヒドロゲル材料の内部層の含水率(WCSiHy)が約70%以下である場合、各外部ヒドロゲル層の水膨張率が少なくとも約300%である。
【0086】
前面及び後面外部ヒドロゲル層(架橋コーティング)の含水率を、実施例23に記載の手順に従ってより正確に決定することができることを理解されたい。あるいは、2つの外部ヒドロゲル層(架橋コーティング)の含水率は、非水吸収性の薄型基質及びその上の架橋コーティングを含む物品を用いて決定することができ、架橋コーティングは、SiHyコンタクトレンズと同一のコーティングプロセスに従って、実質的に同一の条件下で非水吸収性の薄型基質上に適用される。次に、各外部ヒドロゲル層の含水率を、架橋コーティングを有する物品の乾燥重量と水和重量の違いに基づいて決定することができる。
【0087】
本発明によれば、2つの外部ヒドロゲル層の各々は、実質的にシリコーンを含有せず、好ましくは、完全にシリコーンを含有しない。しかし、X線光電子分光法(XPS)を、外部ヒドロゲル層中のケイ素の存在又は非存在を確定するために使用する場合(一般的に、1.5〜6nmの探針)、例えば、ポリエチレンシート、CIBA Vision Corporation社のDAILIES(登録商標)AquaComfortPlus(商標)コンタクトレンズ又はJohnson&Johnson社のACUVUE(登録商標)Moist(下記実施例21を参照)などの理論上ケイ素原子を全く含有しない試料表面のXPSによるケイ素検出により示されるように、試料に、環境ケイ素が必然的に混入することがよく知られている。そのため、用語「ケイ素を実質的に含有しない」は、本願において、SiHyコンタクトレンズ上のXPSにより測定される表面ケイ素原子%が、元来(理論的に)ケイ素を含有しないことが知られている対照試料(例えば、ポリエチレンシート、CIBA Vision Corporation社のDAILIES(登録商標)AquaComfortPlus(商標)コンタクトレンズ又はJohnson&Johnson社のACUVUE(登録商標)Moist)のケイ素原子%の約200%未満、好ましくは、約175%未満、より好ましくは、約150%未満、さらにより好ましくは、約125%未満であることを意味するために使用される。あるいは、本発明のSiHyコンタクトレンズの各外部ヒドロゲル層は、乾燥状態のコンタクトレンズをXPS分析により測定したとき、全元素%の約5%以下、好ましくは、約4%以下、さらにより好ましくは、約3%以下のケイ素原子%を有することを特徴とするようにケイ素を実質的に含有しない。SiHyコンタクトレンズの表面特性(親水性、湿潤性及び/又は潤滑性)を大きく低下させない限り、わずかな比率のシリコーンを、外部ヒドロゲル層のポリマー網目構造に、場合により組み込む(しかし、好ましくは、組み込まない)ことができることを理解されたい。
【0088】
好ましい実施態様においては、前面及び後面外部ヒドロゲル層(架橋コーティング)は、SiHyコンタクトレンズを指の間で摩擦した後に、暗視野下で表面のクラッキングラインが見られないことを特徴とする高いデジタル摩擦耐性を有する架橋コーティング又は外部ヒドロゲル層(すなわち、SiHyコンタクトレンズ)を与えるのに十分に低い架橋密度を有する。デジタル摩擦から生じる表面のクラッキングは、表面潤滑性を低下させる可能性があり、そして/又はシリコーンの表面への移動(曝露)を防ぐことができない可能性があると考えられる。表面のクラッキングは、また、表面弾性率に影響を及ぼす可能性がある表面層中の過剰の架橋密度を示すことができる。好ましくは、外部ヒドロゲル層(架橋コーティング)中の非シリコーンヒドロゲル材料は、熱誘導カップリング反応においてアゼチジニウム基から誘導される架橋を含む。
【0089】
別の好ましい実施態様においては、前面及び後面は、正電荷粒子付着試験において、最大約200、好ましくは、最大約160、より好ましくは、最大約120、さらにより好ましくは、最大約90、最も好ましくは、最大約60個の正電荷粒子を引き付けることを特徴とする、低い表面濃度のカルボン酸基などの負電荷基を有する。高い表面濃度の負電荷基(例えば、カルボン酸基)を有するコンタクトレンズでは、患者の取り扱い中での重度の残屑付着、装着中の重度のタンパク質付着(涙液中のタンパク質の大部分は正電荷であると考えられる)、コンタクトレンズケア溶液に存在するポリヘキサメチレンビグアニド(PHMB)などの抗菌剤の重度の沈着及び蓄積を生じやすいため、本発明のSiHyコンタクトレンズ上に最小表面濃度の負電荷基(例えば、カルボン酸基)を有することが望ましい。低い表面濃度の負電荷基(例えば、カルボン酸基)を有するために、前面及び後面外部ヒドロゲル層は、比較的低いカルボン酸含有率を有する必要がある。好ましくは、前面及び後面外部ヒドロゲル層は、約20%(重量)以下、好ましくは、約15%(重量)以下、さらにより好ましくは、約10%(重量)以下、最も好ましくは、約5%(重量)以下のカルボン酸含有率を有する。
【0090】
別の好ましい実施態様においては、本発明のSiHyコンタクトレンズは、約0.046以下、好ましくは、約0.043以下、より好ましくは、約0.040以下の臨界摩擦係数(CCOFと表される)を有することを特徴とする良好な表面潤滑性を有する。あるいは、本発明のSiHyコンタクトレンズは、好ましくは、実施例1に記載の潤滑性評価手順に従ってブラインドテストで測定したとき、ACUVUE OASYS又はACUVUE TruEyeより良好な潤滑性を有する。
【0091】
別の好ましい実施態様においては、本発明のSiHyコンタクトレンズは、図2において概略的に説明するように、その層状構造形状中に、ポリマー材料の2つの移行層をさらに含む。2つの移行層の各々115は、内部層110と2つの外部ヒドロゲル層120の1つの間に位置している。各移行層は、実質的に均一の厚さである。各移行層の厚さは、少なくとも約0.05μm、好ましくは、約0.05μm〜約10μm、より好ましくは、約0.1μm〜約7.5μm、さらにより好ましくは、約0.15μm〜約5μmである。移行層は、シリコーンヒドロゲル材料の内部層を完全に包み込むようにコンタクトレンズの周辺端部で融合している。移行層の存在及び厚さは、好ましくは、外部ヒドロゲル層及び内部層について上述したように、完全に水和した状態のSiHyコンタクトレンズの断面のAFM分析により決定することができる。
【0092】
本発明のSiHyコンタクトレンズの2つの移行層は、基本的に、架橋コーティング(外部ヒドロゲル層)が適用される前に、所望のDk、含水率及びバルク弾性率を有する事前に形成するSiHyコンタクトレンズ上に適用されるベース(又はプライム)コーティングである。移行層(ベースコーティング)は、外部ヒドロゲル層を固定/連結するために機能する。好ましくは、移行層は、カルボキシル(COOH)含有ポリマー、好ましくは、アクリル酸又はメタクリル酸又はC−C12アルキルアクリル酸のホモ又はコポリマーを含む。カルボキシル含有ポリマーが、バルク材料中に侵入し、外部ヒドロゲル層中に伸びることができることを理解されたい。シリコーンヒドロゲル材料の内部層中へのそのような侵入が起こる場合、各移行層は、一緒に結び付くカルボキシル含有ポリマーとシリコーンヒドロゲルを含むだろう。また、特に、カルボキシル含有ポリマーを含む場合、移行層の存在が、カルボキシル基の高い水結合特性のため、外部ヒドロゲル層により厚い層及び/又は水貯留層を超える比較的高い含水率を与えることができると考えられる。さらに、たとえ移行層が多くのカルボン酸基を含有することができるとしても、カルボン酸基の表面濃度が主として移行層を完全に覆う外部ヒドロゲル層により決定されるため、SiHyコンタクトレンズのカルボン酸基の表面濃度に及ぼす悪影響は最小であろう。低い表面濃度のカルボン酸基を有する外部ヒドロゲル層は、レンズを装着している患者の涙液からの正電荷タンパク質の沈着を防ぐことができる。
【0093】
別の好ましい実施態様においては、前面及び後面外部ヒドロゲル層は、互いに独立して、内部層に対して少なくとも約20%、好ましくは、少なくとも約25%、より好ましくは、少なくとも約30%、さらにより好ましくは、少なくとも約35%、最も好ましくは、少なくとも約40%低下した表面係数を有する。
【0094】
前面及び後面外部ヒドロゲル層は、好ましくは、同じ又は実質的に同一の材料(好ましくは、完全にシリコーンを含有しない)からなり、これは、コンタクトレンズの表面及び/又は近傍にアミノ及び/もしくはカルボキシル基、又はアミノ及び/もしくはカルボキシル基を含むベースコーティングを含む事前に形成するSiHyコンタクトレンズ上に、水溶性及び架橋性親水性ポリマー材料を適用及び架橋することにより形成することができる。事前に形成するSiHyコンタクトレンズは架橋後に内部層になる。
【0095】
本発明によれば、事前に形成するSiHyコンタクトレンズは、その表面及び/又は近傍にアミノ基及び/又はカルボキシル基を元来含むか、あるいは、含むように修飾することができる。
【0096】
事前に形成するSiHyコンタクトレンズが、その表面及び/又は近傍にアミノ基及び/又はカルボキシル基を元来含む場合、これは、反応性ビニルモノマーを含むシリコーンヒドロゲルレンズ調合物を重合することにより得られる。
【0097】
好ましい反応性ビニルモノマーの例には、アミノ−C−Cアルキル(メタ)アクリレート、C−Cアルキルアミノ−C−Cアルキル(メタ)アクリレート、アリルアミン、ビニルアミン、アミノ−C−Cアルキル(メタ)アクリルアミド、C−Cアルキルアミノ−C−Cアルキル(メタ)アクリルアミド、アクリル酸、C−C12アルキルアクリル酸(例えば、メタクリル酸、エチルアクリル酸、プロピルアクリル酸、ブチルアクリル酸、ペンチルアクリル酸など)、N,N−2−アクリルアミドグリコール酸、β−メチル−アクリル酸(クロトン酸)、α−フェニルアクリル酸、β−アクリルオキシプロピオン酸、ソルビン酸、アンゲリカ酸、ケイ皮酸、1−カルボキシ−4−フェニルブタジエン−1,3、イタコン酸、シトラコン酸、メサコン酸、グルタコン酸、アコニット酸、マレイン酸、フマル酸、トリカルボキシエチレン及びそれらの組み合わせが含まれるが、これらに限定されない。好ましくは、SiHyコンタクトレンズは、アミノ−C−Cアルキル(メタ)アクリレート、C−Cアルキルアミノ−C−Cアルキル(メタ)アクリレート、アリルアミン、ビニルアミン、アミノ−C−Cアルキル(メタ)アクリルアミド、C−Cアルキルアミノ−C−Cアルキル(メタ)アクリルアミド、アクリル酸、C−C12アルキルアクリル酸、N,N−2−アクリルアミドグリコール酸及びそれらの組み合わせからなる群より選択される少なくとも1つの反応性ビニルモノマーを含むレンズ調合物から製造される。
【0098】
レンズ調合物は、好ましくは、約0.1%〜約10%、より好ましくは、約0.25%〜約7%、さらにより好ましくは、約0.5%〜約5%、最も好ましくは、約0.75%〜約3%(重量)の上述の反応性ビニルモノマーを含む。
【0099】
事前に形成するSiHyコンタクトレンズは、また、コンタクトレンズの表面にアミノ基及び/又はカルボキシル基を有する反応性ベースコーティングを形成するために表面処理に供することができる。表面処理の例には、エネルギー(例えば、プラズマ、静電気、放射線又は他のエネルギー源)による表面処理、化学処理、化学蒸着、物品表面への親水性ビニルモノマー又はマクロマーのグラフティング、米国特許第6,451,871号、第6,719,929号、第6,793,973号、第6,811,805号及び第6,896,926号シリーズならびに米国特許出願公報第2007/0229758A1号、第2008/0152800A1号及び第2008/0226922A1号(参照によりその全体が本明細書に組み込まれる)に記載の方法に従って得られるレイヤーバイレイヤーコーティング(「LbLコーティング」)が含まれるが、これらに限定されない。本明細書において使用される「LbLコーティング」は、コンタクトレンズのポリマーマトリックスに共有結合しておらず、そして、レンズ上への荷電又は荷電可能(プロトン化又は脱プロトン化により)及び/又は非荷電材料のレイヤーバイレイヤー(「LbL」)沈着を介して得られるコーティングを指す。LbLコーティングは、1つ又は複数の層から構成することができる。
【0100】
好ましくは、表面処理は、LbLコーティングプロセスである。この好ましい実施態様(すなわち、反応性LbLベースコーティングの実施態様)においては、得られたシリコーンヒドロゲルコンタクトレンズは、少なくとも1つの反応性ポリマー(すなわち、ペンダントアミノ基及び/又はカルボキシル基を有するポリマー)の層を含む、反応性LbLベースコーティング(すなわち、2つの移行層)を含み、反応性LbLベースコーティングは、コンタクトレンズを反応性ポリマーの溶液と接触させることにより得られる。コンタクトレンズと反応性ポリマーのコーティング溶液の接触は、コンタクトレンズをコーティング溶液中に浸漬するか、又はコンタクトレンズにコーティング溶液をスプレーすることにより行うことができる。接触プロセスの1つは、単に、コンタクトレンズをコーティング溶液浴中に一定時間浸漬するか、あるいは、コンタクトレンズを一連のコーティング溶液浴中に、各浴でより短い時間、連続して浸漬することを含む。別の接触プロセスは、単に、コーティング溶液をスプレーすることを含む。しかし、当業者であれば、スプレー及び浸漬工程の様々な組み合わせを含む多くの代替法を設計することができる。コンタクトレンズと反応性ポリマーのコーティング溶液の接触時間は、最長で約10分間、好ましくは、約5〜約360秒、より好ましくは、約5〜約250秒、さらにより好ましくは、約5〜約200秒であってもよい。
【0101】
この反応性LbLベースコーティングの実施態様によれば、反応性ポリマーは、ペンダントアミノ基及び/又はカルボキシル基を有する直鎖又は分岐鎖ポリマーであることができる。ペンダントアミノ基及び/又はカルボキシル基を有する任意のポリマーを、シリコーンヒドロゲルコンタクトレンズ上にベースコーティングを形成するための反応性ポリマーとして使用することができる。そのような反応性ポリマーの例には、反応性ビニルモノマーのホモポリマー;2つ以上の反応性ビニルモノマーのコポリマー;反応性ビニルモノマーと1つ又は複数の非反応性親水性ビニルモノマー(すなわち、任意のカルボキシル又は(第一級又は第二級)アミノ基を含有しない親水性ビニルモノマー)のコポリマー;ポリエチレンイミン(PEI);ペンダントアミノ基を有するポリビニルアルコール;カルボキシル含有セルロース(例えば、カルボキシメチルセルロース、カルボキシエチルセルロース、カルボキシプロピルセルロース);ヒアルロン酸塩;コンドロイチン硫酸;ポリ(グルタミン酸);ポリ(アスパラギン酸);及びそれらの組み合わせが含まれるが、これらに限定されない。
【0102】
上述の任意の好ましい反応性ビニルモノマーは、反応性LbLベースコーティングを形成するための反応性ポリマーを形成するために、この実施態様において使用することができる。
【0103】
カルボキシル又はアミノ基を含有しない非反応性親水性ビニルモノマーの好ましい例には、アクリルアミド(AAm)、メタクリルアミド、N,N−ジメチルアクリルアミド(DMA)、N,N−ジメチルメタクリルアミド(DMMA)、N−ビニルピロリドン(NVP)、N,N−ジメチルアミノエチルメタクリレート(DMAEM)、N,N−ジメチルアミノエチルアクリレート(DMAEA)、N,N−ジメチルアミノプロピルメタクリルアミド(DMAPMAm)、N,N−ジメチルアミノプロピルアクリルアミド(DMAPAAm)、グリセロールメタクリレート、3−アクリロイルアミノ−1−プロパノール、N−ヒドロキシエチルアクリルアミド、N−[トリス(ヒドロキシメチル)メチル]−アクリルアミド、N−メチル−3−メチレン−2−ピロリドン、1−エチル−3−メチレン−2−ピロリドン、1−メチル−5−メチレン−2−ピロリドン、1−エチル−5−メチレン−2−ピロリドン、5−メチル−3−メチレン−2−ピロリドン、5−エチル−3−メチレン−2−ピロリドン、2−ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、最大1500ダルトンの重量平均分子量を有するC−C−アルコキシポリエチレングリコール(メタ)アクリレート、N−ビニルホルムアミド、N−ビニルアセトアミド、N−ビニルイソプロピルアミド、N−ビニル−N−メチルアセトアミド、アリルアルコール、ビニルアルコール(コポリマー中の酢酸ビニルの加水分解形態)、ホスホリルコリン含有ビニルモノマー((メタ)アクリロイルオキシエチルホスホリルコリン及び米国特許第5,461,433号(参照によりその全体が本明細書に組み込まれる)に記載されるものを含む)及びそれらの組み合わせが含まれるが、これらに限定されない。
【0104】
好ましくは、反応性LbLベースコーティングを形成するための反応性ポリマーは、ポリアクリル酸、ポリメタクリル酸、ポリ(C−C12アルキルアクリル酸)、ポリ(アクリル酸−co−メタクリル酸)、ポリ[C−C12アルキルアクリル酸−co−(メタ)アクリル酸]、ポリ(N,N−2−アクリルアミドグリコール酸)、ポリ[(メタ)アクリル酸−co−アクリルアミド]、ポリ[(メタ)アクリル酸−co−ビニルピロリドン]、ポリ[C−C12アルキルアクリル酸−co−アクリルアミド]、ポリ[C−C12アルキルアクリル酸−co−ビニルピロリドン]、加水分解ポリ[(メタ)アクリル酸−co−酢酸ビニル]、加水分解ポリ[C−C12アルキルアクリル酸−co−酢酸ビニル]、ポリエチレンイミン(PEI)、ポリアリルアミン塩酸塩(PAH)ホモもしくはコポリマー、ポリビニルアミンホモもしくはコポリマー又はそれらの組み合わせである。
【0105】
反応性LbLベースコーティングを形成するための反応性ポリマーの重量平均分子量Mは、少なくとも約10,000ダルトン、好ましくは、少なくとも約50,000ダルトン、より好ましくは、約100,000ダルトン〜5,000,000ダルトンである。
【0106】
コンタクトレンズ上に反応性LbLベースコーティングを形成するための反応性ポリマーの溶液は、1つ又は複数の反応性ポリマーを水、水と水に混和性の1つもしくは複数の有機溶媒の混合物、有機溶媒又は1つもしくは複数の有機溶媒の混合物に溶解させることにより調製することができる。好ましくは、反応性ポリマーは、水と1つもしくは複数の有機溶媒の混合物、有機溶媒又は1つもしくは複数の有機溶媒の混合物に溶解させる。少なくとも1つの有機溶媒を含有する溶媒系が、事前に形成するSiHyコンタクトレンズを膨張させることができ、それによって、反応性ポリマーの一部が事前に形成するSiHyコンタクトレンズ中に侵入し、反応性ベースコーティングの耐久性を増加させることができると考えられる。上述の任意の有機溶媒は、反応性ポリマーを溶解させることができるのであれば、反応性ポリマーの溶液の調製に使用することができる。
【0107】
別の好ましい実施態様においては、事前に形成するSiHyコンタクトレンズは、元来その表面及び/又は近傍にアミノ基及び/又はカルボキシル基を含み、そして、アミノ基及び/又はカルボキシル基をその中に有する反応性LbLベースコーティングを形成するために、さらに表面処理に供する。
【0108】
別の好ましい実施態様(反応性プラズマベースコーティング)においては、事前に形成するSiHyコンタクトレンズは、コンタクトレンズ上に共有結合する反応性プラズマベースコーティングを形成するためにプラズマ処理に供する。すなわち、放電により生成するプラズマの作用下で、1つ又は複数の反応性ビニルモノマー(以前に記載したもののいずれか1つ)を重合する(いわゆるプラズマ誘導重合)。用語「プラズマ」は、例えば、基底又はより高次の任意の形態の励起状態にある電子、いずれかの極性のイオン、ガス原子及び分子ならびに光子から構成されうるグロー放電により生成する、イオン化ガスを表す。これは「低温プラズマ」とも呼ばれる。プラズマ重合及びその用途の概説については、R. Hartmann 「Plasma polymerisation」: Grundlagen, Technik und Anwendung, Jahrb. Oberflachentechnik (1993) 49, pp. 283-296, Battelle-Inst. e.V. Frankfurt/Main Germany; H. Yasuda, 「Glow Discharge Polymerization」, Journal of Polymer Science: Macromolecular Reviews, vol. 16 (1981) , pp. 199-293; H. Yasuda, 「Plasma Polymerization」, Academic Press, Inc. (1985); Frank Jansen, 「Plasma Deposition Processes」, in 「Plasma Deposited Thin Films」, ed. by T. Mort and F. Jansen, CRC Press Boca Raton (19 ); O. Auciello et al. (ed.) 「Plasma-Surface Interactions and Processing of Materials」 publ. by Kluwer Academic Publishers in NATO ASI Series; Se-ries E: Applied Sciences, vol. 176 (1990) , pp. 377-399; and N. Dilsiz and G. Akovali 「Plasma Polymerization of Selected Organic Compounds」, Polymer, vol. 37 (1996) pp. 333-341を参照されたい。好ましくは、プラズマ誘導重合は、WO98028026(参照によりその全体が本明細書に組み込まれる)に記載されるような「グロー後」プラズマ誘導重合である。「グロー後」プラズマ重合の場合、コンタクトレンズの表面は、最初に、非重合性プラズマガス(例えば、H、He又はAr)で処理した後、後続の工程において、活性化した表面を、プラズマ出力をオフにしながら、アミノ基又はカルボキシル基を有するビニルモノマー(上述の任意の反応性ビニルモノマー)に曝露する。活性化により、表面にプラズマ誘導によるラジカル生成が起こり、後続の工程において、その上でビニルモノマーの重合が開始される。
【0109】
本発明によれば、外部ヒドロゲル層(又は架橋コーティング)を形成するための水溶性及び架橋性親水性ポリマー材料は、架橋性基、好ましくは、熱架橋性基、より好ましくは、アゼチジニウム基を含む。好ましくは、外部ヒドロゲル層(又は架橋コーティング)を形成するための水溶性及び架橋性親水性ポリマー材料は、三次元網目構造と網目構造内に架橋性(好ましくは、熱架橋性)基、より好ましくは、アゼチジニウム基を含む部分架橋ポリマー材料である。用語「部分架橋」は、ポリマー材料に関して、架橋反応において、ポリマー材料を製造するための出発材料の架橋性基が完全に消費されていないことを意味する。架橋性基の例には、アゼチジニウム基、エポキシ基、イソシアネート基、アジリジン基、アズラクトン基及びそれらの組み合わせが含まれるが、これらに限定されない。
【0110】
好ましい実施態様においては、外部ヒドロゲル層(又は架橋コーティング)を形成するための水溶性及び架橋性親水性ポリマー材料は、(i)エピクロロヒドリン官能化ポリアミン又はポリアミドアミンから誘導される、約20%〜約95%(重量)の第一ポリマー鎖、(ii)アミノ基、カルボキシル基、チオール基及びそれらの組み合わせからなる群より選択される少なくとも1つの反応性官能基を有する少なくとも1つの親水性増強剤から誘導される、約5%〜約80%(重量)の親水性部分又は第二ポリマー鎖(ここで、親水性部分又は第二ポリマー鎖は、エピクロロヒドリン官能化ポリアミン又はポリアミドアミンの1つのアゼチジニウム(azetitdinium)基と親水性増強剤の1つのアミノ、カルボキシル又はチオール基間でそれぞれ形成される1つ又は複数の共有結合を介して、第一ポリマー鎖に共有連結している)、及び(iii)第一ポリマー鎖の一部又は第一ポリマー鎖に共有連結しているペンダントもしくは末端基であるアゼチジニウム基を含む。
【0111】
そのような水溶性及び架橋性親水性ポリマー材料を用いて、単純に、事前に形成するSiHyコンタクトレンズ(コンタクトレンズの表面及び/又は近傍にアミノ及び/もしくはカルボキシル基、又はアミノ及び/もしくはカルボキシル基を含むベースコーティングを有する)を、水溶液中、親水性ポリマー材料の存在下、約40℃〜約140℃の温度で、親水性ポリマー材料の1つのアゼチジニウム基とコンタクトレンズの表面及び/又は近傍の1つのアミノ及び/又はカルボキシル基との間でそれぞれ形成される共有結合を介して、コンタクトレンズの表面に親水性ポリマー材料を共有連結させるのに十分な時間加熱することにより、外部ヒドロゲル層(又は架橋コーティング)を形成することができ、それによって、コンタクトレンズ上に架橋親水性コーティングを形成することができる。架橋性基(例えば、上述したもの)を含有する任意の水溶性及び架橋性親水性ポリマー材料を、SiHyコンタクトレンズの前面及び後面外部ヒドロゲル層を形成するために本発明において使用することができることを理解されたい。
【0112】
アゼチジニウム基を含有する水溶性及び熱架橋性親水性ポリマー材料は、エピクロロヒドリン官能化ポリアミン又はポリアミドアミンから誘導される、約20%〜約95%、好ましくは、約35%〜約90%、より好ましくは、約50%〜約85%(重量)の第一ポリマー鎖、ならびにアミノ基、カルボキシル基、チオール基及びそれらの組み合わせからなる群より選択される少なくとも1つの反応性官能基を有する少なくとも1つの親水性増強剤から誘導される、約5%〜約80%、好ましくは、約10%〜約65%、さらにより好ましくは、約15%〜約50%(重量)の親水性部分又は第二ポリマー鎖を含む(すなわち、これを含む組成を有する)。親水性ポリマー材料の組成は、上記スキームIに示される架橋反応に従って熱架橋性親水性ポリマー材料を調製するために使用される反応混合物の組成により決定される(反応物の総重量に基づく)。例えば、反応混合物が、約75%(重量)のエピクロロヒドリン官能化ポリアミン又はポリアミドアミン及び約25%(重量)の少なくとも1つの親水性増強剤を含む場合(反応物の総重量に基づく)、得られた親水性ポリマー材料は、エピクロロヒドリン官能化ポリアミン又はポリアミドアミンから誘導される、約75%(重量)の第一ポリマー鎖、及び前記少なくとも1つの親水性増強剤から誘導される、約25%(重量)の親水性部分又は第二ポリマー鎖を含む。熱架橋性親水性ポリマー材料のアゼチジニウム基は、熱架橋性親水性ポリマー材料を調製するための架橋反応に関与しないアゼチジニウム基(エピクロロヒドリン官能化ポリアミン又はポリアミドアミンの)である。
【0113】
エピクロロヒドリン官能化ポリアミン又はポリアミドアミンは、エピクロロヒドリンをポリアミンポリマー又は第一級もしくは第二級アミノ基を含有するポリマーと反応させることにより得ることができる。例えば、ポリアミンとジカルボン酸から誘導される重縮合体であるポリ(アルキレンイミン)又はポリ(アミドアミン)(例えば、アジピン酸−ジエチレントリアミンコポリマー)は、エピクロロヒドリンと反応させて、エピクロロヒドリン官能化ポリマーを形成することができる。同様に、アミノアルキル(メタ)アクリレート、モノ−アルキルアミノアルキル(メタ)アクリレート、アミノアルキル(メタ)アクリルアミド又はモノ−アルキルアミノアルキル(メタ)アクリルアミドのホモポリマー又はコポリマーは、また、エピクロロヒドリンと反応させて、エピクロロヒドリン官能化ポリアミンを形成することができる。ポリアミン又はポリアミドアミンポリマーのエピクロロヒドリン官能化の反応条件は、欧州特許第1465931号(参照によりその全体が本明細書に組み込まれる)に教示されている。好ましいエピクロロヒドリン官能化ポリマーは、例えば、Hercules社のKymene(登録商標)もしくはPolycup(登録商標)樹脂(エピクロロヒドリン官能化アジピン酸−ジエチレントリアミンコポリマー)、又はServo/Delden社のPolycup(登録商標)もしくはServamine(登録商標)樹脂などのポリアミノアミド−エピクロロヒドリン(PAE)(又はポリアミド−ポリアミン−エピクロロヒドリンもしくはポリアミド−エピクロロヒドリン)である。
【0114】
任意の適切な親水性増強剤を、少なくとも1つのアミノ基、少なくとも1つのカルボキシル基及び/又は少なくとも1つのチオール基を含有する限り、本発明において使用することができる。
【0115】
親水性増強剤の好ましいクラスには、アミノ−、カルボキシル−もしくはチオール含有単糖類(例えば、3−アミノ−1,2−プロパンジオール、1−チオールグリセロール、5−ケト−D−グルコン酸、ガラクトサミン、グルコサミン、ガラクツロン酸、グルコン酸、グルコサミン酸、マンノサミン、糖酸1,4−ラクトン、サッカリド酸、ケトデオキシノヌロソニン酸(ketodeoxynonulosonic acid)、N−メチル−D−グルカミン、1−アミノ−1−デオキシ−β−D−ガラクトース、1−アミノ−1−デオキシソルビトール、1−メチルアミノ−1−デオキシソルビトール、N−アミノエチルグルコンアミド);アミノ−、カルボキシル−又はチオール含有二糖類(例えば、コンドロイチン二糖ナトリウム塩、ジ(β−D−キシロピラノシル)アミン、ジガラクツロン酸、ヘパリン二糖、ヒアルロン酸二糖、ラクトビオン酸);及びアミノ−、カルボキシル−又はチオール含有オリゴ糖(例えば、カルボキシメチル−β−シクロデキストリンナトリウム塩、トリガラクツロン酸);ならびにそれらの組み合わせが含まれるが、これらに限定されない。
【0116】
親水性増強剤の別の好ましいクラスは、1つ又は複数のアミノ、カルボキシル及び/又はチオール基を有する親水性ポリマーである。より好ましくは、親水性増強剤としての親水性ポリマー中のアミノ(−NHR’、ここで、R’は、上記で定義したとおりである)、カルボキシル(−COOH)及び/又はチオール(−SH)基を有するモノマーユニット含有率は、親水性ポリマーの総重量に対して、約40%(重量)未満、好ましくは、約30%(重量)未満、より好ましくは、約20%(重量)未満、さらにより好ましくは、約10%(重量)未満である。
【0117】
親水性増強剤としての親水性ポリマーの1つの好ましいクラスは、例えば、カルボキシメチルセルロース(約40%以下のカルボキシル含有率を有する、繰り返しユニット−[C10−m(CHCOH)]−(式中、mは、1〜3である)の組成に基づいて推定される)、カルボキシエチルセルロース(約36%以下のカルボキシル含有率を有する、繰り返しユニット−[C10−m(CCOH)]−(式中、mは、1〜3である)の組成に基づいて推定される)、カルボキシプロピルセルロース(約32%以下のカルボキシル含有率を有する、繰り返しユニット−[C10−m(CCOH)]−(式中、mは、1〜3である)の組成に基づいて推定される)、ヒアルロン酸(約11%のカルボキシル含有率を有する、繰り返しユニット−(C1320NCOH)−の組成に基づいて推定される)、コンドロイチン硫酸(約9.8%のカルボキシル含有率を有する、繰り返しユニット−(C121813NSCOH)−の組成に基づいて推定される)又はそれらの組み合わせなどのアミノ−又はカルボキシル含有多糖類である。
【0118】
親水性増強剤としての親水性ポリマーの別の好ましいクラスには、モノ−アミノ、カルボキシル又はチオール基を有するポリ(エチレングリコール)(PEG)(例えば、PEG−NH、PEG−SH、PEG−COOH);HN−PEG−NH;HOOC−PEG−COOH;HS−PEG−SH;HN−PEG−COOH;HOOC−PEG−SH;HN−PEG−SH;1つ又は複数のアミノ、カルボキシル又はチオール基を有する多岐PEG;1つ又は複数のアミノ、カルボキシル又はチオール基を有するPEGデンドリマー;非反応性親水性ビニルモノマーのジアミノ−又はジカルボキシル末端ホモ−又はコポリマー;非反応性親水性ビニルモノマーのモノアミノ−又はモノカルボキシル末端ホモ−又はコポリマー;(1)約60%(重量)以下、好ましくは、約0.1%〜約30%、より好ましくは、約0.5%〜約20%、さらにより好ましくは、約1%〜約15%(重量)の1つ又は複数の反応性ビニルモノマーならびに(2)少なくとも1つの非反応性親水性ビニルモノマー及び/又は少なくとも1つのホスホリルコリン含有ビニルモノマーを含む組成物の重合生成物であるコポリマー;ならびにそれらの組み合わせが含まれるが、これらに限定されない。反応性ビニルモノマー及び非反応性親水性ビニルモノマーは以前に記載したものである。
【0119】
より好ましくは、親水性増強剤としての親水性ポリマーは、PEG−NH;PEG−SH;PEG−COOH;HN−PEG−NH;HOOC−PEG−COOH;HS−PEG−SH;HN−PEG−COOH;HOOC−PEG−SH;HN−PEG−SH;1つ又は複数のアミノ、カルボキシル又はチオール基を有する多岐PEG;1つ又は複数のアミノ、カルボキシル又はチオール基を有するPEGデンドリマー;アクリルアミド(AAm)、N,N−ジメチルアクリルアミド(DMA)、N−ビニルピロリドン(NVP)、N−ビニル−N−メチルアセトアミド、グリセロール(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、N−ヒドロキシエチル(メタ)アクリルアミド、最大400ダルトンの重量平均分子量を有するC−C−アルコキシポリエチレングリコール(メタ)アクリレート、ビニルアルコール、N−メチル−3−メチレン−2−ピロリドン、1−メチル−5−メチレン−2−ピロリドン、5−メチル−3−メチレン−2−ピロリドン、N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリルアミド、(メタ)アクリロイルオキシエチルホスホリルコリン及びそれらの組み合わせからなる群より選択される非反応性親水性ビニルモノマーのモノアミノ−、モノカルボキシル−、ジアミノ−又はジカルボキシル末端ホモ−又はコポリマー;(1)約0.1%〜約30%、好ましくは、約0.5%〜約20%、より好ましくは、約1%〜約15%(重量)の(メタ)アクリル酸、C−C12アルキルアクリル酸、ビニルアミン、アリルアミン及び/又はアミノ−C−Cアルキル(メタ)アクリレートならびに(2)(メタ)アクリロイルオキシエチルホスホリルコリン及び/又はアクリルアミド、N,N−ジメチルアクリルアミド、N−ビニルピロリドン、N−ビニル−N−メチルアセトアミド、グリセロール(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、N−ヒドロキシエチル(メタ)アクリルアミド、最大400ダルトンの重量平均分子量を有するC−C−アルコキシポリエチレングリコール(メタ)アクリレート、ビニルアルコール及びそれらの組み合わせからなる群より選択される少なくとも1つの非反応性親水性ビニルモノマーを含む組成物の重合生成物であるコポリマーである。
【0120】
最も好ましくは、親水性増強剤としての本親水性増強剤は、PEG−NH;PEG−SH;PEG−COOH;モノアミノ−、モノカルボキシル−、ジアミノ−又はジカルボキシル末端ポリビニルピロリドン;モノアミノ−、モノカルボキシル−、ジアミノ−又はジカルボキシル末端ポリアクリルアミド;モノアミノ−、モノカルボキシル−、ジアミノ−又はジカルボキシル末端ポリ(DMA);モノアミノ−又はモノカルボキシル−、ジアミノ−又はジカルボキシル末端ポリ(DMA−co−NVP);モノアミノ−、モノカルボキシル−、ジアミノ−又はジカルボキシル末端ポリ(NVP−co−N,N−ジメチルアミノエチル(メタ)アクリレート));モノアミノ−、モノカルボキシル−、ジアミノ−又はジカルボキシル末端ポリ(ビニルアルコール);モノアミノ−、モノカルボキシル−、ジアミノ−又はジカルボキシル末端ポリ[(メタ)アクリロイルオキシエチルホスホリルコリン]ホモポリマー又はコポリマー;モノアミノ−、モノカルボキシル−、ジアミノ−又はジカルボキシル末端ポリ(NVP−co−ビニルアルコール);モノアミノ−、モノカルボキシル−、ジアミノ−又はジカルボキシル末端ポリ(DMA−co−ビニルアルコール);約0.1%〜約30%、好ましくは、約0.5%〜約20%、より好ましくは、約1%〜約15%(重量)の(メタ)アクリル酸を有するポリ[(メタ)アクリル酸−co−アクリルアミド];約0.1%〜約30%、好ましくは、約0.5%〜約20%、より好ましくは、約1%〜約15%(重量)の(メタ)アクリル酸を有するポリ[(メタ)アクリル酸−co−NVP);(1)(メタ)アクリロイルオキシエチルホスホリルコリンならびに(2)約0.1%〜約30%、好ましくは、約0.5%〜約20%、より好ましくは、約1%〜約15%(重量)のカルボン酸含有ビニルモノマー及び/又はアミノ含有ビニルモノマーを含む組成物の重合生成物であるコポリマーならびにそれらの組み合わせである。
【0121】
官能基を有するPEG及び官能基を有する多岐PEGは、様々な販売業者、例えば、Polyscience及びShearwater Polymers, inc.などからから得ることができる。
【0122】
1つ又は複数の非反応性親水性ビニルモノマー又はホスホリルコリン含有ビニルモノマーのモノアミノ−、モノカルボキシル−、ジアミノ−又はジカルボキシル末端ホモ−又はコポリマーは、米国特許第6,218,508号(参照によりその全体が本明細書に組み込まれる)に記載の手順に従って調製することができる。例えば、非反応性親水性ビニルモノマーのジアミノ−又はジカルボキシル末端ホモ−又はコポリマーを調製するために、非反応性ビニルモノマー、アミノ又はカルボキシル基を有する連鎖移動剤(例えば、2−アミノエタンチオール、2−メルカプトプロピオン酸(mercaptopropinic acid)、チオグリコール酸、チオ乳酸又は他のヒドロキシメルカプタン、アミノメルカプタン又はカルボキシル含有メルカプタン)及び場合により他のビニルモノマーを、反応性ビニルモノマー(アミノ又はカルボキシル基を有する)とフリーラジカル開始剤の存在下で共重合(熱又は化学線により)させる。一般的に、連鎖移動剤の反応性ビニルモノマー以外の全てのビニルモノマーに対するモル比は約1:5〜約1:100であり、連鎖移動剤の反応性ビニルモノマーに対するモル比は1:1である。そのような調製において、アミノ又はカルボキシル基を有する連鎖移動剤は、得られる親水性ポリマーの分子量を制御するために使用され、1つの末端アミノ又はカルボキシル基を有する該親水性ポリマーを与えるために、該親水性ポリマーの末端を形成し、一方で、反応性ビニルモノマーは、得られる親水性ポリマーに対してもう一方の末端カルボキシル又はアミノ基を与える。同様に、非反応性親水性ビニルモノマーのモノアミノ−又はモノカルボキシル末端ホモ−又はコポリマーを調製するために、非反応性ビニルモノマー、アミノ又はカルボキシル基を有する連鎖移動剤(例えば、2−アミノエタンチオール、2−メルカプトプロピオン酸、チオグリコール酸、チオ乳酸又は他のヒドロキシメルカプタン、アミノメルカプタン又はカルボキシル含有メルカプタン)及び場合により他のビニルモノマーを、任意の反応性ビニルモノマーの非存在下で共重合(熱又は化学線により)させる。
【0123】
本願で使用されるように、非反応性親水性ビニルモノマーのコポリマーは、1つ又は複数の追加のビニルモノマーを有する非反応性親水性ビニルモノマーの重合生成物を指す。非反応性親水性ビニルモノマー及び反応性ビニルモノマー(例えば、カルボキシル含有ビニルモノマー)を含むコポリマーは、任意のよく知られたラジカル重合法に従って調製するか、又は販売業者から入手することができる。メタクリロイルオキシエチルホスホリルコリン及びカルボキシル含有ビニルモノマーを含有するコポリマーは、NOP Corporationから得ることができる(例えば、LIPIDURE(登録商標)−A及びAF)。
【0124】
少なくとも1つのアミノ、カルボキシル又はチオール基を有する親水性ポリマー(親水性増強剤として)の重量平均分子量Mは、好ましくは、約500〜約1,000,000、より好ましくは、約1,000〜約500,000である。
【0125】
本発明によれば、親水性増強剤とエピクロロヒドリン官能化ポリアミン又はポリアミドアミンとの反応は、約40℃〜約100℃の温度で、アゼチジニウム基を含有する水溶性及び熱架橋性親水性ポリマー材料を形成するために十分な時間(約0.3時間〜約24時間、好ましくは、約1時間〜約12時間、さらにより好ましくは、約2時間〜約8時間)実施される。
【0126】
本発明によれば、エピクロロヒドリン官能化ポリアミン又はポリアミドアミンに対する親水性増強剤の濃度は、得られる親水性ポリマー材料を、非水溶性(すなわち、室温で水100ml当たり0.005g未満の溶解度)にしないように、そして、エピクロロヒドリン官能化ポリアミン又はポリアミドアミンのアゼチジニウム基の約99%以下、好ましくは、約98%以下、より好ましくは、約97%以下、さらにより好ましくは、約96%以下が消費されるように選択する必要がある。
【0127】
本発明によれば、加熱は、好ましくは、コンタクトレンズの表面及び/又は近傍にアミノ及び/もしくはカルボキシル基、又はアミノ及び/もしくはカルボキシル基を含むベースコーティングを含む事前に形成するSiHyコンタクトレンズを、密封したレンズパッケージ中の水溶性熱架橋性親水性ポリマー材料を含むパッケージング溶液(すなわち、緩衝水溶液)中に浸漬させ、約118℃〜約125℃の温度で、約20〜90分間オートクレーブすることにより実施される。本発明のこの実施態様によれば、パッケージング溶液は、オートクレーブ後に眼科的に安全である緩衝水溶液である。あるいは、加熱は、好ましくは、ベースコーティング及びベースコーティング上部の水溶性熱架橋性親水性ポリマー材料の層を含む事前に形成するSiHyコンタクトレンズを、密封したレンズパッケージ中のパッケージング溶液(すなわち、緩衝水溶液)中に浸漬させ、約118℃〜約125℃の温度で、約20〜90分間オートクレーブすることにより実施される。
【0128】
レンズパッケージ(又は容器)は、ソフトコンタクトレンズをオートクレーブ及び保存するためのもので、当業者によく知られている。任意のレンズパッケージを本発明において使用することができる。好ましくは、レンズパッケージは、基部及びカバーを含むブリスターパッケージである。カバーは、基部に取り外し可能にシールされており、基部は、無菌パッケージング溶液及びコンタクトレンズを受け入れるためのキャビティを含む。
【0129】
レンズは、使用者に販売する前に、個別のパッケージにパッケージングし、密封して、そして、滅菌(例えば、約120℃以上で少なくとも30分間オートクレーブすることにより)される。当業者であれば、どのようにレンズパッケージを密封及び滅菌すればよいかをよく理解しているであろう。
【0130】
本発明によれば、パッケージング溶液は、当業者に公知の少なくとも1つの緩衝剤及び1つ又は複数の他の成分を含有する。他の成分の例には、等張化剤、界面活性剤、抗菌剤、防腐剤及び潤滑剤(又は水溶性粘性増進剤)(例えば、セルロース誘導体、ポリビニルアルコール、ポリビニルピロリドン)が含まれるが、これらに限定されない。
【0131】
パッケージング溶液は、パッケージング溶液のpHを所望の範囲、例えば、好ましくは、約6〜約8.5の生理学的に許容しうる範囲で維持するのに十分な量の緩衝剤を含有する。知られているように、生理学的に適合する緩衝剤を使用することができる。本発明に係るコンタクトレンズケア組成物の構成成分としての適切な緩衝剤は、当業者に公知である。例は、ホウ酸、ホウ酸塩、例えば、ホウ酸ナトリウム、クエン酸、クエン酸塩、例えば、クエン酸カリウム、重炭酸塩、例えば、重炭酸ナトリウム、TRIS(2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール)、ビス−トリス(ビス−(2−ヒドロキシエチル)−イミノ−トリス−(ヒドロキシメチル)−メタン)、ビス−アミノポリオール、トリエタノールアミン、ACES(N−(2−ヒドロキシエチル)−2−アミノエタンスルホン酸)、BES(N,N−ビス(2−ヒドロキシエチル)−2−アミノエタンスルホン酸)、HEPES(4−(2−ヒドロキシエチル)−1−ピペラジンエタンスルホン酸)、MES(2−(N−モルホリノ)エタンスルホン酸)、MOPS(3−[N−モルホリノ]−プロパンスルホン酸)、PIPES(ピペラジン−N,N’−ビス(2−エタンスルホン酸)、TES(N−[トリス(ヒドロキシメチル)メチル]−2−アミノエタンスルホン酸)、それらの塩、リン酸緩衝液、例えば、NaHPO、NaHPO及びKHPO又はそれらの混合物である。好ましいビス−アミノポリオールは、1,3−ビス(トリス[ヒドロキシメチル]−メチルアミノ)プロパン(ビス−TRIS−プロパン)である。パッケージング溶液中の各緩衝剤の量は、好ましくは、0.001%〜2%、好ましくは、0.01%〜1%;最も好ましくは、約0.05%〜約0.30%(重量)である。
【0132】
パッケージング溶液は、約200〜約450ミリオスモル(mOsm)、好ましくは、約250〜約350mOsmの浸透圧を有する。パッケージング溶液の浸透圧は、浸透圧に影響を及ぶす有機又は無機物質を加えることにより調整することができる。適切な眼科的に許容しうる等張化剤には、塩化ナトリウム、塩化カリウム、グリセロール、プロピレングリコール、ポリオール、マンニトール、ソルビトール、キシリトール及びそれらの混合物が含まれるが、これらに限定されない。
【0133】
本発明のパッケージング溶液は、25℃で、約1センチポアズ〜約20センチポアズ、好ましくは、約1.2センチポアズ〜約10センチポアズ、より好ましくは、約1.5センチポアズ〜約5センチポアズの粘度を有する。
【0134】
好ましい実施態様においては、パッケージング溶液は、好ましくは、約0.01%〜約2%、より好ましくは、約0.05%〜約1.5%、さらにより好ましくは、約0.1%〜約1%、最も好ましくは、約0.2%〜約0.5%(重量)の本発明の水溶性及び熱架橋性親水性ポリマー材料を含む。
【0135】
本発明のパッケージング溶液は、粘度増強ポリマーを含有することができる。粘度増強ポリマーは、好ましくは、非イオン性である。溶液の粘度の増加により、レンズ上にコンタクトレンズの装着快適性を促進することができる膜を提供する。粘度増強成分は、また、挿入の間の眼表面への衝撃を和らげるように機能することができ、そして、また、眼への刺激を軽減するのに役立つ。
【0136】
好ましい粘度増強ポリマーには、水溶性セルロースエーテル(例えば、メチルセルロース(MC)、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロース(HPC)、ヒドロキシプロピルメチルセルロース(HPMC)又はそれらの混合物)、水溶性ポリビニルアルコール(PVAs)、約2000超の分子量(最大10,000,000ダルトン)を有する高分子量ポリ(エチレンオキシド)、約30,000ダルトン〜約1,000,000ダルトンの分子量を有するポリビニルピロリドン、N−ビニルピロリドンと少なくとも1つの7〜20炭素原子を有するジアルキルアミノアルキル(メタ)アクリレートのコポリマー及びそれらの組み合わせが含まれるが、これらに限定されない。水溶性セルロースエーテル及びビニルピロリドンとジメチルアミノエチルメタクリレートのコポリマーが最も好ましい粘度増強ポリマーである。N−ビニルピロリドンとジメチルアミノエチルメタクリレートのコポリマーは市販されており、例えば、ISP社のコポリマー845及びコポリマー937である。
【0137】
粘度増強ポリマーは、パッケージング溶液中に、パッケージング溶液の総量に対して約0.01%〜約5%(重量)、好ましくは、約0.05%〜約3%(重量)、さらにより好ましくは、約0.1%〜約1%(重量)の量で存在する。
【0138】
パッケージング溶液は、約1200ダルトン以下、より好ましくは、600ダルトン以下、最も好ましくは、約100〜約500ダルトンの分子量を有するポリエチレングリコールをさらに含むことができる。
【0139】
架橋コーティング及びパッケージング溶液の少なくとも1つがポリエチレングリコールセグメントを有するポリマー材料を含有する場合、パッケージング溶液は、好ましくは、α−オキソ多酸(α-oxo-multi-acid)又はその塩を、ポリエチレングリコールセグメントの酸化的分解に対する感受性が低下するのに十分な量で含む。所有者が同じ同時係属特許出願(米国特許出願公報第2004/0116564 A1号、本明細にその全体が組み込まれる)は、オキソ多酸又はその塩が、PEG含有ポリマー材料の酸化的分解に対する感受性を低下させることができることを開示している。
【0140】
典型的なα−オキソ多酸又はその生体適合性の塩には、クエン酸、2−ケトグルタル酸もしくはリンゴ酸又はその生体適合性(好ましくは、眼科適合性)の塩が含まれるが、これらに限定されない。より好ましくは、α−オキソ多酸は、クエン酸もしくはリンゴ酸又はその生体適合性(好ましくは、眼科適合性)の塩(例えば、ナトリウム、カリウムなど)である。
【0141】
本発明によれば、パッケージング溶液は、ムチン様物質、眼科的に有益な物質及び/又は界面活性剤をさらに含むことができる。典型的な上述のムチン様物質、典型的な上述の眼科的に有益な物質、典型的な上述の界面活性剤をこの実施態様において使用することができる。
【0142】
好ましい実施態様においては、本発明のSiHyコンタクトレンズは、比較的長い水崩壊時間(WBUT)を有する。WBUTは、水の膜が崩壊(脱湿潤)し、目視検査下で、下層のレンズ材料が曝されるのに必要な時間である。より長いWBUTを有するSiHyコンタクトレンズは、眼に装着したときに、水(涙液)の膜をその表面に比較的長い時間保持することができる。これにより、眼瞼の瞬きの間にドライスポットを生じさせにくく、装着快適性が増進されるだろう。WBUTは、本明細書下記の実施例に記載の手順に従って測定することができる。好ましくは、本発明のSiHyコンタクトレンズは、少なくとも約10秒の水崩壊時間を有することを特徴とする表面親水性を有する。
【0143】
好ましい実施態様においては、本発明のSiHyコンタクトレンズは、約90degree以下、好ましくは、約80degree以下、より好ましくは、約70degree以下、さらにより好ましくは、約60degree以下、最も好ましくは、約50degree以下の平均水接触角を有することを特徴とする表面湿潤性を有する。
【0144】
好ましい実施態様においては、SiHyコンタクトレンズは、少なくとも約40、好ましくは、少なくとも約60、より好ましくは、少なくとも約80、さらにより好ましくは、少なくとも約100、最も好ましくは、少なくとも約120barrer/mmの酸素伝達率を有する。
【0145】
本発明のこの態様において、本発明の好ましい実施態様を含む様々な実施態様を別々に上述することができるが、これらを、任意の所望の様式で組み合わせて、そして/又は一緒に用いて、本発明のシリコーンヒドロゲルコンタクトレンズの異なる実施態様を導き出すことができることを理解されたい。
【0146】
別の態様においては、本発明は、水和シリコーンヒドロゲルコンタクトレンズを提供する。本発明の水和シリコーンヒドロゲルコンタクトレンズは、バルク材料としてのシリコーンヒドロゲル材料、前面及び反対の後面を含み;該コンタクトレンズは、少なくとも約40、好ましくは、少なくとも約60、より好ましくは、少なくとも約80、さらにより好ましくは、少なくとも約110barrer/mmの酸素伝達率、及び断面表面係数プロファイル(コンタクトレンズの断面の表面の前面と後面間の最短線に沿って、該前面を含み、且つ、その近傍の前面外部域;該最短線の中心を含み、且つ、その周囲の内部域;及び該後面を含み、且つ、その近傍の後面外部域を含み、該前面外部域は、平均前面係数
【数11】

を有し、該後面外部域は、平均後面係数
【数12】

を有し、該内部域は、平均内部表面係数
【数13】

を有し、
【数14】

の少なくとも1つは、少なくとも約20%、好ましくは、少なくとも約25%、より好ましくは、少なくとも約30%、さらにより好ましくは、少なくとも約35%、最も好ましくは、少なくとも約40%である)を有する。好ましくは、該前面及び後面外部域は、少なくとも約0.1μm、好ましくは、約0.1μm〜約20μm、より好ましくは、約0.25μm〜約15μm、さらにより好ましくは、約0.5μm〜約12.5μm、最も好ましくは、約1μm〜約10μmの範囲を包含する。
【0147】
好ましい実施態様においては、水和シリコーンヒドロゲルコンタクトレンズは、約0.3MPa〜約1.8MPa、好ましくは、約0.4MPa〜約1.5MPa、より好ましくは、約0.5MPa〜約1.2MPaの弾性率(又はヤング係数);約10%〜約75%、好ましくは、約10%〜約70%、より好ましくは、約15%〜約65%;さらにより好ましくは、約20%〜約60%、最も好ましくは、約25%〜約55%(重量)の含水率;約90degree以下、好ましくは、約80degree以下、より好ましくは、約70degree以下、さらにより好ましくは、約60degree以下、最も好ましくは、約50degree以下の平均水接触角を有することを特徴とする表面湿潤性;少なくとも約10秒のWBUTを有することを特徴とする表面親水性;又はそれらの組み合わせを有することができる。
【0148】
別の好ましい実施態様においては、前面及び後面は、正電荷粒子付着試験において、最大約200、好ましくは、最大約160、より好ましくは、最大約120、さらにより好ましくは、最大約90、最も好ましくは、最大約60個の正電荷粒子を引き付けることを特徴とする、低い表面濃度の負電荷基(例えば、カルボン酸基)を有する。低い表面濃度の負電荷基(例えば、カルボン酸基)を有するために、前面及び後面外部ヒドロゲル層は、比較的低いカルボン酸含有率を有する必要がある。好ましくは、前面及び後面外部ヒドロゲル層は、約20%(重量)以下、好ましくは、約15%(重量)以下、さらにより好ましくは、約10%(重量)以下、最も好ましくは、約5%(重量)以下のカルボン酸含有率を有する。
【0149】
別の好ましい実施態様においては、本発明のSiHyコンタクトレンズは、約0.046以下、好ましくは、約0.043以下、より好ましくは、約0.040以下の臨界摩擦係数(CCOFと表される)を有することを特徴とする良好な表面潤滑性を有する。あるいは、本発明のSiHyコンタクトレンズは、好ましくは、実施例1に記載の潤滑性評価手順に従ってブラインドテストで測定したとき、ACUVUE OASYS又はACUVUE TruEyeより良好な潤滑性を有する。
【0150】
別の好ましい実施態様においては、水和SiHyコンタクトレンズは、好ましくは、SiHyコンタクトレンズを指の間で摩擦した後に、暗視野下で表面のクラッキングラインが見られないことを特徴とする高いデジタル摩擦耐性を有する。デジタル摩擦から生じる表面のクラッキングは、表面潤滑性を低下させる可能性があり、そして/又はシリコーンの表面への移動(曝露)を防ぐことができない可能性があると考えられる。
【0151】
別の好ましい実施態様においては、本発明の水和SiHyコンタクトレンズは、シリコーンヒドロゲル材料の内部層、前面外部ヒドロゲル層及び後面外部ヒドロゲル層を含み、前面及び後面外部ヒドロゲル層は、実質的に均一な厚さであり、且つ、シリコーンヒドロゲル材料の内部層を完全に包み込むようにコンタクトレンズの周辺端部で融合している。断面表面係数プロファイルにおける第一及び第二の外部域が2つの外部ヒドロゲル層に相当し、内部域がシリコーンヒドロゲル材料の内部層に相当することを理解されたい。本発明の他の態様について上述したように、外部ヒドロゲル層(架橋コーティング)の様々な実施態様の全てを、単独で又は任意の組み合わせで、本発明のこの態様において、外部ヒドロゲル層として使用することができる。本発明の他の態様について上述したように、シリコーンヒドロゲル材料の内部層の様々な実施態様の全てを、単独で又は任意の組み合わせで、本発明のこの態様において、シリコーンヒドロゲル材料の内部層として使用することができる。
【0152】
本発明のこの態様によれば、外部ヒドロゲル層は実質的に均一の厚さであり、少なくとも約0.1μm、好ましくは、約0.1μm〜約20μm、より好ましくは、約0.25μm〜約15μm、さらにより好ましくは、約0.5μm〜約12.5μm、最も好ましくは、約1μm〜約10μmの厚さを有する。本発明のSiHyコンタクトレンズの各外部ヒドロゲル層の厚さは、上述したように、完全に水和した状態のSiHyコンタクトレンズの断面のAFM分析により決定される。より好ましい実施態様においては、各外部ヒドロゲル層の厚さは、完全に水和した状態のSiHyコンタクトレンズの中心厚の最大約30%(すなわち、30%以下)、好ましくは、最大約20%(20%以下)、より好ましくは、最大約10%(10%以下)である。また、2つの外部ヒドロゲル層の各々は、実質的にシリコーンを含有せず(乾燥状態のコンタクトレンズをXPS分析により測定したとき、全元素%の約5%以下、好ましくは、約4%以下、さらにより好ましくは、約3%以下のケイ素原子%を有することを特徴とする)、好ましくは、完全にシリコーンを含有しない。SiHyコンタクトレンズの表面特性(親水性、湿潤性及び/又は潤滑性)を大きく低下させない限り、わずかな比率のシリコーンを、外部ヒドロゲル層のポリマー網目構造に、場合により組み込む(しかし、好ましくは、組み込まない)ことができることを理解されたい。
【0153】
別の好ましい実施態様においては、本発明の水和SiHyコンタクトレンズの2つの外部ヒドロゲル層は、水和シリコーンヒドロゲルコンタクトレンズの含水率(WCLensで示される)より高い含水率を含み、より具体的には、WCLensの少なくとも約1.2倍(すなわち、120%)である必要がある。各外部ヒドロゲル層の水膨張率が、上記で考察したように、外部ヒドロゲル層の含水率を近似的に表すことができると考えられる。WCLensが約45%以下である場合、各外部ヒドロゲル層の水膨張率は、好ましくは、少なくとも約150%、より好ましくは、少なくとも約200%、より好ましくは、少なくとも約250%、さらにより好ましくは、少なくとも約300%である。WCLensが45%より高い場合、各外部ヒドロゲル層の水膨張率は、少なくとも約
【数15】

、好ましくは、約
【数16】

、より好ましくは、約
【数17】

、さらにより好ましくは、約
【数18】

である。別の好ましい実施態様においては、WCLensが約55%以下である場合、各外部ヒドロゲル層の水膨張率は少なくとも約150%であり;WCLensが約60%以下である場合、各外部ヒドロゲル層の水膨張率は少なくとも約200%であり;WCLensが約65%以下である場合、各外部ヒドロゲル層の水膨張率は少なくとも約250%であり;WCLensが約70%以下である場合、各外部ヒドロゲル層の水膨張率は少なくとも約300%である。
【0154】
好ましくは、SiHyコンタクトレンズは、シリコーンヒドロゲル材料と外部ヒドロゲル層間に位置する移行層をさらに含む。本発明の先の態様について記載したように、移行層の様々な実施態様の全てを、単独で又は任意の組み合わせで、本発明のこの態様において使用することができる。
【0155】
本発明の水和SiHyコンタクトレンズを上述の方法に従って調製することができる。上述した内部層(すなわち、シリコーンヒドロゲル材料)の様々な実施態様の全てを、単独で又は任意の組み合わせで、本発明のこの態様において、シリコーンヒドロゲル核として使用することができる。本発明の先の態様について記載したように、様々な実施態様の全てを、単独又は任意の組み合わせで、本発明のこの態様において使用することができる。
【0156】
本発明のこの態様において、本発明の好ましい実施態様を含む様々な実施態様を別々に上述することができるが、これらを、任意の所望の様式で組み合わせて、そして/又は一緒に用いて、本発明のシリコーンヒドロゲルコンタクトレンズの異なる実施態様を導き出すことができることを理解されたい。本発明の先の態様について記載したように、様々な実施態様の全てを、任意の所望の様式で、単独又は任意の組み合わせで、本発明のこの態様において使用することができる。
【0157】
さらなる態様においては、本発明は、水和シリコーンヒドロゲルコンタクトレンズを提供する。本発明の水和シリコーンヒドロゲルコンタクトレンズは、バルク材料としてのシリコーンヒドロゲル材料、前面及び反対の後面を含み;該コンタクトレンズは、(1)少なくとも約40、好ましくは、少なくとも約60、より好ましくは、少なくとも約80、さらにより好ましくは、少なくとも約110barrer/mmの酸素伝達率、及び(2)約0.046以下、好ましくは、約0.043以下、より好ましくは、約0.040以下の臨界摩擦係数(CCOFと表される)を有することを特徴とする表面潤滑性を有し、該前面及び後面は、正電荷粒子付着試験において、最大約200、好ましくは、最大約160、より好ましくは、最大約120、さらにより好ましくは、最大約90、最も好ましくは、最大約60個の正電荷粒子を引き付けることを特徴とする、低い表面濃度のカルボン酸基などの負電荷基を有する。
【0158】
好ましい実施態様においては、水和シリコーンヒドロゲルコンタクトレンズは、約0.3MPa〜約1.8MPa、好ましくは、約0.4MPa〜約1.5MPa、より好ましくは、約0.5MPa〜約1.2MPaの弾性率(又はヤング係数);約10%〜約75%、好ましくは、約10%〜約70%、より好ましくは、約15%〜約65%;さらにより好ましくは、約20%〜約60%、最も好ましくは、約25%〜約55%(重量)の含水率;約90degree以下、好ましくは、約80degree以下、より好ましくは、約70degree以下、さらにより好ましくは、約60degree以下、最も好ましくは、約50degree以下の平均水接触角を有することを特徴とする表面湿潤性;少なくとも約10秒のWBUTを有することを特徴とする表面親水性;又はそれらの組み合わせを有する。
【0159】
別の好ましい実施態様においては、水和SiHyコンタクトレンズは、好ましくは、SiHyコンタクトレンズを指の間で摩擦した後に、暗視野下で表面のクラッキングラインが見られないことを特徴とする高いデジタル摩擦耐性を有する。デジタル摩擦から生じる表面のクラッキングは、表面潤滑性を低下させる可能性があり、そして/又はシリコーンの表面への移動(曝露)を防ぐことができない可能性があると考えられる。
【0160】
別の好ましい実施態様においては、本発明の水和SiHyコンタクトレンズは、シリコーンヒドロゲル材料の内部層、前面外部ヒドロゲル層及び後面外部ヒドロゲル層を含み、該前面及び後面外部ヒドロゲル層は、実質的に均一な厚さであり、且つ、シリコーンヒドロゲル材料の内部層を完全に包み込むようにコンタクトレンズの周辺端部で融合している。断面表面係数プロファイルにおける第一及び第二の外部域が2つの外部ヒドロゲル層に相当し、内部域がシリコーンヒドロゲル材料の内部層に相当することを理解されたい。本発明の他の態様について上述したように、外部ヒドロゲル層(架橋コーティング)の様々な実施態様の全てを、単独で又は任意の組み合わせで、本発明のこの態様において、外部ヒドロゲル層として使用することができる。本発明の他の態様について上述したように、シリコーンヒドロゲル材料の内部層の様々な実施態様の全てを、単独で又は任意の組み合わせで、本発明のこの態様において、シリコーンヒドロゲル材料の内部層として使用することができる。
【0161】
本発明のこの態様によれば、外部ヒドロゲル層は実質的に均一の厚さであり、少なくとも約0.1μm、好ましくは、約0.1μm〜約20μm、より好ましくは、約0.25μm〜約15μm、さらにより好ましくは、約0.5μm〜約12.5μm、最も好ましくは、約1μm〜約10μmの厚さを有する。本発明のSiHyコンタクトレンズの各外部ヒドロゲル層の厚さは、上述したように、完全に水和した状態のSiHyコンタクトレンズの断面のAFM分析により決定される。より好ましい実施態様においては、各外部ヒドロゲル層の厚さは、好ましくは、完全に水和した状態のSiHyコンタクトレンズの中心厚の最大約30%(すなわち、30%以下)、好ましくは、最大約20%(20%以下)、より好ましくは、最大約10%(10%以下)である。また、2つの外部ヒドロゲル層の各々は、実質的にシリコーンを含有せず(乾燥状態のコンタクトレンズをXPS分析により測定したとき、全元素%の約5%以下、好ましくは、約4%以下、さらにより好ましくは、約3%以下のケイ素原子%を有することを特徴とする)、好ましくは、完全にシリコーンを含有しない。SiHyコンタクトレンズの表面特性(親水性、湿潤性及び/又は潤滑性)を大きく低下させない限り、わずかな比率のシリコーンを、外部ヒドロゲル層のポリマー網目構造に、場合により組み込む(しかし、好ましくは、組み込まない)ことができることを理解されたい。低い表面濃度の負電荷基(例えば、カルボン酸基)を有するために、前面及び後面外部ヒドロゲル層は、比較的低いカルボン酸含有率を有する必要がある。好ましくは、前面及び後面外部ヒドロゲル層は、約20%(重量)以下、好ましくは、約15%(重量)以下、さらにより好ましくは、約10%(重量)以下、最も好ましくは、約5%(重量)以下のカルボン酸含有率を有する。
【0162】
別の好ましい実施態様においては、本発明の水和SiHyコンタクトレンズの2つの外部ヒドロゲル層は、水和シリコーンヒドロゲルコンタクトレンズの含水率(WCLensで示される)より高い含水率を含み、より具体的には、水和シリコーンヒドロゲルコンタクトレンズの含水率(WCLens)の少なくとも約1.2倍(すなわち、120%)である必要がある。各外部ヒドロゲル層の水膨張率が、上記で考察したように、外部ヒドロゲル層の含水率を近似的に表すことができると考えられる。WCLensが約45%以下である場合、各外部ヒドロゲル層の水膨張率は、好ましくは、少なくとも約150%、より好ましくは、少なくとも約200%、より好ましくは、少なくとも約250%、さらにより好ましくは、少なくとも約300%である。WCLensが45%より高い場合、各外部ヒドロゲル層の水膨張率は、少なくとも約
【数19】

、好ましくは、約
【数20】

、より好ましくは、約
【数21】

さらにより好ましくは、約
【数22】

である。別の好ましい実施態様においては、WCLensが約55%以下である場合、各外部ヒドロゲル層の水膨張率は少なくとも約150%であり;WCLensが約60%以下である場合、各外部ヒドロゲル層の水膨張率は少なくとも約200%であり;WCLensが約65%以下である場合、各外部ヒドロゲル層の水膨張率は少なくとも約250%であり;WCLensが約70%以下である場合、各外部ヒドロゲル層の水膨張率は少なくとも約300%である。
【0163】
別の好ましい実施態様においては、前面及び後面外部ヒドロゲル層は、互いに独立して、内部層に対して少なくとも約20%、好ましくは、少なくとも約25%、より好ましくは、少なくとも約30%、さらにより好ましくは、少なくとも約35%、最も好ましくは、少なくとも約40%低下した表面係数を有する。
【0164】
好ましくは、SiHyコンタクトレンズは、シリコーンヒドロゲル材料と外部ヒドロゲル層間に位置する移行層をさらに含む。本発明の先の態様について記載したように、移行層の様々な実施態様の全てを、単独で又は任意の組み合わせで、本発明のこの態様において使用することができる。
【0165】
本発明の水和SiHyコンタクトレンズは、上述の方法に従って調製することができる。上述した内部層(すなわち、シリコーンヒドロゲル材料)の様々な実施態様の全てを、単独で又は任意の組み合わせで、本発明のこの態様において、シリコーンヒドロゲル核として使用することができる。本発明の先の態様について記載したように、様々な実施態様の全てを、単独又は任意の組み合わせで、本発明のこの態様において使用することができる。
【0166】
本発明のこの態様において、本発明の好ましい実施態様を含む様々な実施態様を別々に上述することができるが、これらを、任意の所望の様式で組み合わせて、そして/又は一緒に用いて、本発明のシリコーンヒドロゲルコンタクトレンズの異なる実施態様を導き出すことができることを理解されたい。本発明の先の態様について記載したように、様々な実施態様の全てを、任意の所望の様式で、単独又は任意の組み合わせで、本発明のこの態様において使用することができる。
【0167】
前記の開示により、当業者は本発明を実施することができるであろう。本明細書に記載の様々な実施態様に対して、様々な改変、変形及び組み合わせを実施することができる。読者が特定の実施態様及びその利点をより理解することができるように、下記実施例を参照することを提案する。本説明及び実施例は例示として考慮されるものとする。
【0168】
本発明の様々な態様及び様々な実施態様を特定の用語、機器及び方法を用いて記載しているが、そのような説明は単に例示を目的としている。使用される語は制限するものではなくむしろ説明のための語である。当業者は、下記の特許請求の範囲に記載の本発明の精神及び範囲から逸脱することなく、変更及び変形を実施することができることを理解されたい。また、様々な実施態様の態様を全体でもしくは部分的に交換するか、又は任意の方法で組み合わせて、そして/もしくは一緒に用いることができることを理解されたい。従って、添付の特許請求の範囲の精神及び範囲は、本明細書に包含される好ましいバージョンの説明を制限しないものとする。
【0169】
実施例1
酸素透過度の測定
見掛けのレンズの酸素透過度及びレンズ材料の酸素伝達率は、米国特許第5,760,100号及びWinterton等の論文(The Cornea: Transactions of the World Congress on the Cornea 111, H.D. Cavanagh Ed., Raven Press: New York 1988, pp273-280)(これらは共に参照によりそれらの全体が本明細書に組み込まれる)に記載の技術と類似の技術に従って決定される。湿潤セル中(すなわち、ガス流を相対湿度約100%に維持)、34℃で、Dk1000装置(Applied Design and Development Co., Norcross, GAから入手可能)又は類似の分析装置を用いて酸素フラックス(J)を測定する。既知の酸素%(例えば、21%)の気流を、約10〜20cm3/分の速度でレンズの一方に通し、レンズの反対側に窒素流を約10〜20cm3/分の速度で通す。測定の前に、既定の試験温度で少なくとも30分間(但し、45分以内)、試料を試験媒体(すなわち、生理食塩水又は蒸留水)で平衡化する。オーバーレイヤーとして使用される任意の試験媒体を、測定の前に、既定の試験温度で少なくとも30分間(但し、45分以内)平衡化する。撹拌モーターの速度を、ステッピングモーターコントローラーの表示設定400±15に対応する1200±50rpmに設定する。系の周囲の大気圧Pmeasuredを測定する。試験で曝露される領域のレンズの厚さ(t)を、Mitotoya micrometer VL-50又は類似の装置を用いて約10箇所測定することにより決定し、測定値の平均をとる。窒素流の酸素濃度(すなわち、レンズを通って拡散する酸素)を、DK1000装置を用いて測定する。レンズ材料の見掛けの酸素透過度Dkappを下記式から決定する:
Dkapp=Jt/(Poxygen
[式中、J=酸素フラックス[Oμl/cm2−分]
oxygen=(Pmeasured−Pwater蒸気)=(気流中のO%)[mmHg]=気流中の酸素の分圧
measured=大気圧(mmHg)
water蒸気=34℃で、0mmHg(乾燥セル中)(mmHg)
water蒸気=34℃で、40mmHg(湿潤セル中)(mmHg)
t=曝露試験領域におけるレンズの平均厚さ(mm)
Dkappは、barrer単位で表される]
【0170】
材料の見掛けの酸素伝達率(Dk/t)は、見掛けの酸素透過度(Dkapp)をレンズの平均厚さ(t)で割ることで計算することができる。
【0171】
上記の測定値は、酸素フラックス測定中のコンタクトレンズ上部に対する水又は生理食塩水浴の使用に起因する、いわゆる境界層効果に対して補正されていない。境界層効果により、シリコーンヒドロゲル材料の見掛けのDkについての報告値が、実際の固有のDk値よりも低くなる。さらに、境界層効果の相対的な影響は、厚いレンズよりも薄いレンズでより大きい。正味の効果は、報告されたDkを一定にする必要がある場合にレンズの厚さに応じて変化して表示される。
【0172】
レンズの固有のDk値は、下記のように、境界層効果により生じる酸素フラックスに対する表面抵抗について補正されたDk値に基づいて推定することができる。
【0173】
参照のlotrafilcon A(CIBA VISION CORPORATION社のFocus(登録商標)N&D(登録商標))又はlotrafilcon B(CIBA VISION CORPORATION社のAirOptix(商標))レンズの見掛けの酸素透過度の値(単一ポイント)を同じ装置を用いて測定する。参照レンズは、試験レンズと類似の屈折力であり、試験レンズと同時に測定される。
【0174】
上記の見掛けのDk測定の手順に従って、同じ装置を用いて、lotrafilcon A又はlotrafilcon B(参照)レンズの一連の厚さを通過する酸素フラックスを測定し、参照レンズの固有のDk値(Dk)を得る。一連の厚さは、約100μm以上の範囲の厚さを満たすものとする。好ましくは、参照レンズの厚さの範囲は、試験レンズの厚さを包括する(bracket)。これらの参照レンズのDkappは、試験レンズと同じ装置で測定し、理想的には、試験レンズと同時に測定する。装置の設定と測定パラメータは、実験を通して一定にする。所望であれば、個々の試料を複数回測定してもよい。
【0175】
計算では、式1を用いて、参照レンズの結果から残余酸素抵抗値Rを決定する。
【数23】

[式中、tは、試験レンズ(すなわち、参照レンズも)の厚さであり、そして、nは、測定された参照レンズの数である]
残余酸素抵抗値R対tデータをプロットし、そして、式Y=a+bX(式中、j個目のレンズの場合、Y=(ΔP/J)であり、X=t)の曲線を適合させる。残余酸素抵抗Rはaと等しい。
【0176】
上記で決定された残余酸素抵抗値を使用して、式2に基づいて、試験レンズの正確な酸素透過度Dk(推定された固有のDk)を計算する。
【数24】
【0177】
試験レンズの推定された固有のDkを使用して、式3に基づいて、同じ試験環境下での標準厚さのレンズに対する見掛けのDk(Dka_std)を計算することができる。lotrafilcon Aの標準厚さ(tstd)=85μm。lotrafilcon Bの標準厚さ=60μm。
【数25】
【0178】
イオン透過度の測定
レンズのイオン透過度は、米国特許第5,760,100号(参照によりその全体が本明細書に組み込まれる)に記載の手順に従って測定される。下記の実施例において示されるイオン透過度の値は、標準材料であるレンズ材料Alsaconに対する相対イオノフラックス拡散係数(D/Dref)である。Alsaconは、イオノフラックス拡散係数0.314×10−3mm2/分を有する。
【0179】
潤滑性評価
潤滑性のランク付けは、定性的ランク付け方式であり、0を、ポリアクリル酸でコーティングした対照レンズに割り当て、1を、Oasys(商標)/TruEye(商標)市販レンズに割り当て、そして、4を、市販のAir Optix(商標)レンズに割り当てる。試料を過剰のDI水で少なくとも3回すすぎ、次に、PBSに移して評価する。評価の前に、手を石鹸水ですすぎ、DI水で十分にすすぎ、次に、KimWipe(登録商標)タオルで乾かす。試料を指の間で扱い、上述した上記標準レンズに対して各試料に数値を割り当てる。例えば、レンズを、Air Optix(商標)レンズよりわずかに優れていると決定した場合、これらのレンズを数3と割り当てる。整合性を図るために、全てのランク付けを、偏りを避けるために、同じ2人のオペレーターにより独立して収集して、データから良好な定性的一致及び評価の整合性が明らかになる。
【0180】
表面湿潤性試験
コンタクトレンズ上の水接触角は、コンタクトレンズの表面湿潤性の一般的尺度である。特に、小さい水接触角は、より湿潤性の表面に相当する。コンタクトレンズの平均接触角(液滴法)は、マサチューセッツ州ボストンにあるAST, Inc.社のVCA 2500 XE接触角測定装置を用いて測定される。この装置により、前進もしくは後退接触角又は定着(静止)接触角を測定することが可能である。測定は、下記のように完全に水和したコンタクトレンズでブロット乾燥直後に実施される。コンタクトレンズをバイアルから取り出し、弱く結合したパッケージング添加物をレンズ表面から取り除くために、〜200mlの新しいDI水中で3回洗浄する。次に、レンズを柔らかい清潔な布(Alpha Wipe TX1009)の上に置き、表面の水を取り除くために十分に拭き、接触角測定台に載せ、乾燥した空気を送風して風乾させ、最後に、製造業者から提供されるソフトウェアを使用して液滴接触角を自動で測定する。接触角を測定するために使用するDI水は、抵抗率>18MΩcmを有し、使用する液滴量は2μlである。典型的には、非コーティングシリコーンヒドロゲルレンズ(オートクレーブ後)は、120degree程度の液滴接触角を有する。コンタクトレンズと接触させる前に、ピンセット及び台をイソプロパノールで十分に洗浄し、DI水ですすぐ。
【0181】
水崩壊時間(WBUT)試験
レンズ(オートクレーブ後)の表面親水性は、レンズ表面の水の膜が崩壊し始めるのに必要な時間を決定することにより評価される。簡単に述べると、レンズをバイアルから取り出し、弱く結合したパッケージング添加物をレンズ表面から取り除くために、〜200mlの新しいDI水中で3回洗浄する。レンズを溶液から取り出し、ピンセットで挟み強い光源にかざす。水の膜が崩壊(脱湿潤)し、下層のレンズ材料が曝されるのに必要な時間を目で確認する。非コーティングレンズは、典型的には、DI水を除去するとすぐさま崩壊し、これをWBUT0秒間とする。WBUT≧5秒間を示すレンズは、良好な親水性であると考えられ、眼に涙液膜を維持する能力を示すと期待される。
【0182】
コーティング無損傷試験
コンタクトレンズの表面のコーティングの無損傷は、下記のようにSudan Black染色試験に従って試験することができる。コーティング(LbLコーティング、プラズマコーティング又は任意の他のコーティング)を有するコンタクトレンズを、Sudan Black色素溶液(ビタミンE油中Sudan Black)中に浸漬し、次に、水で十分にすすぐ。Sudan Black色素は疎水性であり、疎水性物質により吸着されるか、又は疎水性レンズ表面もしくは疎水性レンズ(例えば、シリコーンヒドロゲルコンタクトレンズ)の部分的にコーティングされた表面の疎水性スポット上で吸着される傾向が強い。疎水性レンズ上のコーティングが無損傷である場合、染色スポットがレンズ上又は内部に観測されないものとする。被験レンズは全て完全に水和している。
【0183】
コーティング耐久性試験
Solo-care(登録商標)多目的レンズケア溶液を用いて、レンズを指で30回摩擦して、次に、生理食塩水ですすぐ。上記手順を、所定の回数、例えば、1〜30回(すなわち、洗浄及び浸漬サイクルを再現する連続したデジタル摩擦試験の回数)繰り返す。次に、レンズをSudan Black試験(すなわち、上述のコーティング無損傷試験)に供し、コーティングが依然として無損傷であるかを試験する。デジタル摩擦試験を耐え抜く場合は、染色スポットの有意な増加は認められない(例えば、染色スポットが全レンズ表面のわずか約5%を覆う)。水接触角を測定して、コーティング耐久性を決定する。
【0184】
アゼチジニウム含有率の決定
PAE中のアゼチジニウム含有率は、下記アッセイの1つに従って決定することができる。
【0185】
PPVSアッセイ
PAE電荷密度(すなわち、アゼチジニウム含有率)は、比色滴定アッセイのPPVSアッセイに従って決定することができ、滴定剤はビニル硫酸カリウム(PPVS)であり、トルイジンブルーは指示薬である。S-K Kam and J. Gregory, 「Charge determination of synthetic cationic polyelectrolytes by colloid titration」, in Colloid & Surface A: Physicochem. Eng. Aspect, 159: 165-179 (1999)を参照されたい。PPVSは、正電荷種、例えば、トルイジンブルー及びPAEのアゼチジニウム基に結合する。トルイジンブルーの吸収強度の減少は、比例したPAE電荷密度(アゼチジニウム含有率)の指標となる。
【0186】
PES−Naアッセイ
PES−Naアッセイは、PAE電荷密度(アゼチジニウム含有率)を決定するための別の比色滴定アッセイである。このアッセイでは、滴定剤は、PPVSの代わりにポリエチレンスルホン酸ナトリウム(PES−Na)である。アッセイは上述のPPVSアッセイと同じである。
【0187】
PCDアッセイ
PCDアッセイは、PAE電荷密度(アゼチジニウム含有率)を決定するための電位差滴定アッセイである。滴定剤は、ポリエチレンスルホン酸ナトリウム(PES−Na)、PPVS又は他の滴定剤である。PAE電荷は、例えば、BTG社のMutek PCD-04粒子電荷検出器を用いて電極により検出される。この検出器の測定原理は、BTGのウェブサイト(http://www.btg.com/products.asp?langage=1&appli=5&numProd=357&cat=prod)に見出すことができる。
【0188】
NMR法
PAE中の活性な正電荷部分はアゼチジニウム基(AZR)である。NMR比率法は、AZR基特異的プロトン数対非AZR関連プロトン数の比である。この比は、PAEの電荷又はAZR密度の指標となる。
【0189】
残屑付着試験
高い荷電表面を有するコンタクトレンズは、患者の取り扱い中での残屑の付着の増加を受けやすい可能性がある。手袋をした手でペーパータオルを擦り、次に、レンズの両側を指で擦り、レンズ表面に残屑を移す。レンズを簡単にすすぎ、次に、顕微鏡下で観測する。0(残屑の付着なし)〜4(PAAコーティング対照レンズと同等の残屑の付着)の定性的ランク付け基準を使用して各レンズをランク付けする。「0」又は「1」のスコアのレンズは許容範囲にあると見なされる。
【0190】
実施例2
CE−PDMSマクロマーの調製
第一工程で、150gの脱水メチルエチルケトン(MEK)中、0.063gのジラウリン酸ジブチルスズ(DBTDL)の存在下で、49.85gのα,ω−ビス(2−ヒドロキシエトキシプロピル)−ポリジメチルシロキサン(Mn=2000、Shin-Etsu、KF−6001a)を11.1gのイソホロンジイソシアネート(IPDI)と反応させることにより、α,ω−ビス(2−ヒドロキシエトキシプロピル)−ポリジメチルシロキサンをIPDIでキャップする。反応を40℃で4.5時間維持して、IPDI−PDMS−IPDIを形成する。第二工程で、追加の0.063gのDBTDLを加えておいたIPDI−PDMS−IPDI溶液に、164.8gのα,ω−ビス(2−ヒドロキシエトキシプロピル)−ポリジメチルシロキサン(Mn=3000、Shin-Etsu、KF−6002)と50gの脱水MEKの混合物を滴下する。反応器を約40℃で4.5時間保持し、HO−PDMS−IPDI−PDMS−IPDI−PDMS−OHを形成する。次に、MEKを減圧下で除去する。第三工程で、7.77gのイソシアナトエチルメタクリレート(IEM)及び追加の0.063gのDBTDLを加えることにより、第三工程で末端ヒドロキシル基をメタクリロイルオキシエチル基でキャップし、IEM−PDMS−IPDI−PDMS−IPDI−PDMS−IEM(すなわち、メタクリレート基で末端化したCE−PDMS)を形成する。
【0191】
末端メタクリレート基を有するCE−PDMSマクロマーの代わりの調製法
240.43gのKF−6001を、撹拌子、温度計、クライオスタット、滴下漏斗及び窒素/真空インレットアダブターを装備した1−L反応器に加え、次に、高真空(2×10−2mBar)の適用により乾燥させる。次に、乾燥窒素の雰囲気下、320gの蒸留MEKを反応器に加え、混合物を十分に撹拌する。0.235gのDBTDLを反応器に加える。反応器を45℃に温めた後、45.86gのIPDIを、添加漏斗を介して適度に撹拌しながら反応器に10分間かけて加える。反応を60℃で2時間維持する。次に、452gの蒸留MEKに溶解させた630gのKF−6002を加え、均質な溶液が生成するまで撹拌する。約0.235gのDBTDLを加え、反応器を乾燥窒素ブランケット下、約55℃で一晩保持する。翌日、フラッシュ蒸留によりMEKを除去する。反応器を冷却し、次に、22.7gのIEM、続いて、約0.235gのDBTDLを反応器に投入する。約3時間後、追加の3.3gのIEMを加え、反応を一晩進行させる。翌日、反応混合物を約18℃に冷却し、末端メタクリレート基を有するCE−PDMSマクロマーを得る。
【0192】
実施例3
レンズ調合物の調製
レンズ調合物は、下記組成を有するように成分を1−プロパノールに溶解させることにより調製する:実施例2で調製した33%(重量)のCE−PDMSマクロマー、17%(重量)のN−[トリス(トリメチルシロキシ)−シリルプロピル]アクリルアミド(TRIS−Am)、24%(重量)のN,N−ジメチルアクリルアミド(DMA)、0.5%(重量)のN−(カルボニル−メトキシポリエチレングリコール−2000)−1,2−ジステアロイル(disteaoyl)−sn−グリセロ−3−ホスホエタノールアミン、ナトリウム塩)(L−PEG)、1.0%(重量)のDarocur 1173(DC1173)、0.1%(重量)のvisitint(トリス(トリメチルシロキシ)シリルプロピルメタクリレート(TRIS)中の5%銅フタロシアニン青色色素分散物)及び24.5%(重量)の1−プロパノール。
【0193】
レンズの調製
レンズは、上記で調製したレンズ調合物から、米国特許第7,384,590号(図1〜6)及び第7,387,759号(図1〜6)に示される成形用型と類似の再利用可能な成形用型でキャスト成形により調製する。成形用型は、CaFからなる雌型半部及びPMMAからなる雄型半部を含む。UV照射源は、WG335+TM297カットオフフィルターを備えた強度約4mW/cm2のHamamatsuランプである。成形用型内のレンズ調合物にUV照射を約25秒照射する。キャスト成形したレンズをイソプロパノール(又はメチルエチルケトン、MEK)で抽出し、水ですすぎ、レンズをPAAのプロパノール溶液(0.1%(重量)、ギ酸でpH約2.5に酸性化)に浸漬することによりポリアクリル酸(PAA)でコーティングして、水で水和する。得られた反応性PAA−LbLベースコーティングをその上に有するレンズは、下記の特性を有すると決定される:Alsaconレンズ材料に対して、約8.0〜約9.0のイオン透過性;約90〜100の見掛けのDk(単一ポイント);約30%〜約33%の含水率;及び約0.60MPa〜約0.65MPaのバルク表面弾性率。
【0194】
実施例4
インパッケージコーティング(IPC)生理食塩水は、0.2%ポリアミドアミン−エピクロロヒドリン(PAE)(Ashland社のKymene(水溶液)、そのまま使用する、NMRアッセイによるとアゼチジニウム含有率0.46)を、リン酸緩衝生理食塩水(本明細書下記でPBS)(約0.044w/w%NaHPO・HO、約0.388w/w%NaHPO・2HO、約0.79w/w%NaCl)に加えて調製し、次に、pHを7.2〜7.4に調整する。
【0195】
実施例3のレンズを、0.6mLのIPC生理食塩水(IPC生理食塩水の半分は、レンズの挿入前に加える)と共にポリプロピレンレンズパッケージングシェルに入れる。次に、アルミホイルでブリスターを密封し、121℃で約30分間オートクレーブして、レンズ上に架橋コーティング(PAA−x−PAEコーティング)を形成する。
【0196】
次に、レンズの残屑の付着、表面のクラッキング、潤滑性、接触角及び水崩壊時間(WBUT)を評価する。試験レンズ(IPC生理食塩水中にパッケージング/オートクレーブ、すなわち、PAA−x−PAEコーティングをその上に有するレンズ)は、ペーパータオルで摩擦した後に残屑の付着はないが、対照レンズ(PBS中にパッケージング/オートクレーブ、すなわち、PAA−LbLベースコーティングをその上に有するレンズ)は重度の残屑の付着を示す。試験レンズの水接触角(WCA)は、小さいが(〜20degree)、WBUTは2秒未満である。暗視野顕微鏡下で観測した際、レンズを扱った後(レンズの反転及び指の間でレンズを摩擦)、重度のクラッキングラインが見られる。定性的指摩擦試験により判定したとき、試験レンズは対照レンズより滑らかさが非常に低い。
【0197】
実施例5
ポリ(アクリルアミド−co−アクリル酸)(又はPAAm−PAAもしくはポリ(AAm−co−AA)もしくはp(AAm−co−AA))部分ナトリウム塩(〜80%固体含有率、ポリ(AAm−co−AA)(80/20)、Mw520,000、Mn150,000)をAldrichから購入し、そのまま使用する。
【0198】
IPC生理食塩水は、0.02%のポリ(AAm−co−AA)(80/20)及び0.2%のPAE(Ashland社のKymene(水溶液)、そのまま使用する、NMRアッセイによるとアゼチジニウム含有率0.46)をPBSに溶解させることにより調製する。PHを7.2〜7.4に調整する。PBSは、0.76%NaCl、0.044%NaHPO・HO及び0.388%NaHPO・2HOを水に溶解させることにより調製する。
【0199】
実施例3で調製したPAA−LbLベースコーティングをその上に有するレンズを、0.6mLのIPC生理食塩水(生理食塩水の半分は、レンズの挿入前に加える)と共にポリプロピレンレンズパッケージングシェルに入れる。次に、アルミホイルでブリスターを密封し、約121℃で約30分間オートクレーブする。3層のPAA−x−PAE−x−ポリ(AAm−co−AA)からなる架橋コーティングがオートクレーブの間にレンズ上に形成されると考えられる。
【0200】
試験レンズ(IPC生理食塩水中にパッケージング/オートクレーブ、すなわち、PAA−x−PAE−x−ポリ(AAm−co−AA)架橋コーティングをその上に有するレンズ)は、ペーパータオルで摩擦した後に残屑の付着はない。試験レンズは、10秒超のWBUTを有する。暗視野顕微鏡下で観測した際、試験レンズを摩擦した後にクラッキングラインが見られる。試験レンズは実施例4の試験レンズよりも非常に滑らかであるが、依然として、PBS中にパッケージングした対照レンズほど滑らかではない。
【0201】
実施例6
IPC生理食塩水は、0.02%のポリ(AAm−co−AA)(80/20)及び0.2%のPAE(Ashland社のKymene(水溶液)、そのまま使用する、NMRアッセイによるとアゼチジニウム含有率0.46)をPBSに溶解させ、pHを7.2〜7.4に調整することにより調製する。次に、生理食塩水を約70℃に加熱し、その温度で4時間加熱することにより処理する(加熱前処理)。この加熱前処理の間、ポリ(AAm−co−AA)とPAEを互いに部分架橋して(すなわち、PAEの全てのアゼチジニウム基が消費されない)、アゼチジニウム基を含有する水溶性及び熱架橋性親水性ポリマー材料を、IPC生理食塩水中の分岐鎖ポリマー網目構造内に形成する。加熱前処理後、最終IPC生理食塩水を0.22ミクロンポリエーテルスルホン(PES)メンブレンフィルターを用いて濾過し、室温に再び冷ます。
【0202】
実施例3で調製したPAA−LbLベースコーティングをその上に有するレンズを、0.6mLのIPC生理食塩水(生理食塩水の半分は、レンズの挿入前に加える)と共にポリプロピレンレンズパッケージングシェルに入れる。次に、アルミホイルでブリスターを密封し、約121℃で約30分間オートクレーブして、レンズ上に架橋コーティング(PAA−x−親水性ポリマー材料)を形成する。
【0203】
試験レンズ(加熱前処理したIPC生理食塩水中にパッケージング、すなわち、PAA−x−親水性ポリマー材料コーティングをその上に有するレンズ)は、ペーパータオルで摩擦した後に残屑の付着はないが、対照レンズ(PBSにパッケージング、すなわち、PAAの非共有結合層をその上に有するレンズ)は、重度の残屑の付着を示す。試験レンズは、10秒超のWBUTを有する。暗視野顕微鏡下で観測した際、試験レンズを摩擦した後にクラッキングラインは見られない。試験レンズは指摩擦試験において非常に滑らかであり、対照レンズと同等である。
【0204】
得られたIPC生理食塩水でコーティングしたレンズの表面特性に及ぼすIPC生理食塩水の加熱前処理の条件(期間及び/又は温度)の効果を研究するために、一連の実験を実施する。約70℃で約6時間以上の加熱処理時間では、対照レンズと同様の残屑の付着を受けやすいレンズが得られる。より長い加熱前処理は、ほとんどのアゼチジニウム基を消費する可能性があり、そのため、得られた水溶性ポリマー材料の分岐鎖ポリマー網目構造中に残ったアゼチジニウム基の数はポリマー材料をPAAコーティングに付着させるのに不十分であると考えられる。50℃でわずか4時間の加熱処理は、IPC生理食塩水が加熱前処理されない実施例5の試験レンズと同様に、指の間で摩擦した後に、暗視野顕微鏡下で表面のクラッキングラインを示すレンズが得られる。より短い加熱前処理は、少量のアゼチジニウム基を消費する可能性があり、そのため、得られた水溶性ポリマー材料の分岐鎖ポリマー網目構造中に残ったアゼチジニウム基の数が多く、よって、得られたレンズ上の架橋コーティング(PAA−x−親水性ポリマー材料)は、非常に高い架橋密度を有する可能性があると考えられる。
【0205】
実施例7
ポリ(アクリルアミド−co−アクリル酸)部分ナトリウム塩(〜90%固体含有率、ポリ(AAm−co−AA)90/10、Mw200,000)は、Polysciences, Inc.から購入し、そのまま使用する。
【0206】
IPC生理食塩水は、0.07%のPAAm−PAA(90/10)及び0.2%のPAE(Ashland社のKymene(水溶液)、そのまま使用する、NMRアッセイによるとアゼチジニウム含有率0.46)をPBS溶解させ、pHを7.2〜7.4に調整することにより調製する。次に、生理食塩水を約70℃で約4時間加熱前処理する(加熱前処理)。この加熱前処理の間、ポリ(AAm−co−AA)とPAEを互いに部分架橋して(すなわち、PAEの全てのアゼチジニウム基が消費されない)、アゼチジニウム基を含有する水溶性及び熱架橋性親水性ポリマー材料を、IPC生理食塩水中の分岐鎖ポリマー網目構造内に形成する。加熱前処理後、IPC生理食塩水を0.22ミクロンポリエーテルスルホン[PES]メンブレンフィルターを用いて濾過し、室温に再び冷ます。
【0207】
PAAの酸性プロパノール溶液(約0.1%、pH〜2.5)に浸漬した、実施例3で調製したPAA−LbLベースコーティングをその上に有するレンズ及び非コーティングLotrafilcon Bレンズ(CIBA Vision Corporation社)を、0.6mLの加熱前処理したIPC生理食塩水(IPC生理食塩水の半分は、レンズの挿入前に加える)と共にポリプロピレンレンズパッケージングシェルに入れる。次に、アルミホイルでブリスターを密封し、121℃で約30分間オートクレーブして、レンズ上に架橋コーティング(PAA−x−親水性ポリマー材料)を形成する。
【0208】
試験レンズ(PAA−x−親水性ポリマーをその上に有するLotrafilcon B及び実施例3のレンズの両方)は、ペーパータオルで摩擦した後に残屑の付着はない。試験レンズは、10秒超のWBUTを有する。暗視野顕微鏡下で観測した際、指の間でレンズを摩擦した後にクラッキングラインは見られない。レンズは定性的指摩擦試験において非常に滑らかである。
【0209】
実施例8
実験計画法(DOE)では、PBS中に約0.05%〜約0.09%PAAm−PAA及び約0.075%〜約0.19%PAE(Ashland社のKymene(水溶液)、そのまま使用する、NMRアッセイによるとアゼチジニウム含有率0.46)を含有するようにIPC生理食塩水を作製する。IPC生理食塩水を60℃で8時間加熱処理して、実施例3のレンズを加熱前処理したIPC生理食塩水中にパッケージングする。最終レンズの表面特性に違いは認められず、全てのレンズが、優れた潤滑性、残屑の付着耐性、優れた湿潤性を示し、表面のクラッキングは認められない。
【0210】
実施例9
実験計画法(DOE)では、約0.07%PAAm−PAA及び約8.8ミリモル当量/リッターの初期アゼチジニウム含有率(〜0.15%PAE)を得るために十分なPAEを含有するようにIPC生理食塩水を作製する。加熱前処理条件は、中心複合設計において50℃〜70℃で変更し、前反応時間は、約4〜約12時間で変更する。60℃で24時間の前反応時間でも試験する。次に、バイオバーデン増加を防ぐために10ppmの過酸化水素を生理食塩水に加え、0.22ミクロンポリエーテルスルホン[PES]メンブレンフィルターを用いてIPC生理食塩水を濾過する。
【0211】
実施例3のレンズを加熱前処理したIPC生理食塩水中にパッケージングし、次に、ブリスターを121℃で45分間オートクレーブする。全てのレンズが、優れた潤滑性、湿潤性及び表面のクラッキング耐性を有する。表1に示すように、いくつかのレンズはペーパータオルからの残屑の付着を示す。
【0212】
【表1】
【0213】
実施例10
ブチルメタクリレート(BMA)の非存在下又は存在下での、1つのカルボキシル含有ビニルモノマー(CH=CH(CH)C(O)OCOC(O)CCOOH(MS)、メタクリル酸(MA))を有するメタクリロイルオキシエチルホスホリルコリン(MPC)のコポリマーを、PAEと組み合わせてインパッケージコーティング系で評価する。
【0214】
NaCl(0.75%(重量))、NaHPO・HO(0.0536%(重量))、NaHPO・2HO(0.3576%(重量))及びDI水(97.59%(重量))を含有するPBSを調製し、0.2%PAE(polycup 3160)を加える。PHを約7.3に調整する。
【0215】
次に、0.25%の数種類のMPCコポリマーの1つを加え、IPC生理食塩水を作製し、IPC生理食塩水を70℃で4時間加熱前処理する(加熱前処理)。この加熱前処理の間、MPCとPAEを互いに部分架橋して(すなわち、PAEの全てのアゼチジニウム基が消費されない)、アゼチジニウム基を含有する水溶性及び熱架橋性親水性ポリマー材料を、IPC生理食塩水中の分岐鎖ポリマー網目構造内に形成する。4時間後、加熱前処理したIPC生理食塩水を、0.2ミクロンポリエーテルスルホン[PES]メンブレンフィルター(Fisher Scientific catalog#09-741-04, Thermo Scientific nalgene #568-0020)(250ml)で濾過する。
【0216】
実施例3で調製したPAA−LbLベースコーティングをその上に有するレンズを加熱前処理したIPC生理食塩水中にパッケージングし、121℃で約30分間オートクレーブする。表2は、全てのレンズが優れた表面特性を有することを示す。
【0217】
【表2】
【0218】
実施例11
PAAコーティングレンズ
実施例3に記載の成形プロセスに従って実施例3で調製したレンズ調合物からキャスト成形したレンズを抽出し、下記の一連の浴に浸漬することによりコーティングする:3つのMEK浴(22、78及び224秒);DI水浴(56秒);2つのPAAコーティング溶液浴(3.6gのPAA(M.W.:450kDa、Lubrizol社)を975mlの1−プロパノール及び25mlのギ酸に溶解させて調製)をそれぞれ44及び56秒;そして、3つのDI水浴をそれぞれ56秒。
【0219】
PAE/PAAコーティングレンズ
上記で調製したPAAベースコーティングをその上に有するレンズを下記の浴に連続して浸漬する:2つのPAEコーティング溶液浴(0.25wt%のPAE(Polycup 172、Hercules社)をDI水に溶解させ、水酸化ナトリウムを使用してpHを約5.0に調整し、最後に5μmフィルターを用いて得られた溶液を濾過して調製)をそれぞれ44及び56秒;そして、3つのDI水浴をそれぞれ56秒。この処理の後、レンズは1層のPAA及び1層のPAEを有する。
【0220】
PAA−x−PAE−x−CMCコーティングをその上に有するレンズ
1バッチの1層のPAA及び1層のPAEをその上に有するレンズを、リン酸緩衝生理食塩水(PBS)中の0.2%カルボキシメチルセルロースナトリウム(CMC、製品番号 7H 3SF PH、Ashland Aqualon)にパッケージングし、次に、pHを7.2〜7.4に調整する。次に、ブリスターを密封し、121℃で約30分間オートクレーブして、レンズ上に架橋コーティング(PAA−x−PAE−x−CMC)を形成する。
【0221】
PAA−x−PAE−x−HAコーティングをその上に有するレンズ
別のバッチの1層のPAA及び1層のPAEをその上に有するレンズを、リン酸緩衝生理食塩水(PBS)中の0.2%ヒアルロン酸(HA、製品番号 6915004、Novozymes)にパッケージングし、次に、pHを7.2〜7.4に調整する。次に、ブリスターを密封し、121℃で約30分間オートクレーブして、レンズ上に架橋コーティング(PAA−x−PAE−x−HA)を形成する。
【0222】
得られたPAA−x−PAE−x−CMCコーティング又はPAA−x−PAE−x−HAコーティングのいずれかをその上に有するレンズは、顕微鏡試験下で、Sudan black染色、残屑の付着及びクラッキングを示さない。PAA−x−PAE−x−CMCコーティングをその上に有するレンズは、30±3degreeの平均接触角を有し、PAA−x−PAE−x−HAコーティングをその上に有するレンズは、20±3degreeの平均接触角を有する。
【0223】
実施例12
IPC溶液の調製
反応混合物は、2.86%(重量)のmPEG−SH2000(メトキシ−ポリ(エチレングリコール)−チオール、Avg MW 2000、製品番号 MPEG-SH-2000、Laysan Bio Inc.)を、2%(重量)のPAE(Ashland社のKymene(水溶液)、そのまま使用する、NMRアッセイによるとアゼチジニウム含有率0.46)と共にPBSに溶解させて調製し、最終pHを7.5に調整する。溶液を45℃で約4時間加熱処理する(加熱前処理)。この加熱前処理の間、mPEG−SH2000とPAEを互いに反応させ、アゼチジニウム基を含有する水溶性及び熱架橋性親水性ポリマー材料ならびに化学グラフティングしたポリエチレングリコールポリマー鎖を形成する。加熱処理後、0.25%クエン酸ナトリウムを含有するPBSで溶液を10倍希釈し、pHを7.2〜7.4に調整して、そして、0.22ミクロンポリエーテルスルホン(PES)メンブレンフィルターを用いて濾過する。最終IPC生理食塩水は、0.286%(重量)の親水性ポリマー材料(約59%(重量)のMPEG−SH−2000鎖及び約41%(重量)のPAE鎖から構成される)及び0.25%クエン酸ナトリウム二水和物を含有する。PBSは、0.74%NaCl、0.053%NaHPO・HO及び0.353%NaHPO・2HOを水に溶解させることにより調製する。
【0224】
架橋コーティングをその上に有するレンズ
実施例11のPAAコーティングレンズをポリプロピレンレンズパッケージングシェル中の上記IPC生理食塩水にパッケージングし、次に、約121℃で約30分間オートクレーブして、レンズ上に架橋コーティングを形成する。最終レンズは、レンズを摩擦した後に、残屑の付着、クラッキングラインを示さない。レンズは、指摩擦試験において対照PAAコーティングレンズと同様に非常に滑らかである。
【0225】
得られたIPC生理食塩水でコーティングしたレンズの表面特性に及ぼす条件(反応時間及びmPEG−SH2000の溶液濃度(一定のPAE濃度2%を有する))の効果を研究するために、一連の実験を実施する。結果を表3に示す。
【0226】
【表3】
【0227】
mPEGSH2000の溶液濃度が増加するにつれて、レンズの潤滑性が増加する。表面の接触角の増大は、グラフト密度の増加と共に表面の末端メチル基の密度が増加することに起因する可能性があると考えられる。0.6%の溶液濃度に相当する高いグラフト密度では、その接触角は、ポリエチレングリコール(PEG)単層グラフティング平坦基質において得られた測定値に匹敵する(参考:Langmuir 2008, 24, 10646-10653)。
【0228】
実施例13
mPEG−SHの分子量の効果を研究するために一連の実験を実施する。IPC生理食塩水は実施例12に記載の手順と同様にして調製する。しかし、生理食塩水を調製するために下記のmPEG−SHを使用する:mPEG−SH1000、mPEG−SH2000、mPEG−SH5000及びmPEG−SH20000。全ての生理食塩水を45℃で4時間の加熱処理及び10倍希釈に供する。結果及び反応条件を下記に示す:
【0229】
【表4】
【0230】
実施例14
反応混合物は、2.5%のmPEG−SH2000、10%のPAE(Ashland社のKymene(水溶液)、そのまま使用する、NMRアッセイによるとアゼチジニウム含有率0.46)及び0.25%のクエン酸ナトリウム二水和物をPBSに溶解させることにより調製する。次に、この溶液のpHを7.5に調整し、容器に2時間窒素ガスをバブリングすることによりさらに脱気する。その後、この溶液を45℃で約6時間加熱処理して、PAE中のアゼチジニウム基と反応させることにより、ポリマー上に化学グラフティングしたmPEG−SH−2000基を含有する熱架橋性親水性ポリマー材料を形成する。加熱処理後、0.25%クエン酸ナトリウムを含有するPBSを使用して溶液を50倍希釈し、pHを7.2〜7.4に調整して、そして、0.22ミクロンポリエーテルスルホン(PES)メンブレンフィルターを用いて濾過する。最終IPC生理食塩水は、約0.30%(重量)のポリマー材料(約17%wt.mPEG−SH−2000及び約83%wt.PAEから構成される)及び0.25%クエン酸ナトリウム二水和物を含有する。
【0231】
実施例11のPAAコーティングレンズをポリプロピレンレンズパッケージングシェル中の上記IPC生理食塩水にパッケージングし、次に、約121℃で約30分間オートクレーブして、レンズ上に架橋コーティングを形成する。
【0232】
最終レンズは、レンズを摩擦した後に、残屑の付着、クラッキングラインを示さない。試験レンズは指摩擦試験において対照PAAコーティングレンズと同様に非常に滑らかである。
【0233】
実施例15
反応混合物は、3.62%のmPEG−NH550(メトキシ−ポリ(エチレングリコール)−アミン、M.W.〜550(製品番号MPEG−NH−550、Laysan Bio Inc.)を、2%のPAE(Ashland社のKymene(水溶液)、そのまま使用する、NMRでアッセイした場合アゼチジニウム比0.46)と共にPBSに溶解させて調製し、最終pHを10に調整する。溶液を45℃で約4時間加熱処理して、PAE中のアゼチジニウム基と反応させることにより、ポリマー上に化学グラフティングしたMPEG−NH−550基を含有する熱架橋性親水性ポリマー材料を形成する。加熱処理後、0.25%クエン酸ナトリウムを含有するPBSで溶液を10倍希釈し、pHを7.2〜7.4に調整して、そして、0.22ミクロンポリエーテルスルホン(PES)メンブレンフィルターを用いて濾過する。最終IPC生理食塩水は、約0.562%wt.のポリマー材料(64%wt.MPEG−SH−2000及び約36%wt.PAEから構成される)及び0.25%クエン酸ナトリウム二水和物を含有する。PBSは、0.74%NaCl、0.053%NaHPO・HO及び0.353%NaHPO・2HOを水に溶解させることにより調製する。
【0234】
実施例11のPAAコーティングレンズをポリプロピレンレンズパッケージングシェル中の上記IPC生理食塩水にパッケージングし、次に、約121℃で約30分間オートクレーブして、レンズ上に架橋コーティングを形成する。
【0235】
最終レンズは、レンズのデジタル(指)摩擦後に残屑の付着及びクラッキングラインを示さない。
【0236】
実施例16
ポロキサマー108(試料)及びNelfilcon A(CIBA VISION)をそのまま使用する。Nelfilcon Aは、環状アセタール形成反応条件下、ポリビニルアルコール(例えば、Nippon Gohsei社のGohsenol KL-03など)をN−(2,2−ジメトキシエチル)アクリルアミドで修飾することにより得られる重合性ポリビニルアルコールである(Buhler et al., CHIMIA, 53 (1999), 269-274、参照によりその全体が本明細書に組み込まれる)。Nelfilcon A中の約2.5%のビニルアルコールユニットをN−(2,2−ジメトキシエチル)アクリルアミドにより修飾する。
【0237】
IPC生理食塩水は、0.004%ポロキサマー108、0.8%Nelfilcon A、0.2%PAE(Kymene、Polycup 3160)、0.45%NaCl及び1.1%リン酸水素二ナトリウム(二水和物)をDI水に溶解させることにより調製する。生理食塩水を約65〜70℃で2時間撹拌することにより加熱前処理する。加熱前処理後、生理食塩水を室温に冷まし、次に、0.2μmPESフィルターを用いて濾過する。
【0238】
実施例3で調製したレンズを、0.6mLのIPC生理食塩水(生理食塩水の半分は、レンズの挿入前に加える)と共にポリプロピレンレンズパッケージングシェルに入れる。次に、アルミホイルでブリスターを密封し、121℃で約30分間オートクレーブする。
【0239】
試験レンズはペーパータオルで摩擦した後に残屑の付着を示さない。レンズは10秒超のWBUTを有していた。暗視野顕微鏡下で観測した際、指の間でレンズを摩擦した後にクラッキングラインは見られない。レンズは実施例4のレンズより非常に滑らかであるが、依然として、PBS中にパッケージングしたPAAコーティング対照レンズと同等の滑らかさではない。
【0240】
実施例17
A.80%エチレン性官能化鎖伸長ポリシロキサンの合成
KF−6001A(α,ω−ビス(2−ヒドロキシエトキシプロピル)−ポリジメチルシロキサン、Mn=2000、Shin-Etsu社)及びKF−6002A(α,ω−ビス(2−ヒドロキシエトキシプロピル)−ポリジメチルシロキサン、Mn=3400、Shin-Etsu社)を、一口フラスコ中、高真空下、約60℃で12時間(又は一晩)別々に乾燥させる。KF−6001AとKF−6002AのOHモル当量をヒドロキシル基の滴定により決定し、これを用いて合成で使用するミリモル当量を計算する。
【0241】
1リッターの反応容器を一晩真空にして水分を除去し、真空を中断し乾燥窒素で置き換える。75.00g(75meq)の乾燥KF6001Aを反応器に投入し、次に、16.68g(150meq)の新しく蒸留したIPDIを反応器に加える。反応器に窒素をパージし、撹拌しながら45℃に加熱して、次に、0.30gのDBTDLを加える。反応器を密封し、窒素のポジティブフローを維持する。発熱が起こり、その後、反応混合物を冷却し、55℃で2時間撹拌する。発熱に達した後、248.00g(150meq)の乾燥KF6002Aを55℃で反応器に加え、次に、100μLのDBTDLを加える。反応器を4時間撹拌する。加熱を中断し、反応器を一晩冷却する。窒素バブリングを中断し、反応器を大気中で開口して、30分間適度に撹拌する。3つのポリシロキサンセグメントを有するヒドロキシル末端鎖伸長ポリシロキサンHO−PDMS−IPDI−PDMS−IPDI−PDMS−OH(又はHO−CE−PDMS−OH)が生成する。
【0242】
80%エチレン性官能化ポリシロキサンの場合、18.64g(120meq)のIEMを100μLのDBTDLと一緒に反応器に加える。反応器を24時間撹拌し、次に、生成物(80%IEMキャップしたCE−PDMS)をデカントして、冷凍下で保存する。
【0243】
B:非UV吸収両親媒性分岐鎖ポリシロキサンプレポリマーの合成
1Lジャケット付き反応器に、500mL添加漏斗、オーバーヘッド撹拌器、窒素/真空インレットアダブター付き還流冷却器、温度計及びサンプリングアダプターを備え付ける。反応器に、上記で調製した45.6gの80%IEMキャップしたCE−PDMSを投入し、密封する。279gの酢酸エチル中の0.65gのヒドロキシエチルメタクリレート(HEMA)、25.80gのDMA、27.80gの(トリス(トリメチルシリル))−シロキシプロピル)メタクリレート(TRIS)の溶液を添加漏斗に投入する。高真空ポンプを用いて、<1mbar、室温で30分間反応器を脱気する。100mbar、室温で10分間の3サイクルでモノマー溶液を脱気し、脱気サイクルの間、真空を窒素で置き換える。次に、モノマー溶液を反応器に投入した後、反応混合物を撹拌し、67℃に加熱する。加熱しながら、39gの酢酸エチルに溶解させた1.50gのメルカプトエタノール(連鎖移動剤、CTA)及び0.26gのアゾイソブチロニトリルの溶液を添加漏斗に投入し、100mbar、室温で10分間を3回脱酸素化する。反応器の温度が67℃に達したとき、開始剤/CTA溶液を反応器中のPDMS/モノマー溶液に加える。反応を8時間進行させ、次に、加熱を中断し、反応器の温度を15分以内に室温にする。
【0244】
次に、得られた反応混合物を、気密蓋を有する乾燥一口フラスコに吸い上げ、4.452gのIEMを0.21gのDBTDLと共に加える。混合物を室温で24時間撹拌して、非UV吸収両親媒性分岐鎖ポリシロキサンプレポリマーを生成する。この混合溶液に、酢酸エチル(2g/20mL)中の100μLのヒドロキシ−テトラメチレンピペロニルオキシ溶液を加える。次に、ロータリーエバポレーター(rota-vap)を使用し、30℃で、溶液を200g(〜50%)に濃縮し、1μm孔径の濾紙で濾過する。溶媒を1−プロパノールに交換した後、溶液を所望の濃度にさらに濃縮する。
【0245】
C.UV吸収両親媒性分岐鎖ポリシロキサンプレポリマーの合成
1Lジャケット付き反応器に、500mL添加漏斗、オーバーヘッド撹拌器、窒素/真空インレットアダブター付き還流冷却器、温度計及びサンプリングアダプターを備え付ける。次に、反応器に、上記で調製した45.98gの80%IEMキャップしたCE−PDMSを投入し、反応器を密封する。263gの酢酸エチル中の0.512gのHEMA、25.354gのDMA、1.38gのNorblocメタクリレート、26.034gのTRISの溶液を添加漏斗に投入する。高真空ポンプを用いて、<1mbar、室温で30分間反応器を脱気する。100mbar、室温で10分間の3サイクルでモノマー溶液を脱気し、脱気サイクルの間、真空を窒素で置き換える。次に、モノマー溶液を反応器に投入した後、反応混合物を撹拌し、67℃に加熱する。加熱しながら、38gの酢酸エチルに溶解させた1.480gのメルカプトエタノール(連鎖移動剤、CTA)及び0.260gのアゾイソブチロニトリルの溶液を添加漏斗に投入し、100mbar、室温で10分間を3回脱酸素化する。反応器の温度が67℃に達したとき、開始剤/CTA溶液を反応器中のPDMS/モノマー溶液に加える。反応を8時間進行させ、次に、加熱を中断し、反応器の温度を15分以内に室温にする。
【0246】
次に、得られた反応混合物を、気密蓋を有する乾燥一口フラスコに吸い上げ、3.841gのイソシアナトエチルアクリレートを0.15gのDBTDLと共に加える。混合物を室温で24時間撹拌して、UV吸収両親媒性分岐鎖ポリシロキサンプレポリマーを生成する。この混合溶液に、酢酸エチル(2g/20mL)中の100μLのヒドロキシ−テトラメチレンピペロニルオキシ溶液を加える。次に、ロータリーエバポレーターを使用し、30℃で、溶液を200g(〜50%)に濃縮し、1μm孔径の濾紙で濾過する。
【0247】
D−1:非UV吸収ポリシロキサンプレポリマーを有するレンズ調合物
100mLの琥珀色フラスコに、上記で調製した4.31gの合成マクロマー溶液(1−プロパノール中82.39%)を加える。20mLバイアル中、0.081gのTPO及び0.045gの1,2−ジミリストイル−sn−グリセロ−3−ホスホコリン(DMPC)を10gの1−プロパノールに溶解させ、次に、マクロマー溶液に移す。ロータリーエバポレーターを使用し、30℃で混合物を5.64gに濃縮した後、0.36gのDMAを加え、調合物を室温で均質化する。6gの透明なレンズ調合物D−1が得られる。
【0248】
D−2:UV吸収ポリシロキサンプレポリマー(4%DMA)を有するレンズ調合物
100mLの琥珀色フラスコに、上記で調製した24.250gのマクロマー溶液(酢酸エチル中43.92%)を加える。50mLバイアル中、0.15gのTPO及び0.75gのDMPCを20gの1−プロパノールに溶解させ、次に、マクロマー溶液に移す。ロータリーエバポレーターを使用し、30℃で20gの溶媒を除去し、その後、20gの1−プロパノールを添加する。2サイクル後、混合物を14.40gに濃縮する。0.6gのDMAをこの混合物に加え、調合物を室温で均質化する。15gの透明なレンズ調合物D−2が得られる。
【0249】
D−3:UV吸収ポリシロキサンプレポリマー(2%DMA/2%HEA)を有するレンズ調合物
100mLの琥珀色フラスコに、上記で調製した24.250gのマクロマー溶液(酢酸エチル中43.92%)を加える。50mLバイアル中、0.15gのTPO及び0.75gのDMPCを20gの1−プロパノールに溶解させ、次に、マクロマー溶液に移す。ロータリーエバポレーターを使用し、30℃で20gの溶媒を除去し、その後、20gの1−プロパノールを添加する。2サイクル後、混合物を14.40gに濃縮する。0.3gのDMA及び0.3gのHEAをこの混合物に加え、調合物を室温で均質化する。15gの透明なレンズ調合物D−3が得られる。
【0250】
実施例18
実施例E:修飾PAEコーティングポリマーの共有結合
アミン基を含有するモノマー、N−(3−アミノプロピル)メタクリルアミド塩酸塩(APMAA−HCl)又はN−(2−アミノエチル)メタクリルアミド塩酸塩(AEMAA−HCl)を、Polysciencesから購入し、そのまま使用する。Ashland社からポリ(アミドアミンエピクロロヒドリン)(PAE)の水溶液を入手し、そのまま使用する。Polysciences社のポリ(アクリルアミド−co−アクリル酸)(ポリ(AAm−co−AA)(90/10)、Laysan Bio社のmPEG−SH及びNOF社のポリ(MPC−co−AeMA)(すなわち、メタクリロイルオキシエチルホスホリルコリン(MPC)とアミノエチルメタクリレート(AeMA)のコポリマー)をそのまま使用する。
【0251】
APMAA−HClモノマーをメタノールに溶解させ、レンズ調合物D−1、D−2及びD−3(実施例17で調製)に加え、1wt%濃度を達成する。
【0252】
表4に列挙した成分を適切な緩衝塩と一緒にDI水に溶解させることにより、反応性パッケージング生理食塩水を調製する。約60℃で8時間撹拌することにより生理食塩水を加熱前処理する。熱前処理後、生理食塩水を室温に冷まし、次に、0.2μmPESフィルターを用いて濾過する。
【0253】
【表5】
【0254】
APMAA−HClモノマー(1:1 メタノール:プロパノール中のAPMMA−HCLストック溶液)を加えることにより実施例17で調製したレンズ調合物D−1を修飾し、16mW/cm2で330nmフィルターにより硬化する。APMAA−HClモノマーを加えることにより実施例17で調製したレンズ調合物D−2及びD−3を修飾し、4.6mW/cm2で380nmフィルターにより硬化する。
【0255】
DSMレンズ
ポリプロピレンレンズ成形用型の雌部に、上記で調製した約75μlのレンズ調合物を充填し、成形用型をポリプロピレンレンズ成形用型の雄部(ベースカーブ型)で閉じる。閉じた成形用型を、UV照射源(330nmのカットオフフィルターを備えた強度約16mW/cm2のHamamatsuランプ)を用いて、約5分間硬化することによりコンタクトレンズが得られる。
【0256】
LSレンズ
LSレンズは、上記で調製したレンズ調合物から、米国特許第7,384,590号(図1〜6)及び第7,387,759号(図1〜6)に示される成形用型と類似の再利用可能な成形用型でキャスト成形により調製する。成形用型は、石英からなる雌型半部及びPMMAからなる雄型半部を含む。UV照射源は、380nmのカットオフフィルターを備えた強度約4.6mW/cm2のHamamatsuランプである。成形用型内のレンズ調合物をUV照射で約30秒間照射する。
【0257】
APMAA−HClで修飾したレンズ調合物D−1は上述のDSM及びLS方法に従って硬化し、レンズ調合物D−2又はD−3は上述のLS方法に従って硬化する。
【0258】
成形したレンズをメチルエチルケトンで抽出し、水和して、表4に記載の生理食塩水の1つにパッケージングする。レンズを0.6mLのIPC生理食塩水(生理食塩水の半分は、レンズを挿入する前に加える)と共にポリプロピレンレンズパッケージングシェル中に入れる。次に、アルミホイルでブリスターを密封し、121℃で30分間オートクレーブする。
【0259】
レンズ表面の評価から、全ての試験レンズで、ペーパータオルで摩擦した後に残屑の付着がないことを示す。暗視野顕微鏡下で観測した際、指の間でレンズを摩擦した後にクラッキングラインは見られない。
【0260】
レンズ表面の湿潤性(WBUT)、潤滑性及び接触角を測定し、結果を表5にまとめる。特に指定しない限り、レンズはDSM方法に従って製造する。潤滑性は0〜5の定性的尺度に格付けし、より低い数は、より大きな潤滑性を示す。一般的に、全ての特性は、インパッケージコーティングの適用後に改善することが示される。
【0261】
【表6】
【0262】
実施例19
レンズ調合物の調製
レンズ調合物は、下記組成を有するように成分を1−プロパノールに溶解させることにより調製する:実施例2で調製した約32%(重量)のCE−PDMSマクロマー、約21%(重量)のTRIS−Am、約23%(重量)のDMA、約0.6%(重量)のL−PEG、約1%(重量)のDC1173、約0.1%(重量)のvisitint(TRIS中の5%銅フタロシアニン青色色素分散物)、約0.8%(重量)のDMPC、約200ppmのH-tempo及び約22%(重量)の1−プロパノール。
【0263】
レンズの調製
レンズは、上記で調製したレンズ調合物から、米国特許第7,384,590号(図1〜6)及び第7,387,759号(図1〜6)に示される成形用型と類似の再利用可能な成形用型(石英製雌型半部及びガラス製雄型半部)でキャスト成形により調製する。成形用型内のレンズ調合物をUV照射(13.0mW/cm2)で約24秒照射する。
【0264】
PAAコーティング溶液
約0.36%(重量)の濃度を有するようにある量のPAA(M.W.:450kDa、Lubrizol社)を所定量の1−プロパノールに溶解させてPAAコーティング溶液を調製し、pHをギ酸で約2.0に調整する。
【0265】
PAAコーティングレンズ
上記のようにキャスト成形したコンタクトレンズを抽出し、下記の一連の浴に浸漬することによりコーティングする:DI水浴(約56秒);6つのMEK浴(それぞれ、約44、56、56、56、56及び56秒);DI水浴(約56秒);1つの100%1−プロパノール中のPAAコーティング溶液浴(約0.36%(重量)、ギ酸でpH約2.0に酸性化)(約44秒);1つの水/1−プロパノール 50%/50%混合物浴(約56秒);4つのDI水浴をそれぞれ約56秒;1つのPBS浴を約56秒;そして、1つのDI水浴を約56秒。
【0266】
IPC生理食塩水
ポリ(AAm−co−AA)(90/10)部分ナトリウム塩(〜90%固体含有率、ポリ(AAm−co−AA)90/10、Mw200,000)は、Polysciences, Inc.から購入し、そのまま使用する。PAE(Kymene、NMRアッセイによるとアゼチジニウム含有率0.46)は、Ashland社から水溶液として購入し、そのまま使用する。IPC生理食塩水は、約0.07%w/wのポリ(AAm−co−AA)(90/10)及び約0.15%のPAE(約8.8ミリモルの初期アゼチジニウムミリモル当量)を、PBS(約0.044w/w%NaHPO・HO、約0.388w/w/%NaHPO・2HO、約0.79w/w/%NaCl)に溶解させ、pHを7.2〜7.4に調整することにより調製する。次に、IPC生理食塩水を約70℃で約4時間加熱前処理する(加熱前処理)。この加熱前処理の間、ポリ(AAm−co−AA)とPAEを互いに部分架橋して(すなわち、PAEの全てのアゼチジニウム基が消費されない)、アゼチジニウム基を含有する水溶性及び熱架橋性親水性ポリマー材料を、IPC生理食塩水中の分岐鎖ポリマー網目構造内に形成する。加熱前処理後、0.22ミクロンPESメンブレンフィルターを用いてIPC生理食塩水を濾過し、室温に再び冷ます。次に、バイオバーデン増加を防ぐために10ppmの過酸化水素を最終IPC生理食塩水に加え、0.22ミクロンPESメンブレンフィルターを用いてIPC生理食塩水を濾過する。
【0267】
架橋コーティングの適用
上記で調製したPAA−LbLベースコーティングをその上に有するレンズを、0.6mLのIPC生理食塩水(生理食塩水の半分は、レンズの挿入前に加える)と共にポリプロピレンレンズパッケージングシェル(シェル当たり1つのレンズ)に入れる。次に、アルミホイルでブリスターを密封し、約121℃で約30分間オートクレーブして、架橋コーティング(PAA−x−親水性ポリマー材料)をその上に有するSiHyコンタクトレンズを生成する。
【0268】
SiHyレンズの特性評価
得られた架橋コーティング(PAA−x−親水性ポリマー材料)をその上に有するSiHyコンタクトレンズは、ペーパータオルで摩擦した後に残屑の付着はないが、対照レンズ(PBSにパッケージング、すなわち、PAAの非共有結合層をその上に有するレンズ)は、重度の残屑の付着を示す。レンズは、146barrerの酸素透過度(Dk又は推定の固有のDk)、0.76MPaのバルク表面弾性率、約32%(重量)の含水率、約6の相対イオン透過度(Alsaconレンズに対して)、約34〜47degreeの接触角、10秒超のWBUTを有する。暗視野顕微鏡下で観測した際、試験レンズを摩擦した後にクラッキングラインは見られない。レンズは、指摩擦試験において対照レンズと同等で非常に滑らかである。
【0269】
実施例20
実施例6、14及び19で調製した、オートクレーブ後のレンズパッケージ中のSiHyレンズ及びIPC生理食塩水を、下記の生体適合性研究に供する。
【0270】
in-vitro細胞毒性評価
SiHyレンズをUSP直接接触材料アッセイ(Direct Contact Material Assay)により評価する。レンズ抽出物をUSP MEM溶離及びISO CEN細胞増殖阻害アッセイにより評価し、オートクレーブ後のパッケージ中のIPC生理食塩水を改変溶離法により評価する。評価した全てのレンズ及びレンズ抽出物は、各試験について十分に判定基準の範囲にあり、許容できない細胞毒性は観測されない。
【0271】
in-vivo試験
マウスのISO全身毒性は、レンズ抽出物を用いたマウスの全身毒性が認められないことを示す。ウサギのISO眼内刺激研究は、レンズ抽出物がウサギの眼組織に対して刺激物質であると考えられないことを示す。ウサギのISO眼内刺激研究は、オートクレーブ後のパッケージング中のIPC生理食塩水がウサギの眼組織に対して刺激物質であると考えられないことを示す。1日使い捨て装着形態で22日連続装着したレンズは、ウサギモデルに対して刺激性が少なく、試験レンズで処理した眼は対照レンズで処理した眼と同様である。ISO感作研究(パッケージング溶液のモルモット極大化試験)は、オートクレーブ後のIPC生理食塩水が、モルモットにおいて皮膚接触感作の遅延を引き起こさないことを示す。ISO感作研究(レンズ抽出物のモルモット極大化試験)は、レンズの塩化ナトリウム及びゴマ油抽出物が、モルモットにおいて皮膚接触感作の遅延を引き起こさないことを示す。
【0272】
遺伝毒性試験
レンズパッケージからのIPC生理食塩水及びSiHyレンズ抽出物を微生物復帰突然変異アッセイ(Ames試験)で試験した場合、レンズ抽出物及びIPC生理食塩水が、ネズミチフス菌試験株TA98、TA100、TA1535及びTA1537ならびにEscherichia coli WPuvrAに対して非変異原性であると考えられることが見出される。SiHyレンズ抽出物を哺乳動物赤血球小核アッセイで試験した場合、これらは染色体異常誘発活性を有さず、マウスの骨髄小核試験で陰性である。チャイニーズハムスターで、レンズパッケージからのIPC生理食塩水を染色体異常試験に従って試験した場合、IPC生理食塩水が、非活性化及びS9活性化試験系の両方において、CHO細胞を用いたアッセイで構造的及び数的染色体異常の誘導に陰性である。SiHyレンズ抽出物を細胞遺伝子突然変異試験(マウスリンパ腫の突然変異誘発アッセイ)に従って試験した場合、レンズ抽出物がマウスリンパ腫の突然変異誘発アッセイにおいて陰性であることが示される。
【0273】
実施例21
事前に形成するSiHyコンタクトレンズ(すなわち、任意のコーティングを有さず、PAAベースコーティングを適用する前のSiHyコンタクトレンズ)、PAAコーティングを有するSiHyコンタクトレンズ(すなわち、IPC生理食塩水と共にレンズパッケージ中に密封し、オートクレーブする前のレンズ)及び架橋コーティングをその上に有するSiHyコンタクトレンズ(これらの全ては、実施例19に記載の手順に従って調製)の表面組成を、真空乾燥コンタクトレンズをX線光電子分光法(XPS)で特性決定することにより決定する。XPSは、約10nmの採取深度でレンズの表面組成を測定するための方法である。3種類のレンズの表面組成を表6に報告する。
【0274】
【表7】
【0275】
表6は、PAAコーティングをSiHyレンズ(コーティングなしの事前形成)上に適用した場合、ケイ素原子組成が大幅に低下し(12.1%から4.5%)、窒素原子組成もまた低下する(6.2%から1.6%)ことを示す。架橋コーティングをPAAコーティング上にさらに適用した場合、表面組成が3種類の原子組成である炭素、窒素及び酸素により占められる(XPSが表面組成の水素をカウントしないため水素は除く)。このような結果から、架橋コーティングを有するSiHyコンタクトレンズの最外層が、基本的に、ポリ(AAm−co−AA)(90/10)(60%C、22%O及び18%N)とPAEの反応生成物である親水性ポリマー材料から構成される可能性が高いことが示される。
【0276】
真空乾燥した下記の市販のSiHyレンズもまたXPS分析に供する。これらの市販のSiHyコンタクトレンズの表面組成を表7に報告する。
【0277】
【表8】
【0278】
本発明のSiHyコンタクトレンズは、プラズマコーティングなしの市販のSiHyレンズ(Acuvue(登録商標)Advance(登録商標)、Acuvue(登録商標)Oasys(登録商標)、TruEye(商標)、Biofinity(登録商標)、Avaira(商標))及びPureVision(登録商標)(プラズマ酸化を有する)ならびにPremio(商標)(未知のプラズマ処理を有する)よりもかなり低く、そして、約25nmの厚さを有するプラズマ蒸着コーティングを有するSiHyレンズ(N&D(登録商標)Aqua(商標)及びAir Optix(登録商標)Aqua(商標))よりさらに低い、公称(nominal)ケイ素含有率約1.4%を表面層中に有することが見出される。この極めて低いSi%値は、対照サンプルGoodfellow社のポリエチレン(LDPE、d=0.015mm;LS356526SDS;ET31111512;3004622910)のケイ素原子%に匹敵する。これらの結果から、本発明の真空乾燥したSiHyコンタクトレンズのXPS分析の極めて低い値が、非フッ素含有レンズ中にフッ素の含有が観測されたように、真空乾燥プロセス及びXPS分析を含む調製プロセス中に取り込まれた汚染物質に起因する可能性があることが示される。本発明のSiHyコンタクトレンズにおいて、シリコーンはXPS分析から成功裏に遮蔽されている。
【0279】
本発明のSiHyコンタクトレンズ(実施例19に記載の手順に従って調製)、市販のSiHyコンタクトレンズ(CLARITI(商標)1 Day、ACUVUE(登録商標)TruEye(商標)(narafilcon A及びnarafilcon B))、Goodfellow社のポリエチレンシート(LDPE、d=0.015mm;LS356526 SDS;ET31111512;3004622910)、DAILIES(登録商標)(ポリビニルアルコールヒドロゲルレンズ、すなわち、非シリコーンヒドロゲルレンズ)、ACUVUE(登録商標)Moist(ポリヒドロキシエチルメタクリレートヒドロゲルレンズ、すなわち、非シリコーンヒドロゲルレンズ)のXPS分析も実施する。全てのレンズを真空乾燥する。ポリエチレンシート、DAILIES(登録商標)及びACUVUE(登録商標)Moistは、ケイ素を含有しないため対照として使用する。試験試料の表面層中のケイ素原子組成は下記のとおりである:1.3±0.2(ポリエチレンシート);1.7±0.9(DAILIES(登録商標));2.8±0.9(ACUVUE(登録商標)Moist);3.7±1.2(実施例19に記載の手順に従って調製した3種類のSiHyレンズ);5.8±1.5(CLARITI(商標)1 Day);7.8±0.1(ACUVUE(登録商標)TruEye(商標)(narafilcon A));及び6.5±0.1(ACUVUE(登録商標)TruEye(商標)(narafilcon B))。本発明のSiHyコンタクトレンズの結果は、シリコーンヒドロゲルよりも従来のヒドロゲルに近い。
【0280】
実施例22
フルオレセイン標識PAA(PAA−F)
PAA−Fは、5−アミノフルオレセインをPAA(Mw450k)に共有結合させることにより社内で合成する。フルオレセインの標識度は、数%、例えば、約2モル%(又は下記で示される式で、n/(m+n)=2%)
【化4】
【0281】
レンズの調製
レンズは、上記実施例19で調製したレンズ調合物から、米国特許第7,384,590号(図1〜6)及び第7,387,759号(図1〜6)に示される成形用型と類似の再利用可能な成形用型(石英製雌型半部及びガラス製雄型半部)でキャスト成形により調製する。成形用型内のレンズ調合物をUV照射(13.0mW/cm2)で約24秒照射する。
【0282】
PAA−Fコーティング溶液
PAA−Fコーティング溶液は、約0.36%(重量)の濃度を有するように、ある量の上記で調製したPAA−Fを所定量の1−PrOH/水(95/5)溶媒混合物に溶解させて調製し、pHをギ酸で約2.0に調整する。PAA−Fを溶解させるために約5%の水を使用する。
【0283】
PAAコーティングレンズ
キャスト成形したコンタクトレンズを抽出し、下記の一連の浴に浸漬することによりコーティングする:DI水浴(約56秒);6つのMEK浴(それぞれ、約44、56、56、56、56及び56秒);DI水浴(約56秒);1つの1−PrOH/水(95/5)溶媒混合物中のPAA−Fコーティング溶液浴(約0.36%(重量)、ギ酸でpH約2.0に酸性化)(約44秒);1つの水/1−プロパノール50%/50%混合物浴(約56秒);4つのDI水浴をそれぞれ約56秒;1つのPBS浴を約56秒;そして、1つのDI水浴を約56秒。
【0284】
架橋コーティングの適用
上記で調製したPAA−LbLベースコーティングをその上に有するレンズを、実施例19に記載の手順に従って調製した0.6mLのIPC生理食塩水(生理食塩水の半分は、レンズの挿入前に加える)と共にポリプロピレンレンズパッケージングシェル(シェル当たり1つのレンズ)中に入れる。次に、アルミホイルでブリスターを密封し、約121℃で約30分間オートクレーブして、架橋コーティング(PAA−x−親水性ポリマー材料)をその上に有するSiHyコンタクトレンズを生成する。
【0285】
共焦点レーザー蛍光顕微鏡法
架橋コーティングを有する水和SiHyレンズ(上記で調製)の断面を切断し、2つのガラスカバースリップ間に置き、共焦点レーザー蛍光顕微鏡(モデル#Zeiss LSM 510 Vis)で画像を撮る。レンズのフロントカーブ側からレンズのベースカーブ側を走査する(逆もまた同様)。PAA−Fの存在は緑色蛍光により示され、共焦点レーザー蛍光顕微鏡画像を得ることができる。共焦点レーザー蛍光顕微鏡画像の調査から、PAA−Fが多い層がレンズ表面の両面(前面及び後面)及び周辺端部に存在するが、一方で、水和レンズのバルク材料中にはPAA−Fが観測されないことが明らかである。
【0286】
後面と前面の両方を横断し、後面に垂直な線に沿ってレンズの断面全体で蛍光強度プロファイルを調査する。図3は、レンズ断面を横断する2つの線に沿った2つの代表的な蛍光強度プロファイルを示す(1つは、レンズの厚さが約100μmである点(パネルA)であり、もう1つは、レンズの厚さが約200μmである点(パネルB))。図3における原点は、その線に沿った前面と後面間の中心点である。図3において、架橋コーティングを有するSiHyレンズの最外表面近傍にPAA−Fが多い層が存在し、レンズのバルクにPAA−Fが存在せず、そして、コーティングの厚さが、断面の厚さに関わらずこれら2つの断面で同様であることに注目することができる。
【0287】
PAA−Fが多い層の厚さ(すなわち、外部ヒドロゲル層への注入深さとバルク材料(すなわち、内部層)へのPAA−Fの侵入深さの合計)又は移行層(概略図については図2を参照、移行層115)の厚さは、図3に示される蛍光強度プロファイルから推定することができる。移行層(PAA−Fが多い層)の可能な厚さは、ゼロ強度から、ピーク強度を横切った後、再度ゼロ強度までの距離により推定される。蛍光強度に対する未知の要因(散乱など)からの可能な寄与を考慮すると、層の最小の厚さは、最大ピーク強度の少なくとも10%の蛍光強度が保持される厚さである。そのような予測に基づいて、PAA−Fが多い層の最小の厚さは、少なくとも約5ミクロンであろう。前述の実施例のPAAコーティングを有するSiHyレンズの厚さがより厚いと、使用されるPAA濃度が本実施例において使用されるPAA−F濃度より10倍高いと考えられることに留意されたい。より厚いコーティングを有するレンズは、また、44秒より長い浸漬コーティング時間を用いて調製することができ、44秒はこの実施例において使用されるPAA−Fの浸漬コーティング時間であった。より厚いコーティングを有するレンズは、また、異なる分子量のPAAを使用して調製することができる。
【0288】
実施例23
この実施例は、本発明のSiHy上の架橋コーティング(2つの外部ヒドロゲル層)の含水率を決定する方法を説明する。実施例19のSiHyレンズの架橋コーティングの潜在的含水率を決定する取り組みにおいて、コーティング成分から構成されるポリマーの試料を評価のために調製する。次に、得られたゲルを水和及び試験して、含水率を決定する。
【0289】
実施例19で形成した架橋コーティングの2つのポリマー成分を使用して溶液を調製する:下記組成を有するためのポリ(AAm−co−AA)(90/10)及びPAE:12.55%w/wのPAE、6.45%w/wのポリ(AAm−co−AA)(90/10)及び81%w/wの水。PAE/ポリ(AAm−co−AA)の比は、実施例19のIPC生理食塩水のものと同一であるが、その成分の個々の濃度は、ゲルがオートクレーブ中に形成されるようにするためにより高い。
【0290】
次に、溶液を121℃で約45分間オートクレーブし、その後、試料がゲル化する。次に、水和後の試料(n=3)を試験することにより含水率を決定するためのゲル試料を調製する。ゲル試料をSoftWear生理食塩水に少なくとも約6時間(すなわち、一晩水和する)浸すことにより水和試料を調製する。
【0291】
水和試料をブロット乾燥し、水和状態の質量を物質収支に従って記録する。水和状態の質量を記録した後、約50℃に設定した真空オーブンに試料を全て入れ、<1インチHgの真空下で一晩乾燥させる。
【0292】
一晩乾燥させた後、乾燥した試料を真空オーブンから取り出し、次に、乾燥質量を測定して記録する。含水率は、下記の関係式を用いて計算される:
含水率=(湿潤質量−乾燥質量)/湿潤質量×100%
試料の含水率は、84.6±0.4w/w/%であると決定される。
【0293】
このPAE/ポリ(AAm−co−AA)ヒドロゲルのこの含水率は、下記の理由のため実施例19のSiHyコンタクトレンズの外部ヒドロゲル層(架橋コーティング)を表すと考えられる。第一に、疎水性バルクレンズポリマー(シリコーンヒドロゲル)は、外部表面層に存在しないとある程度推定される。これは、XPSデータから極めて良好な仮定であると考えられる。実施例21のXPSデータによれば、架橋コーティングを有するSiHyレンズの表面のケイ素含有率はゼロか、又は極めて低く、このことは、外部表面層がほとんど全てコーティングポリマー(PAE及びPAAm−PAA)から構成されていることを示す。第二に、ポリアクリル酸(PAA)ベースコーティング(移行層)は、おそらく、表面層の含水率に及ぼす影響は最も小さい。この仮定は確かではないかもしれない。しかし、任意の荷電PAAが外部表面層に存在する場合は、含水率が84.6%を超えてさらに増加するであろう。第三に、実施例19のIPC生理食塩水で使用されるよりもはるかに高い濃度のPAE及びPAAm−PAAが、PAE/ポリ(AAm−co−AA)ヒドロゲルを生成するために必要である。これは、より高い架橋密度のPAE/ポリ(AAm−co−AA)ヒドロゲルをもたらし、人為的に低い含水率結果を与える可能性がある。外部ヒドロゲル層中のPAAの存在及びより低い架橋密度の両方は、架橋中(実施例19において)のポリマー材料のより低い濃度のために、この実施例の試験で測定されたものよりさらに高い含水率を有する表面層(外部ヒドロゲル層)をもたらす可能性があると考えられる。実施例19のSiHyコンタクトレンズの外部コーティング層が、少なくとも80%の水を含み、完全に水和した場合はさらにより高くなる可能性があると推測することができる。
【0294】
実施例24
Abbe屈折計は、コンタクトレンズの屈折率を測定するために一般的に使用される。試験レンズと装置のプリズム間の屈折率の差から、総内部反射率の特有の角度が生成し、これが暗い可視影線を生じる。この影線が現れる角度が試験レンズの屈折率に直接関連する。ほとんどのコンタクトレンズ(実施例19で調製したコーティングなしのSiHyコンタクトレンズを含む)がAbbe屈折計において明確な影線を生成するが、実施例19の架橋コーティング(すなわち、外部ヒドロゲル層)を有するSiHyは明確な影線を生成しない。この現象は、バルクと比較した表面のレンズの屈折率の減少及びバルクから表面への移行が急激ではない事実によると考えられる。さらに、レンズの表面近傍で含水率が増加し始め、レンズの屈折率を局所的に減少させると考えられる。これは、実際、複数の角度で同時に影線が生成し、影線のぼやけた画像を生じるだろう。
【0295】
Abbeデータは、外部表面層が、実施例23に記載の結果と一致するレンズの表面近傍の含水率の増加を特徴とすることを実証している。
【0296】
実施例25
実施例19で調製した架橋コーティング(すなわち、外部ヒドロゲル層)を有するSiHyコンタクトレンズを超純水中で脱塩し、50mLの超純水と共に50mLディスポーザブルビーカーに個別に入れ、そのビーカーをドライアイス及びイソプロピルアルコールを含む浴に入れることにより凍結させる。ビーカーをアルミホイルで包み、真空圧30μbar及びコンデンサー温度−70℃のVirTis Freezemobile 35EL上に置く。24時間後、熱伝導を高めるためにアルミホイルを取り除き、残留水分を除去するためにさらに24〜48時間フラスコを放置する。分析するまでフラスコを密封して空気からの水分の侵入を防ぐ。レンズ試料を半分に切断し、次に、2つの切片をそれぞれ中央から切断して、断面を画像化するためにそれらの端を固定する。次に、試料をAu/Pdで約1分間スパッタコーティングし、Bruker Quantax Microanalysis System(JEOLJSM-800LV SEM)を用いてSEMにより調査する。試料の台を分析者の裁量で約0〜60°に傾け、所望の試料方位を得る。
【0297】
SiHyコンタクトレンズを凍結乾燥した場合、レンズの水和した表面構造がある程度保存又は固定される可能性があると考えられる。図4のパネルAは、実施例19で調製した凍結乾燥SiHyコンタクトレンズの表面のSEM画像の上部図を示す。凍結乾燥SiHyコンタクトレンズが、高い含水率のヒドロゲルであると予測されるスポンジ様表面構造を有することが図4から明らかである。さらに、この結果から、本発明のSiHyコンタクトレンズが高い含水率のヒドロゲルの2つの外部ヒドロゲル層を含むことが確認される。図4のパネルB及びCは、パネルAに示される凍結乾燥SiHyコンタクトレンズの断面の2つの異なる角度での側面図を示す。パネルB及びCは、滑らかな表面を有する厚い内部層、内部層の上部のより明るい色の移行層(PAA層)及び移行層の上部のスポンジ様構造を有する外部ヒドロゲル層を示す。パネルB及びCに示されるデータから、凍結乾燥外部ヒドロゲル層の厚さは、約2μm〜2.5μmであると推定される。
【0298】
実施例26
フルオレセイン標識ポリ(AAm−co−AA)(90/10)(PAAm−PAA−Fと呼ばれる)
PAAm−PAA−Fは、PAA−Fの調製と同様の手順により、5−アミノフルオレセインをPAAm−PAA(90/10)に共有結合させることにより社内で合成する。ポリ(AAm−co−AA)(90/10)部分ナトリウム塩(〜90%固体含有率、ポリ(AAm−co−AA)90/10、Mw200,000)は、Polysciences, Inc.から購入し、そのまま使用する。フルオレセインの標識度は、約0.04モル%である。
【0299】
PAAm−PAA−Fを用いて修飾したIPC生理食塩水
この生理食塩水は、PAAm−PAAをPAAm−PAA−Fに交換した以外は実施例19に記載のものと同じIPC調製手順により調製する。
【0300】
PAAコーティングレンズ
上記実施例19で調製したレンズ調合物からキャスト成形により、米国特許第7,384,590号(図1〜6)及び第7,387,759号(図1〜6)に示される成形用型と類似の再利用可能な成形用型(石英製雌型半部及びガラス製雄型半部)内にレンズを調製する。成形用型内のレンズ調合物をUV照射(13.0mW/cm2)で約24秒照射する。キャスト成形したコンタクトレンズを抽出し、下記の一連の浴に浸漬することによりコーティングする:DI水浴(約56秒);6つのMEK浴(それぞれ、約44、56、56、56、56及び56秒);DI水浴(約56秒);1つの1−PrOH溶媒中のPAAコーティング溶液(約0.36%(重量)、ギ酸でpH約2.0に酸性化)浴(約44秒);1つの水/1−プロパノール50%/50%混合物浴(約56秒);4つのDI水浴をそれぞれ約56秒;1つのPBS浴を約56秒;そして、1つのDI水浴を約56秒。
【0301】
架橋コーティングの適用
上記で調製したPAAベースコーティングをその上に有するレンズを、PAAm−PAA−Fを用いて上記で調製した0.6mLの修飾IPC生理食塩水(生理食塩水の半分は、レンズの挿入前に加える)と共にポリプロピレンレンズパッケージングシェル(シェル当たり1つのレンズ)に入れる。次に、アルミホイルでブリスターを密封し、約121℃で約30分間オートクレーブして、架橋コーティング(PAA−x−親水性ポリマー材料)をその上に有するSiHyコンタクトレンズを生成する。
【0302】
共焦点レーザー蛍光顕微鏡法
1枚の架橋コーティングを有する水和SiHyレンズ(上記で調製)を、2つのガラスカバースリップ間に置き、共焦点レーザー蛍光顕微鏡(モデル# Zeiss LSM 510 Vis)で画像を撮る。レンズのフロントカーブ側からレンズのベースカーブ側を走査する(逆もまた同様)。PAAm−PAA−Fの存在は緑色蛍光により示され、共焦点レーザー蛍光顕微鏡画像を得ることができる。共焦点レーザー蛍光顕微鏡画像の調査から、PAAm−PAA−Fが多い層(すなわち、外部ヒドロゲル層)が、レンズ表面の両面(前面及び後面)及び周辺端部に存在するが、一方で、レンズのバルク材料中にはPAAm−PAA−Fが観測されないことが明らかである。
【0303】
後面と前面の両方を横断し、後面に垂直な線に沿ってレンズの断面全体で蛍光強度プロファイルを調査する。PAAm−PAA−Fが多い層の厚さは、レンズ全体の蛍光強度プロファイルから推定することができる。外部ヒドロゲル層(PAAm−PAA−Fが多い層)の可能な厚さは、ゼロ強度から、ピーク強度を横切った後、再度ゼロ強度までの距離により推定される。蛍光強度に対する未知の要因(散乱など)からの可能な寄与を考慮すると、層の最小の厚さは、最大ピーク強度の少なくとも10%の蛍光強度が保持される厚さである。そのような予測に基づいて、PAAm−PAA−Fが多い層(水和外部ヒドロゲル層)の最小の厚さは、少なくとも約5ミクロンであろう。
【0304】
実施例27
APMAAモノマーを1%の濃度まで加えたレンズ調合物D−2(実施例17)を使用してレンズを作製する。LSレンズは、上記で調製したレンズ調合物から、米国特許第7,384,590号(図1〜6)及び第7,387,759号(図1〜6)に示される成形用型と類似の再利用可能な成形用型でキャスト成形により調製する。成形用型は、ガラスからなる雌型半部及び石英からなる雄型半部を含む。UV照射源は、380nmカットオフフィルターを備えた強度約4.6mW/cm2のHamamatsuランプである。成形用型内のレンズ調合物にUV照射を約30秒照射する。
【0305】
キャスト成形したレンズをメチルエチルケトン(MEK)で抽出し、水ですすぎ、レンズをPAAのプロパノール溶液(0.0044%(重量)、ギ酸でpH約2.5に酸性化)に浸漬することによりポリアクリル酸(PAA)でコーティングして、水で水和する。
【0306】
IPC生理食塩水は、実施例9に記載の組成に従って、約60℃で8時間の前反応条件により調製する。レンズを、0.6mLのIPC生理食塩水(生理食塩水の半分は、レンズの挿入前に加える)と共にポリプロピレンレンズパッケージングシェルに入れる。次に、アルミホイルでブリスターを密封し、121℃で30分間オートクレーブする。
【0307】
レンズ表面の評価は、全ての試験レンズが残屑の付着を有さないことを示す。暗視野顕微鏡下で観測した際、指の間でレンズを摩擦した後にクラッキングラインは見られない。レンズ表面の湿潤性(WBUT)は、10秒超であり、潤滑性は「1」とランク付けされ、接触角は約20°である。
【0308】
実施例28
実施例19から調製したキャスト成形したSiHyコンタクトレンズ(任意のコーティングなし)を使用する。全ての残留モノマーが除去されるようにするために、全てのレンズをMEK中で一晩抽出する。第一のレンズ群(水和架橋コーティングをその上に有するレンズ)をPAAコーティング溶液(1−プロパノール中の0.36%(重量)のPAA、ギ酸でpH1.7〜2.3に調整)中に一晩浸し、第二のレンズ群(対照)を1−プロパノール中に同じ期間浸す。両レンズ群を、実施例19で調製したIPC生理食塩水中にパッケージングし、オートクレーブする。重量分析技術を用いてオートクレーブ後のレンズを試験し(5つの群で)、乾燥及び湿潤コンタクトレンズの重量を決定する(第一のコンタクトレンズ群の場合、N=14;第二のコンタクトレンズ群の場合、N=18)。結果を表8に示す。
【0309】
【表9】
【0310】
対照レンズ(コーティングなし)に対して、コンタクトレンズ中に水和架橋コーティングが存在することによって、第一と第二のコンタクトレンズ群間の湿潤重量で統計学的に有意な違い(statically significant difference)(7mg)がある。しかし、第一と第二のコンタクトレンズ群間の乾燥重量の違いは約0.3mgであり、統計学的に有意ではない。コーティングしたレンズのレンズの含水率は、下記の計算に従って〜96%であると推定することができる。
【数26】

第一と第二のコンタクトレンズ群間の乾燥及び湿潤重量の違いが非常に小さく、そして、標準偏差よりもさらに小さいために、コンタクトレンズ上の架橋コーティングについて本明細書で推定された含水率が正確でない可能性があることを理解されたい。
【0311】
実施例29
この実施例では、傾斜平板法(「Derby摩擦試験」)に従って、SiHyコンタクトレンズの潤滑性を定量化する方法を説明する。傾斜平板法は、図5に示されるように配置する単純な試験である。傾斜平板法の配置は、リン酸緩衝生理食塩水(PBS、pH〜7.3)502で満たしたプラスチックリザーバー又はタンク501、ホウケイ酸ガラスプレート503及び5mm〜20mm高の調節可能な高さを有するシム506から構成される。ホウケイ酸ガラスプレート503及びシム506の両方をプラスチックリザーバー又はタンク501内のリン酸緩衝生理食塩水502中に浸す。試験では、コンタクトレンズ504をホウケイ酸ガラスプレート上に置き、次に、その上にステンレス製のフェルール505を置く(生理学的に適切な圧力を与えるため)。臨界摩擦係数=F/F=tanθ(式中、θは臨界角であり、Fは垂直抗力であり、Fは接線力である)。レンズが押された後滑り続けるが、止まるか、又は端に到達する前に10秒超かかる最高角度を、「臨界角θ」と定義する。臨界摩擦係数(CCOF)は、臨界角θのタンジェントである。移動しないレンズはCCOFを超えず、移動距離間で止まらないレンズはCCOFを超える。CCOFを超える又は超えない角度は、分析から除外する。Derby摩擦試験は、動摩擦係数を測定する直接的な方法を提供することができる。
【0312】
傾斜平板法による試験では、任意の残留パッケージング溶液を除去するために、試験前に全てのレンズをPBS溶液に少なくとも一晩(>6時間)保存する。ガラスプレート(6”×4”ホウケイ酸ガラス)を石鹸水(1%Micro-90)で洗浄し、拭く(AlphaWipe TX1009)。各プレートをDI水で約2分間十分にすすぐ。全ての石鹸水が確実に除去されるように、指で摩擦することによりプレート断面の抵抗を調べる。水をペーパータオル(KimTech Kimwipe #34705)で拭き取り、ガラス上に異物が残っていないか光の下で検査する。ガラスプレートをプラスチックリザーバー又はタンク内の様々な高さのシム上に置き、この面の高さをマイクロメーターで測定して、記録する。リザーバーをリン酸緩衝生理食塩水(PBS)で満たし、レンズが完全に浸るようにする(28mm深さ)。
【0313】
各レンズを「開始線」上に置き、0.79gのフェルール(1/4”ステンレス製、生理学的に適切な圧力を与えるため)をレンズ表面に置く。レンズがプレートを滑り落ちるようにし、レンズが96mmを移動するのに要した時間を記録する。
【0314】
再試験の前に重しを取り除きレンズを開始位置まで移動させる。この「前負荷」効果は最良の再現性を得るために最小にする必要がある。理想的なCCOFを得るためにレンズを複数の角度で試験することができる。
【0315】
16個の市販のコンタクトレンズ及び実施例19で調製したシリコーンヒドロゲルコンタクトレンズをCCOFについて試験し、結果を表9に報告する。この結果から、本発明のSiHyコンタクトレンズ(架橋コーティングをその上に有するように実施例19で調製)が、市販品及び試験したあらゆるクラスのシリコーンヒドロゲルレンズの中で最も低いCCOFを有し、そのため最高の潤滑性を有することが示される。
【0316】
【表10】
【0317】
実施例30
この実施例は、正電荷粒子付着試験に従って、SiHyコンタクトレンズの負荷電表面を特性評価する方法を説明する。
【0318】
レンズ表面の表面電荷は、荷電粒子又はビーズとの相互作用を介して間接的に検出することができる。負荷電表面は正電荷粒子を引き付けるだろう。負電荷のない又は負電荷を実質的に含有しない表面は正電荷粒子を引き付けない、又はわずかな正電荷粒子を引き付けるだろう。
【0319】
非コーティングSiHyコンタクトレンズ(すなわち、実施例19に記載のようにキャスト成形及びMEKで抽出)、PAAコーティングSiHyコンタクトレンズ(実施例19で調製したような)及び架橋コーティングをその上に有するSiHyコンタクトレンズ(実施例14及び19で調製したような)を下記のように試験する。PAAコーティングコンタクトレンズのPAAコーティングは、約62.5%(重量)の表面濃度のカルボン酸基を有する(MCOOH/MAA)(式中、MCOOHはカルボン酸基の質量であり、MAAはアクリル酸の質量である)。実施例14のコンタクトレンズの架橋コーティングは、カルボン酸基を理論上含有しないが、実施例19のコンタクトレンズの架橋コーティングは、低い表面濃度のカルボン酸基
【数27】

を含有することができる。レンズを正電荷粒子を有する分散物に浸漬し、適度にすすいだ後、レンズ上に付着した粒子の数を視覚化し、推定又はカウントする。
【0320】
DOWEX(商標)1×4 20〜50メッシュ樹脂は、Sigma-Aldrichから購入し、そのまま使用する。DOWEX(商標)1×4 20〜50メッシュ樹脂は、球状のI型強塩基アニオン樹脂であり、N(CHCl官能基及び4%ジビニルベンゼンを含有するスチレン/ジビニルベンゼンコポリマーである。5%の1×4 20〜50メッシュ樹脂をPBS中に分散させ、撹拌又はボルテックスにより約1000rpmで10秒間十分に混合する。レンズをこの分散物中に浸漬させ、1000〜1100rpmで1分間ボルテックスし、その後、DI水でリンスして1分間ボルテックスする。次に、レンズをガラスペトリディッシュ内の水に入れ、Nikon光学顕微鏡で下部照明を使用してレンズの画像を撮る。図6に示すように、PAAコーティングレンズのほとんど全ての表面が付着した正電荷粒子で覆われているが(図6a)、実施例19で調製した架橋コーティングを有するレンズ上では合計約50個の正電荷粒子が付着し(図6B)、そして、実施例14で調製した架橋コーティングを有するレンズ上では正電荷粒子は付着していない(図6C)。いくつかの弱く付着した粒子はレンズ表面から落ちて、レンズの周囲の水中に見出すことができる。
【0321】
より大きなサイズを有する正電荷粒子(すなわち、DOWEX(商標)monosphereイオン交換樹脂、架橋ポリスチレンビーズ、塩化物形態、〜590ミクロンサイズ、Sigma-Aldrich社)を試験に使用した場合、粒子上に付着する粒子の数が減少しうることを理解されたい。これらのDOWEX monosphere樹脂の約30%をPBS中に分散させる。レンズをこの分散物中に約1分間浸漬し、その後、DI水でリンスする。次に、レンズをガラスペトリディッシュ内の水に入れ、Nikon光学顕微鏡で下部照明を使用してレンズの画像を撮る。多くの粒子(約200個の粒子)がPAAコーティングレンズ上に付着し、架橋コーティングを有するレンズ上には粒子が付着しないことが見出される。いくつかの市販されているコンタクトレンズもまた試験する。下記のレンズ上には粒子が観測されない:Acuvue(登録商標)TruEye(商標)、Acuvue(登録商標)Advance(登録商標)、Acuvue(登録商標)Oasys(登録商標)、Avaira(商標)、Biofinity(登録商標)、Air Optix(登録商標)及びFocus(登録商標)Night&Day(登録商標)。下記の4種類のレンズ上には粒子が観測される(粒子数の増加の順番):PureVision(登録商標)、1 Day Acuvue(登録商標)Moist(登録商標)、Proclear 1 day、Acuvue(登録商標)(Etafilcon A)レンズ。Acuvue(登録商標)(Etafilcon A)レンズのほとんど全ての表面が、付着した正電荷粒子で覆われている。
【0322】
負電荷樹脂(Amberlite CG50)はSigmaから購入し、そのまま使用する。このAmberlite CG50ビーズの5%をPBS中に分散させ、約1000rpmで10秒間ボルテックスする。PAAコーティングレンズをこの分散物中に浸漬させ、1000〜1100rpmで1分間ボルテックスし、その後、DI水でリンスして1分間ボルテックスする。次に、レンズをガラスペトリディッシュ内の水に入れ、Nikon光学顕微鏡で下部照明を使用してレンズの画像を撮る。PAAコーティングレンズ上にAmberlite粒子(負荷電)は見出されない。
【0323】
ポリエチレンイミン(PEI、正電荷電解質)でコーティングした負荷電ビーズ(Amberlite CG50)をこの実験で使用する。PEIコーティング手順は下記のように実施する。PEI(Lupasol SK、24%水溶液、Mw〜2000000)はBASFから購入し、そのまま使用する。1%Amberlite粒子及び5%PEIの水性分散物を調製する。pHを7に調整し、溶液を十分に混合する(例えば、30分間撹拌する)。その後、分散物を大量の水に2〜3回懸濁し、2〜3回濾過して粒子を集める(PEIコーティングAmberlite)。PEIコーティングAmberlite CG50粒子の5%をPBS中に分散させ、約1000rpmで10秒間ボルテックスする。レンズをこの分散物中に浸漬させ、1000〜1100rpmで1分間ボルテックスし、その後、DI水でリンスして1分間ボルテックスする。次に、レンズをガラスペトリディッシュ内の水に入れ、Nikon光学顕微鏡で下部照明を使用してレンズの画像を撮る。大量のPEIコーティングAmberlite粒子(正電荷粒子、PEIの存在のため)がPAAコーティングレンズ(実施例19)上に付着していることが観測される。しかし、実質的には、PEIコーティングAmberlite粒子は、非コーティングSiHyコンタクトレンズ(実施例19)、架橋コーティングを有するSiHyコンタクトレンズ(実施例19)又はPAExPAAコーティングレンズ(実施例4)上に付着していない。
【0324】
実施例31
試料の調製:
水和状態及び乾燥状態のSiHyコンタクトレンズ(実施例19で調製)でAFM研究を実施した。レンズをそのブリスターパック(密封及びオートクレーブ)から取り出し、断面を切断する(例えば、カミソリの刃を使用)。図7に示すように、レンズの断面片を金属クランプに垂直に載せる。レンズの小さな片をホルダーの上部から突出させ、AFMチップ(図7のレンズ断面上)でレンズを走査する。
【0325】
AFM実験:
2つの別々のAFM装置を使用して、レンズ断面の特性決定を行う。両方の場合において(乾燥試料以外)、完全に水和した状態のヒドロゲル試料を維持するために、AFM走査をリン酸緩衝液(NaClを含有又は非含有であるが、生理学的生理食塩水と実質的に同一の浸透圧を有するPBS)下で行う。
【0326】
第一のAFM装置は、Nanoscope IV制御器を備えたVeeco BioScope AFMである。0.58N/mのバネ定数及び20〜60nmの湾曲の公称(nominal)チップ半径を有する三角形のシリコンカンチレバーを使用してデータを収集する。走査は、連続接触(フォース−ボリューム)モードにより、30ミクロン/秒のプローブ速度及び0.19Hzのフォース−ボリューム走査周波数で行う。トポグラフィックデータ及びフォース−ボリュームデータを同時に収集する。各フォースカーブは約30のデータポイントから構成されている。AFM走査の間、レンズを完全にPBS中に浸漬する。フォース−ボリューム画像を得るために十分に高い解像度を達成するために、通常、最大20ミクロンの走査サイズが使用される。画像当たり約3時間かけて128×128ピクセルフォースプロットを収集する。
【0327】
完全に水和した状態の架橋コーティングを有するSiHyコンタクトレンズ(実施例19)の断面のAFM画像をフォース−ボリューム法により得て、これを図8に示す。画像において、より暗い領域420はコーティングを示し、より明るい領域410はレンズのバルク材料を示す。SiHyコンタクトレンズ(実施例19)の架橋コーティング(すなわち、前面及び後面外部層)の平均厚さは、4つのレンズの7つの画像から得られるように、約5.9μm(標準偏差0.8μm)であると決定される。
【0328】
AFM技術は、レンズ断面の特定の位置の表面係数(表面柔軟性)の決定を可能にする。図9は、完全に水和した状態の架橋コーティングを有するSiHyコンタクトレンズ(実施例19で調製)の断面表面係数プロファイルを示す。物質の表面係数がカンチレバーのたわみと比例関係にあるため、コンタクトレンズの断面表面係数プロファイルは、図8に示される断面を横断する2つの線に沿って断面の側面(前面又は後面)からの距離の関数としてのカンチレバーのたわみ値(レンズ断面の特定の位置の物質の表面係数についての測定値として)をプロットすることにより近似的に得ることができる。図9に示すように、架橋コーティング(実施例19のコンタクトレンズの前面及び後面外部層)は、バルク(内部層)シリコーンヒドロゲルレンズ材料より柔らかい。2つの線に沿って移動すると、表面係数は、最初、0〜約5.9ミクロンの区域にわたって約52nmの平均カンチレバーたわみ(すなわち、平均表面係数)でほとんど一定のままであるが、その後、レンズのさらに内側の位置で最大に達するまで徐々に増加していき、そして、約7ミクロン超の区域にわたって約91の平均カンチレバーたわみ(すなわち、平均表面係数)でほぼ一定にとどまる(プラトー)。より柔らかい架橋コーティングからより堅いバルクSiHy材料への移行は数ミクロンの範囲にわたり徐々に生じ、これが、モルホロジー又は組成(含水率)の勾配がコーティングの表面とレンズのバルク間に存在する可能性があることを示す。5.9ミクロン〜約7ミクロンの区域、すなわち、外部ヒドロゲル層とシリコーンヒドロゲル材料の内部層間の境界付近の領域の表面係数は平均表面係数の計算に使用しない。SiHyコンタクトレンズ(実施例19)の前面及び後面外部ヒドロゲル層(架橋コーティング)が、約43%低下した表面係数
【数28】

(式中、
【数29】

は、後面又は前面ヒドロゲル層の平均表面係数であり、そして
【数30】

は、内部層の平均表面係数である)
を有すると計算することができる。
【0329】
SiHyコンタクトレンズ(実施例19で調製)を第二のAFM装置で研究する。走査は、完全に水和した(同様の浸透圧を達成するためにNaClを含有しないが、グリセロールを含有するPBS)又は乾燥状態のいずれかのレンズを使用し、Bruker Icon AFMを用いて定量的ナノメカニカル測定(PeakForce QNM)モードで行う。レンズ断面を上述したように金属クランプに置く。試験条件は、1.3N/mのバネ定数、33.3nmのチップ半径、31nm/Vの感度、0.4Hzの走査周波数及び512×512の走査解像度を含む。
【0330】
完全に水和した状態及び乾燥状態のSiHyコンタクトレンズ(実施例19)の断面のAFM画像は、PeakForce QNM法に従って得られる。得られた画像を分析することにより、完全に水和した状態の架橋コーティングの厚さは約4.4ミクロンであると決定され、一方で、乾燥状態の架橋コーティングの厚さは、真空乾燥試料の場合、約1.2ミクロンであり、オーブン乾燥試料の場合、約1.6ミクロンであると決定される。SiHyコンタクトレンズ(実施例19で調製)の架橋コーティングの水膨張率Lwet/LDry×100%(式中、LWetは完全に水和した状態のSiHyコンタクトレンズの外部ヒドロゲル層の平均厚さであり、LDryは、乾燥状態のSiHyコンタクトレンズの外部ヒドロゲル層の平均厚さである)は、約277%(オーブン乾燥試料)又は約369%(真空乾燥試料)であると計算される。
【0331】
実施例32
レンズ調合物の調製
調合物Iは、下記組成を有するように成分を1−プロパノールに溶解させることにより調製する:実施例2で調製した33%(重量)のCE−PDMSマクロマー、17%(重量)のN−[トリス(トリメチルシロキシ)−シリルプロピル]アクリルアミド(TRIS−Am)、24%(重量)のN,N−ジメチルアクリルアミド(DMA)、0.5%(重量)のN−(カルボニル−メトキシポリエチレングリコール−2000)−1,2−ジステアロイル−sn−グリセロ−3−ホスホエタノールアミン、ナトリウム塩)(L−PEG)、1.0%(重量)のDarocur 1173(DC1173)、0.1%(重量)のvisitint(トリス(トリメチルシロキシ)シリルプロピルメタクリレート(TRIS)中の5%銅フタロシアニン青色色素分散物)及び24.5%(重量)の1−プロパノール。
【0332】
調合物IIは、下記組成を有するように成分を1−プロパノールに溶解させることにより調製する:実施例2で調製した約32%(重量)のCE−PDMSマクロマー、約21%(重量)のTRIS−Am、約23%(重量)のDMA、約0.6%(重量)のL−PEG、約1%(重量)のDC1173、約0.1%(重量)のvisitint(TRIS中の5%銅フタロシアニン青色色素分散物)、約0.8%(重量)のDMPC、約200ppmのH-tempo及び約22%(重量)の1−プロパノール。
【0333】
レンズの調製
レンズは、上記で調製したレンズ調合物から、米国特許第7,384,590号(図1〜6)及び第7,387,759号(図1〜6)に示される成形用型と類似の再利用可能な成形用型(石英製雌型半部及びガラス製雄型半部)でキャスト成形により調製する。UV照射源は、WG335+TM297カットオフフィルターを備えた強度約4mW/cm2のHamamatsuランプである。成形用型内のレンズ調合物にUV照射を約25秒照射する。キャスト成形したレンズをメチルエチルケトン(MEK)(又はプロパノール又はイソプロパノール)で抽出する。
【0334】
SiHyコンタクトレンズ上へのPAAプライムコーティングの適用
ポリアクリル酸コーティング溶液(PAA−1)は、約0.36%(重量)の濃度を有するようにある量のPAA(M.W.:450kDa、Lubrizol社)を所定量の1−プロパノールに溶解させて調製し、pHをギ酸で約2.0に調整する。
【0335】
別のPAAコーティング溶液(PAA−2)は、約0.39%(重量)の濃度を有するようにある量のPAA(M.W.:450kDa、Lubrizol社)を所定量の有機系溶媒(50/50 1−プロパノール/HO)に溶解させて調製し、pHをギ酸で約2.0に調整する。
【0336】
上記で得たSiHyコンタクトレンズを表10及び11に示す浸漬プロセスの1つの供する。
【0337】
【表11】
【0338】
【表12】
【0339】
架橋親水性コーティングの適用
ポリ(アクリルアミド−co−アクリル酸)部分ナトリウム塩、ポリ(AAm−co−AA)(90/10)(〜90%固体含有率、ポリ(AAm−co−AA)90/10、Mw200,000)は、Polysciences, Inc.から購入し、そのまま使用する。PAE(Kymene、NMRアッセイによるとアゼチジニウム含有率0.46)は、Ashland社から水溶液として購入し、そのまま使用する。インパッケージ架橋(IPC)生理食塩水は、約0.07%w/wのポリ(AAm−co−AA)(90/10)及び約0.15%のPAE(約8.8ミリモルの初期アゼチジニウムミリモル当量)を、リン酸緩衝生理食塩水(PBS)(約0.044w/w%NaHPO・HO、約0.388w/w/%NaHPO・2HO、約0.79w/w%NaCl)に溶解させ、pHを7.2〜7.4に調整することにより調製する。次に、IPC生理食塩水を約70℃で約4時間加熱前処理する(加熱前処理)。この加熱前処理の間、ポリ(AAm−co−AA)とPAEを互いに部分架橋して(すなわち、PAEの全てのアゼチジニウム基が消費されない)、アゼチジニウム基を含有する水溶性及び熱架橋性親水性ポリマー材料を、IPC生理食塩水中の分岐鎖ポリマー網目構造内に形成する。加熱前処理後、IPC生理食塩水を0.22ミクロンポリエーテルスルホン[PES]メンブレンフィルターを用いて濾過し、室温に再び冷ます。次に、バイオバーデン増加を防ぐために10ppmの過酸化水素を最終IPC生理食塩水に加え、IPC生理食塩水を0.22ミクロンポリエーテルスルホン[PES]メンブレンフィルターを用いて濾過する。
【0340】
上記で調製したPAAプライムコーティングをその上に有するレンズを、0.6mLのIPC生理食塩水(生理食塩水の半分は、レンズの挿入前に加える)と共にポリプロピレンレンズパッケージングシェル(シェル当たり1つのレンズ)に入れる。次に、アルミホイルでブリスターを密封し、約121℃で約30分間オートクレーブして、架橋親水性コーティングをその上に有するSiHyコンタクトレンズを生成する。
【0341】
SiHyレンズの特性評価
得られた架橋親水性コーティングをその上に有し、約0.95ミクロンの中心厚さを有するSiHyコンタクトレンズは、約142〜約150barrerの酸素透過度(Dk又は推定の固有のDk)、約0.72〜約0.79MPaのバルク表面弾性率、約30%〜約33%(重量)の含水率、約6の相対イオン透過度(Alsaconレンズに対して)及び約34〜約47degreeの接触角を有する。
【0342】
コンタクトレンズのナノテクスチャー表面の特性決定
透過微分干渉コントラスト(TDIC)法
コンタクトレンズをスライドガラスに載せ、レンズをスライドとガラスカバースリップの間で圧縮することにより平坦にする。コンタクトレンズの表面を設置し、透過微分干渉コントラスト光学系のNikon ME600顕微鏡を用い、40×対物レンズを使用してレンズを通して集束させることにより試験する。次に、得られたTDIC画像を評価して、リンクル状の(winkled)表面パターン(例えば、ランダム及び/又は規則正しいミミズ上パターンなど)の存在を決定する。
【0343】
反射微分干渉コントラスト(RDIC)法
レンズをスライドガラスに載せ、約90degree毎に4つの正目を作製するように平坦にする。圧縮空気を用いて過剰の生理食塩水を表面から吹き飛ばす。反射微分干渉コントラスト光学系のNikon Optiphot-2を用い、コンタクトレンズ表面にリンクル状の表面パターンが存在する場合、10×、20×及び50×対物レンズを使用してレンズ表面を試験する。各スライドの代表的な画像を50×対物レンズを使用して取得する。次に、コンタクトレンズをひっくり返し、過剰の生理食塩水を除去して、コンタクトレンズの別の側面を同様に検査する。次に、得られたRDIC画像を評価して、リンクル状の表面パターン(例えば、ランダム及び/又は規則正しいミミズ上パターンなど)の存在を決定する。
【0344】
暗視野光学顕微鏡法(DFLM)
DFLMは、一般的に、暗視野照射に基づいており、観測する試料のコントラストを増強する方法である。この技術は、垂直に透過された光に相対的な角度で試料を照射するために、観測者の視野の外側又は観測者の視野から遮られた光源から構成されている。光源からの非散乱光が対物レンズにより収集されないので、それは画像の一部ではなく、画像のバックグラウンドが暗く見える。光源がある角度で試料を照射した場合、試料画像において観測される光は、観測者に向かって試料により散乱されるものであり、次にコントラストが試料からのこの散乱光と画像の暗いバックグラウンドの間で生成される。このコントラスト作用は、特に、モヤなどの散乱現象を観測するために有用な暗照射をもたらす。
【0345】
DFLMは、下記のようにコンタクトレンズのモヤを評価するために使用される。暗視野設定は散乱光を含むため、暗視野データはモヤの最悪の評価を提供することができると考えられる。8ビットグレースケールのデジタル画像において、各画像ピクセルには0〜255の範囲のグレースケール強度(GSI)値が割り当てられる。ゼロは完全に黒であるピクセルを表し、255は完全に白であるピクセルを表す。画像において捕捉される散乱光の増加は、より高いGSI値を有するピクセルを生成するだろう。次に、このGSI値を、暗視野画像において観測される散乱光の量を定量するための作用として使用することができる。モヤは、関心領域(AOI)(例えば、レンズ全体又はレンズのレンチキュラー部(lenticular zone)もしくは光学部)における全てのピクセルのGSI値を平均することにより表される。実験の設定は、顕微鏡又は等価な光学系、付属デジタルカメラならびにリングライト及び可変強度光源を備える暗視野スタンドから構成されている。光学系は、観測されるコンタクトレンズ全体が視野(典型的には、〜15mm×20mmの視野)の範囲に入るように設計/配置される。照明は、関連試料において所望の変化を観測するために適切なレベルに設定される。光強度は、当業者に公知のような密度/光散乱標準を用いて、試料の各設定について同じレベルに調整/校正される。例えば、標準は、2つの重なったプラスチックカバーガラス(同質であり、わずかに又は適度に曇った)からなる。そのような標準は、中間グレースケールレベルを有する2つの領域及び飽和した白(縁部)を含む、3つの異なる平均GSIを有する領域から構成される。黒の領域は、空の暗視野を表す。黒及び飽和した白の領域は、カメラのゲイン及びオフセット(コントラスト及び輝度)設定を検証するために使用することができる。中間グレーレベルは、カメラの線形応答を検証するための3つのポイントを提供することができる。光強度は、空の暗視野の平均GSIが0に到達し、標準のデジタル画像における規定AOIの平均GSIが±5GSI単位内で毎回同じであるように調整される。光強度を校正した後、コンタクトレンズを、DFLMスタンド上に置いた石英ペトリディッシュ又は同様の透明度のディッシュ内の0.2μmで濾過したリン酸緩衝生理食塩水中に浸漬する。次に、レンズの8ビットグレースケールのデジタル画像を校正した照明を用いて目視により取得し、レンズを含有する画像の一部の範囲内の規定AOIの平均GSIを決定する。これは、コンタクトレンズの試料セットごとに繰り返す。光強度の校正は、一貫性を保つために試験を通して定期的に再評価する。DFLM試験下のモヤのレベルは、DFLMモヤGSI/255×100%を指す。
【0346】
浸漬プロセス20−0及び80−0のいずれかに従って得られたPAAプライムコーティングのSiHyコンタクトレンズは、約73%の平均DFLMモヤを有すると決定され、上述したようなRDIC又はTDICのいずれかの方法に従って、水和状態のコンタクトレンズを試験することにより目で観測することができるリンクル表面パターン(ランダムなミミズ上パターン)を示す。しかし、リンクル状の表面パターンは、コンタクトレンズの光透過率に対して実際には有害作用を有さない。
【0347】
浸漬プロセス20−1〜20−4のいずれかに従って得られたPAAプライムコーティングのSiHyコンタクトレンズは、約26%の低い平均DFLMモヤを有すると決定され(おそらく、visitint色素粒子の存在のため)、上述したようなRDIC又はTDICのいずれかで試験した際に顕著なリンクル表面パターン(ランダムなミミズ上パターン)を示さない。
【0348】
浸漬プロセス20−5のいずれかに従って得られたPAAプライムコーティングの高パーセントのSiHyコンタクトレンズは、約45%の適度な平均DFLMモヤを有すると決定され、上述したようなRDIC又はTDICのいずれかで試験した際にわずかに顕著なリンクル表面パターンを示す。しかし、リンクル状の表面パターンは、コンタクトレンズの光透過率に対して実際には有害作用を有さない。
【0349】
浸漬プロセス80−1、80−2、80−3、80−5及び80−6のいずれかに従って得られたPAAプライムコーティングのSiHyコンタクトレンズは、上述したようなRDIC又はTDICのいずれかで試験した際に顕著なリンクル表面パターンを示さない。しかし、浸漬プロセス80−0及び80−4のいずれかに従って得られたPAAプライムコーティングのSiHyコンタクトレンズは、上述したようなRDIC又はTDICのいずれかで試験した際に顕著なリンクル表面パターンを示す。しかし、リンクル状の表面パターンは、コンタクトレンズの光透過率に対して実際には有害作用を有さない。
【0350】
実施例33
UV吸収両親媒性分岐鎖コポリマーの合成
1Lジャケット付き反応器に、500mL添加漏斗、オーバーヘッド撹拌器、窒素/真空インレットアダブター付き還流冷却器、温度計及びサンプリングアダプターを備え付ける。実施例17のAで調製した89.95gの80%部分エチレン性官能化ポリシロキサンを反応器に投入し、次に、1mbar未満の真空下、室温で約30分間脱気する。1.03gのHEMA、50.73gのDMA、2.76gのNorblocメタクリレート、52.07gのTRIS及び526.05gの酢酸エチルを混合することにより調製したモノマー溶液を500mL添加漏斗に投入し、その後、100mbarの真空下、室温で10分間脱気して、次に、窒素ガスを再充填する。モノマー溶液を同じ条件下、さらに2サイクル脱気する。次に、モノマー溶液を反応器に投入する。反応混合物を適度に撹拌しながら67℃に加熱する。加熱しながら、2.96gのメルカプトエタノール(連鎖移動剤、CTA)及び0.72gのジメチル2,2’−アゾビス(2−プロピオン酸メチル)(V−601−開始剤)及び76.90gの酢酸エチルからなる溶液を添加漏斗に投入し、その後、モノマー溶液と同じ脱気プロセスを行う。反応器の温度が67℃に達したとき、開始剤/CTA溶液も反応器に加える。反応を67℃で8時間実施する。共重合が完了した後、反応器の温度を室温に冷ます。
【0351】
UV吸収両親媒性分岐鎖プレポリマーの合成
上記で調製したコポリマー溶液を、0.50gのDBTDLの存在下、8.44gのIEM(又は所望のモル当量の2−イソシアナトエチルメタクリレート)を加えることによりエチレン性官能化して、両親媒性分岐鎖プレポリマーを形成する。混合物を、密封条件下、室温で24時間撹拌する。次に、調製したプレポリマーを100ppmのヒドロキシ−テトラメチレンピペロニルオキシで安定化させた後、溶液を200g(〜50%)に濃縮し、1μm孔径の濾紙で濾過する。蒸発と希釈のサイクルを繰り返して反応溶媒を1−プロパノールに交換した後、調合物に使用するために溶液を用意する。固体含有率は、80℃の真空オーブンで溶媒を除去することにより測定する。
【0352】
レンズ調合物の調製
レンズ調合物は下記組成を有するように調製する:上記で調製した71%(重量)のプレポリマー;4%(重量)のDMA;1%(重量)のTPO;1%(重量)のDMPC;1%(重量)のBrij 52(Sigma-Aldrich社)及び22%(重量)の1−PrOH。
【0353】
レンズの調製
レンズは、米国特許第7,384,590号(図1〜6)及び第7,387,759号(図1〜6)に示される成形用型と類似の再利用可能な成形用型を使用し、空間的な制限下のUV照射を用いて上記で調製したレンズ調合物のキャスト成形により作製する。成形用型は、ガラスからなる雌型半部及び石英からなる雄型半部を含む。UV照射源は、380nmカットオフフィルターを備えた強度約4.6mW/cm2のHamamatsuランプである。成形用型内のレンズ調合物にUV照射を約30秒照射する。
【0354】
キャスト成形したレンズをメチルエチルケトン(MEK)で抽出し、水ですすぎ、レンズをPAAのプロパノール溶液(0.004%(重量)、ギ酸でpH約2.0に酸性化)に浸漬することによりポリアクリル酸(PAA)でコーティングして、水で水和する。
【0355】
IPC生理食塩水は、約0.07%PAAm−PAA及び約8.8ミリモル当量/リッターの初期アゼチジニウム含有率を提供するために十分なPAE(〜0.15%PAE)を含有する組成物から、約60℃で6時間の前反応条件下で調製する。次に、バイオバーデン増加を防ぐために5ppmの過酸化水素をIPC生理食塩水に加え、0.22ミクロンポリエーテルスルホン[PES]メンブレンフィルターを用いてIPC生理食塩水を濾過する。レンズを、0.6mLのIPC生理食塩水(生理食塩水の半分は、レンズの挿入前に加える)と共にポリプロピレンレンズパッケージングシェルに入れる。次に、アルミホイルでブリスターを密封し、121℃で30分間オートクレーブする。
【0356】
レンズの特性決定
得られたレンズは下記の特性を有する:E’〜0.82MPa;DK〜159.4(参照レンズとしてlotrafilcon Bを使用する、80μmの平均中心厚さ及び固有のDk110);IP〜2.3;水%〜26.9;及びUVA/UVB%T〜4.6/0.1。暗視野顕微鏡下で観測した際、試験レンズを摩擦した後にクラッキングラインは見られない。レンズは、指摩擦試験において対照レンズと同等で非常に滑らかである。
図1
図2
図3A
図3B
図4A
図4B
図4C
図5
図6A
図6B
図6C
図7
図8
図9