(58)【調査した分野】(Int.Cl.,DB名)
前記合焦点算出手段は、前記二次元撮像素子の各画素列のうち、少なくとも2つの画素列で読み出された画像データのコントラスト値の差分に基づいて、前記試料の合焦点情報を算出することを特徴とする請求項1又は2記載の画像取得装置。
前記合焦点算出手段は、前記二次元撮像素子の各画素列で読み出された画像データのコントラスト値の分布に基づいて、前記試料の合焦点情報を算出することを特徴とする請求項1又は2記載の画像取得装置。
【発明を実施するための形態】
【0014】
以下、図面を参照しながら、本発明に係る画像取得装置及び画像取得装置のフォーカス方法の好適な実施形態について詳細に説明する。
【0015】
図1は、本発明に係る画像取得装置を構成するマクロ画像取得装置の一実施形態を示す図である。また、
図2は、本発明に係る画像取得装置を構成するミクロ画像取得装置の一実施形態を示す図である。
図1及び
図2に示すように、画像取得装置Mは、試料Sのマクロ画像を取得するマクロ画像取得装置M1と、試料Sのミクロ画像を取得するミクロ画像取得装置M2とによって構成されている。画像取得装置Mは、マクロ画像取得装置M1で取得したマクロ画像に対して例えばライン状の複数の分割領域40(
図6参照)を設定し、各分割領域40をミクロ画像取得装置M2で高倍率に取得して合成することにより、デジタル画像であるバーチャルスライド画像を生成する装置である。
【0016】
マクロ画像取得装置M1は、
図1に示すように、試料Sが載置されるステージ1を備えている。ステージ1は、例えばステッピングモータ(パルスモータ)或いはピエゾアクチュエータなどのモータやアクチュエータによって水平方向に駆動するXYステージである。画像取得装置Mで観察する試料Sは、例えば細胞などの生体サンプルであり、スライドガラスに密封された状態でステージ1に載置される。このステージ1をXY面内で駆動させることにより、試料Sに対する撮像位置を移動させることができる。
【0017】
ステージ1は、マクロ画像取得装置M1とミクロ画像取得装置M2との間を往復可能となっており、両装置間で試料Sを搬送する機能を有している。なお、マクロ画像取得においては、試料Sの全体画像を1度の撮像で取得してもよく、試料Sを複数の領域に分割して撮像してもよい。また、ステージ1は、マクロ画像取得装置M1及びミクロ画像取得装置M2の双方にそれぞれ設けておいてもよい。
【0018】
ステージ1の底面側には、試料Sに向けて光を照射する光源2と、光源2からの光を試料Sに集光する集光レンズ3とが配置されている。光源2は、試料Sに向けて斜めに光を照射するように配置されていてもよい。また、ステージ1の上面側には、試料Sからの光像を導光する導光光学系4と、試料Sの光像を撮像する撮像装置5とが配置されている。導光光学系4は、試料Sからの光像を撮像装置5の撮像面に結像させる結像レンズ6を有している。また、撮像装置5は、例えば2次元画像を取得可能なエリアイメージセンサである。撮像装置5は、導光光学系4を経て撮像面に入射した試料Sの光像の全体画像を取得し、後述のバーチャルスライド画像格納部39に格納する。
【0019】
ミクロ画像取得装置M2は、
図2に示すように、ステージ1の底面側にマクロ画像取得装置M1と同様の光源12及び集光レンズ13を有している。また、ステージ1の上面側には、試料Sからの光像を導光する導光光学系14が配置されている。光源12からの光を試料Sに照射させる光学系には、試料Sに励起光を照射するための励起光照射光学系や試料Sの暗視野画像を取得するための暗視野照明光学系を採用してもよい。
【0020】
導光光学系4は、試料Sと対峙して配置された対物レンズ15と、対物レンズ15の後段に配置されたビームスプリッタ(光分岐手段)16とを有している。対物レンズ15には、ステージ1の載置面に直交するZ方向に対物レンズ15を駆動するステッピングモータ(パルスモータ)或いはピエゾアクチュエータなどのモータやアクチュエータが設けられている。これらの駆動手段によって対物レンズ15のZ方向の位置を変えることにより、試料Sの画像取得における撮像の焦点位置が調整可能になっている。なお、焦点位置の調整は、ステージ1のZ方向の位置を変えることで実施してもよく、対物レンズ15及びステージ1の双方のZ方向の位置を変えることによって実施してもよい。
【0021】
ビームスプリッタ16は、試料Sの光像を画像取得用の第1の光路L1と焦点制御用の第2の光路L2とに分岐する部分である。このビームスプリッタ16は、光源12からの光軸に対しておよそ45度の角度で配置されており、
図2において、ビームスプリッタ16を通過する光路が第1の光路L1となっており、ビームスプリッタ16で反射する光路が第2の光路となっている。
【0022】
第1の光路L1には、ビームスプリッタ16を通過した試料Sの光像(第1の光像)を結像させる結像レンズ17と、結像レンズ17の結像位置に撮像面を配置した第1の撮像装置(第1の撮像手段)18とが配置されている。第1の撮像装置18は、試料Sの第1の光像による1次元画像(第1の画像)を取得可能な装置であり、例えばTDI(Time Delay Integration)駆動が可能な2次元CCDイメージセンサやラインセンサが用いられる。また、ステージ1を一定の速度で制御しながら、試料Sの画像を順次取得する方式であれば、第1の撮像装置18は、CMOSイメージセンサやCCDイメージセンサなどの2次元画像を取得可能な装置であってもよい。第1の撮像装置18で撮像された第1の画像は、レーンバッファなどの一時保存メモリに順次保存された後、圧縮されて後述の画像生成部38に出力される。
【0023】
一方、第2の光路L2には、ビームスプリッタ16で反射した試料の光像(第2の光像)を縮小する視野調整レンズ19と、第2の撮像装置(第2の撮像手段)20とが配置されている。また、第2の撮像装置20の前段には、第2の光像に光路差を生じさせる光路差生成部材21が配置されている。視野調整レンズ19は、第2の光像が第1の光像と同程度の大きさで第2の撮像装置20に結像するように構成されていることが好ましい。
【0024】
第2の撮像装置20は、試料Sの第2の光像による2次元画像(第2の画像)を取得可能な装置である。第2の撮像装置20は、複数の画素列を有すると共にローリング読み出しが可能な二次元撮像素子を有している。このような二次元撮像素子としては、例えばCMOSイメージセンサが挙げられる。第2の撮像装置20の撮像面20aは、第2の光路L2に直交するXZ面と略一致するように配置されている。第2の撮像装置20の撮像面20aには、
図3(a)に示すように、読み出し方向に垂直な方向に複数の画素が配列されてなる画素列20bが読み出し方向に複数配列されている。
【0025】
第2の撮像装置20では、
図3(b)に示すように、駆動クロックの駆動周期に基づいて、リセット信号、読み出し開始信号、及び読み出し終了信号が出力されることで、画素列20b毎に露光及び読み出しが制御される。一の画素列20bの露光期間は、リセット信号に伴う電荷の排出から読み出し開始信号に伴う電荷の読み出しまでの期間である。また、一の画素列20bの読み出し期間は、読み出し開始信号に伴う電荷の読み出し開始から読み出し終了信号に伴う電荷の読み出し終了までの期間である。なお、次の画素列に対する読み出し開始信号を読み出し終了信号として用いることもできる。
【0026】
ローリング読み出しでは、画素列20b毎に出力する読み出し開始信号が所定の時間差で順次出力される。ローリング読み出しにおける読み出し速度は、各画素列20bを読み出すための読み出し開始信号の時間間隔によって制御される。読み出し開始信号の時間間隔を短くすると読み出し速度は早くなり、読み出し開始信号の時間間隔を長くすると読み出し速度は遅くなる。隣接する画素列20b,20b間での読み出し間隔の調整は、例えば駆動クロックの周波数の調整、読み出し期間中の遅延期間の設定、読み出し開始信号を規定するクロック数の変更といった手法によって実施できる。
【0027】
光路差生成部材21は、撮像面20aの面内方向に沿って第2の光像に光路差を生じさせるガラス部材である。
図4(a)に示す例では、光路差生成部材21は、断面直角三角形のプリズム状をなしており、撮像面20aの面内方向、すなわち、試料Sの走査に伴う撮像面20a上での第2の光像の移動方向(Z方向)に沿って連続的に厚さが増加するように配置されている。また、光路差生成部材21は、第2の光路L2の光軸に直交する面に対して傾斜する平面を有するように配置されている。したがって、撮像面20aに入射する第2の光像は、撮像面20aにおいてZ方向の一端部(
図4(b)における上端部)から他端部(
図4(b)における下端部)に向かうほど光路が長くなる。また、光路差生成部材21は、第2の撮像装置20と対向する面が第2の撮像装置の撮像面20aと平行となるように配置されることが好ましい。これにより、第2の撮像装置20と対向する面による光の屈折を低減でき、第2の撮像装置20で受光する光量を確保することができる。
【0028】
図5は、画像取得装置の機能的な構成要素を示すブロック図である。同図に示すように、画像取得装置Mは、CPU、メモリ、通信インタフェイス、ハードディスクといった格納部、キーボードなどの操作部31、モニタ32等を備えたコンピュータシステムを備えている。また、画像取得装置Mは、制御部33の機能的な構成要素として、ステージ駆動部34と、対物レンズ駆動部35と、動作制御部36と、合焦点算出部37と、画像生成部38と、バーチャルスライド画像格納部39とを備えている。
【0029】
ステージ駆動部34は、試料Sに対する対物レンズ15の視野位置を移動させる視野駆動手段として機能する部分である。ステージ駆動部34は、例えばステッピングモータ(パルスモータ)或いはピエゾアクチュエータといったモータやアクチュエータによって構成されている。ステージ駆動部34は、動作制御部36による制御に基づいて、ステージ2を対物レンズ15の光軸の直交面に対して所定の角度(例えば90度)を有する面についてXY方向に移動させる。これにより、ステージ2に固定された試料Sが対物レンズ15の光軸に対して移動し、試料Sに対する対物レンズ15の視野位置が移動する。
【0030】
より具体的には、ステージ駆動部34は、動作制御部36による制御に基づき、試料Sが載置されたステージ1を所定の速度で走査させる。このステージ1の走査により、第1の撮像装置18及び第2の撮像装置20での試料Sの撮像視野が相対的に順次移動する。試料Sの全体を撮像するために、画像取得装置Mでは、動作制御部36が複数の分割領域40から構成される撮像ラインLn(nは自然数)に沿ったスキャン方向に試料Sに対する対物レンズ15の視野位置を移動させるように制御する。
【0031】
隣接する撮像ラインLn間での試料Sに対する対物レンズ15の視野位置の移動は、例えば
図6に示すように、隣り合う撮像ラインLn間でスキャン方向が反転する双方向スキャンが採用される。また、スキャン方向が各撮像ラインLnで同方向となる一方向スキャンであってもよい。なお、対物レンズ15の視野位置が分割領域40間をランダムに移動するランダムスキャンであってもよい。
【0032】
また、画像取得の間のステージ1の走査速度は一定であるが、実際には走査の開始直後にステージ1の振動等の影響によって走査速度が不安定な期間が存在する。このため、分割領域40よりも長い走査幅を設定し、ステージ1が加速する加速期間、ステージ1の走査速度が安定化するまでの安定化期間、及びステージ1が減速する減速期間のそれぞれが、分割領域40よりも外側を走査しているときに生じるようにすることが好ましい。これにより、ステージ1の走査速度が一定となる一定速度期間に合わせて画像取得を行うことが可能となる。なお、安定化期間中に撮像を開始し、画像取得後に安定化期間中に取得したデータ部分を削除するようにしてもよい。このような手法は、データの空読みが必要な撮像装置を用いる場合に好適である。
【0033】
対物レンズ駆動部35は、ステージ駆動部34と同様に、例えばステッピングモータ(パルスモータ)或いはピエゾアクチュエータといったモータやアクチュエータによって構成されている。対物レンズ駆動部35は、動作制御部36による制御に基づいて、対物レンズ15の光軸に沿ったZ方向に対物レンズ15を移動させる。これにより、試料Sに対する対物レンズ15の焦点位置が移動する。
【0034】
なお、対物レンズ駆動部35は、合焦点算出部37による焦点位置の解析中は対物レンズ15の駆動は行わず、また、次の焦点位置の解析が開始されるまで、対物レンズ15をZ方向に沿って一方向にのみ駆動させることが好ましい。この場合、試料Sの走査中は、焦点位置の解析期間と、解析結果に基づく対物レンズ駆動期間とが交互に生じることとなる。焦点位置の解析中に対物レンズ15と試料Sとの位置関係を変化させないことで、焦点位置の解析精度を担保できる。
【0035】
動作制御部36は、第2の撮像装置20及びステージ駆動部34の動作を制御する部分である。より具体的には、動作制御部36は、試料Sにおける所定部位の光像が第2の撮像装置20の各画素列20bで露光されるように、ステージ駆動部34による対物レンズ15の視野V内での試料Sの所定部位の移動と第2の撮像装置20のローリング読み出しとを同期させる。
【0036】
動作制御部36は、
図7(a)に示すように、対物レンズ15の視野Vが一の分割領域40を移動する際、対物レンズ15の視野V内での試料Sの移動が一定速度となるようにステージ駆動部34を制御する。また、動作制御部36は、
図7(b)に示すように、第2の撮像装置20の撮像面20aにおける試料Sの光像の結像Sbの移動方向と、撮像面20aの各画素列20bの読み出し方向とが一致するようにステージ駆動部34及び第2の撮像装置20を制御する。なお、ローリング読出しの読出し速度を可変に設定できる撮像素子を用いる場合、動作制御部36は、対物レンズ15の視野V内での試料Sの移動速度に基づいて、ローリング読出しの読出し速度を変更してもよい。
【0037】
また、各画素列20bにおける露光時間は、少なくとも試料Sの所定部位Saのスキャン方向における幅及び対物レンズ15の視野V内での試料Sの所定部位Saの移動速度に基づいて設定される。より好ましくは、対物レンズ15及び視野調整レンズ19の倍率も考慮する。これにより、各画素列20bにより、試料Sの所定部位Saの光像を露光することができる。
【0038】
時間T1において、
図7(b)に示すように、第2の撮像装置20の撮像面20aにおける試料Sの所定部位Saからの光の結像Sbが撮像領域の第1列目の画素列20bに到達すると、この第1列目の画素列20bの露光が開始される。時間T2に移ると、
図8(a)に示すように、対物レンズ15の視野V内での試料Sの所定部位Saの位置が移動する。このとき、
図8(b)に示すように、試料Sの所定部位Saからの光の結像Sbが撮像領域の第2列目の画素列20bに到達し、第2列目の画素列20bの露光が開始される。また、試料Sの所定部位Saからの光の結像Sbが第1列目の画素列20bを通過するタイミングで、第1列目の画素列20bの読み出しが開始される。
【0039】
さらに、時間T3に移ると、
図9(a)に示すように、対物レンズ15の視野V内での試料Sの所定部位Saの位置がスキャン方向に更に移動する。このとき、
図9(b)に示すように、試料Sの所定部位Saからの光の結像Sbが撮像領域の第3列目の画素列20bに到達し、第3列目の画素列20bの露光が開始される。また、試料Sの所定部位Saからの光の結像Sbが第2列目の画素列20bを通過するタイミングで、第2列目の画素列20bの読み出しが開始される。さらに、第2列目の画素列20bの読み出しと同時に第1列目の画素列20bの読み出しが終了する。
【0040】
以下、所定の画素列数に到達するまで、同様の手順で対物レンズ15の視野V内での試料Sの所定部位Saの移動と、画素列20bでのローリング読み出しとが実施される。各画素列20bから読み出される画像データは、いずれも試料Sの同一部位についての画像データとなる。また、第2の光路L2に光路差生成部材21が配置されていることにより、各画素列20bから読み出される画像データは、それぞれ試料Sの同一部位について対物レンズ15の焦点位置が変更されたときと等価のコントラスト情報が含まれる。各画素列20bで読み出された画像データは、合焦点算出部37に順次出力される。
【0041】
なお、第2の撮像装置20は、ローリング読み出しの読み出し方向を切り替え可能であることが好ましい。こうすると、双方向スキャンやランダムスキャンのように、試料Sに対する対物レンズ15の視野位置のスキャン方向が変わる場合でも試料Sからの光の結像Sbの移動方向と、第2の撮像装置20の各画素列20bの読み出し方向とを容易に一致させることができる。
【0042】
対物レンズ駆動部35が対物レンズ15を含む導光光学系14をXY方向に移動させることが可能な場合、動作制御部36は、試料Sにおける所定部位の光像が第2の撮像装置20の各画素列20bで露光されるように、対物レンズ駆動部35による対物レンズ15の視野V内での試料Sの所定部位の移動と第2の撮像装置20のローリング読み出しとを同期させてもよい。この場合、対物レンズ駆動部35は、試料Sに対する対物レンズ15の視野位置を移動させる視野駆動手段として機能する。
【0043】
合焦点算出部37は、第2の撮像装置20で取得された第2の画像を解析し、その解析結果に基づいて試料Sの合焦点情報を算出する部分である。合焦点算出部37での合焦点情報の算出方式としては、例えば前ピン・後ピン方式又はコントラスト分布方式が採用される。
【0044】
前ピン・後ピン方式を用いる場合、合焦点算出部37は、第2の撮像装置20の各画素列20bのうち、少なくとも2つの画素列20bの画素列20bを選択する。上述したように、第2の光路L2には、試料Sの走査に伴う撮像面20a上での第2の光像の移動方向(Z方向)に沿って連続的に厚さが増加するように光路差生成部材21が配置されている。したがって、第2の撮像装置20では、選択する2つの画素列20bの位置に基づいて、第1の撮像装置18に入射する第1の光像よりも前に焦点が合った光像(前ピン)と、後に焦点が合った光像(後ピン)とを取得できる。合焦点算出部37は。選択された画素列20bで読み出された画像データのコントラスト値同士の差分を求める。
【0045】
図10に示すように、試料Sの表面に対して対物レンズ15の焦点位置が合っている場合、前ピンの画像コントラスト値と後ピンの画像コントラスト値とが略一致し、これらの差分値はほぼゼロとなる。一方、
図11に示すように、試料Sの表面までの距離が対物レンズ15の焦点距離よりも長い場合、前ピンの画像コントラスト値よりも後ピンの画像コントラスト値の方が大きくなり、これらの差分値はプラスとなる。この場合、合焦点算出部37は、対物レンズ駆動部35に対し、対物レンズ15を試料Sに近づける向きに駆動する旨の指示情報を出力する。また、
図12に示すように、試料Sの表面までの距離が対物レンズ15の焦点距離よりも短い場合、前ピンの画像コントラスト値よりも後ピンの画像コントラスト値の方が小さくなり、これらの差分値はマイナスとなる。この場合、合焦点算出部37は、対物レンズ駆動部35に対し、対物レンズ15を試料Sに遠ざける向きに駆動する旨の指示情報を出力する。
【0046】
前ピン・後ピン方式を用いる場合、合焦点算出部37では、フォーカス中心に対応する画素列20bを挟んで対称となるように、前ピンに相当する画素列20bと後ピンに相当する画素列20bとを選択する。フォーカス中心に対応する画素列20bとは、第1の撮像装置18で撮像される試料Sの光像の光路長と一致する光路長で第2の光路L2及び光路差生成部材21を通った試料Sの光像が入射する画素列20bを指す。合焦点算出部37は、例えばフォーカス中心に対応する画素列20bが第k列目の画素列20bである場合、第(k−m)列目の画素列20bと第(k+m)列目の画素列20bとをそれぞれ選択する。試料Sの凹凸の度合いに応じてmを設定することで、合焦点情報の精度を向上できる。
【0047】
コントラスト分布方式を用いる場合、合焦点算出部37は、第2の撮像装置20の複数の画素列20bからの画像データのコントラスト情報を取得する。
図13に示す例では、第2の撮像装置20における第1列目の画素列20bから第n列目の画素列20bまでの画像データのコントラスト値が示されており、第i列目の画素列20bにおける画像データのコントラスト値がピーク値となっている。この場合、合焦点算出部37は、第i列目の画素列20bで試料Sの所定部位Saの露光を行ったときの対物レンズ15の焦点位置が合焦点位置であるとして合焦点情報を生成する。なお、コントラスト値は、各画素列20bに含まれる画素のうちの特定の画素におけるコントラスト値を用いてもよく、各画素列20bに含まれる画素の全体又は一部のコントラスト値の平均値を用いてもよい。
【0048】
画像生成部38は、取得した画像を合成してバーチャルスライド画像を生成する部分である。画像生成部38は、第1の撮像装置18から出力される第1の画像、すなわち、各分割領域40の画像を順次受け取り、これらを合成して試料Sの全体の画像を合成する。そして、この合成画像に基づいてこれよりも低い解像度の画像を作成し、高解像度の画像と低解像度の画像とを関連付けてバーチャルスライド画像格納部39に格納する。バーチャルスライド画像格納部39では、マクロ画像取得装置M1で取得した画像も更に関連付けてもよい。バーチャルスライド画像は、1枚の画像として格納してもよく、複数に分割された画像として格納してもよい。
【0049】
続いて、上述した画像取得装置Mにおけるフォーカシング動作について説明する。
【0050】
図14に示すように、画像取得装置Mでは、ステージ駆動部34によるステージ1の移動が開始すると、一の撮像ラインLnに沿って対物レンズ15の視野Vが移動する(ステップS11)。また、試料Sにおける所定部位Saからの光像の結像Sbが第2の撮像装置20の各画素列20bで露光されるように、対物レンズ15の視野V内での試料Sの所定部位Saの移動と第2の撮像装置20のローリング読み出しとが同期する(ステップS12)。そして、各画素列20bで取得した画像データのコントラスト値に基づいて分割領域40における合焦点情報が算出されると共に(ステップS13)、算出した合焦点情報に基づいて対物レンズ15の焦点位置が調整され、分割領域40の撮像が行われる(ステップS14)。その後、所望の撮像ラインLnについて合焦点情報の算出の取得が完了したか否かが判断され(ステップS15)、合焦点情報の算出の取得が完了していない場合には、次の撮像ラインLnに対物レンズ15の視野Vが移動し(ステップS16)、ステップS11〜S15の処理が繰り返し実行される。
【0051】
以上説明したように、画像取得装置Mでは、光路差生成部材21の配置により、焦点制御用の第2の光路L2での光の分岐を行わずに第2の光像の光路長差を形成できる。したがって、焦点位置の情報を得るために必要な第2の光路L2への光量が抑えられ、第1の撮像装置18で撮像を行う際の光量を確保できる。また、この画像取得装置Mでは、ローリング読み出しにおける各画素列20bでの画像データの読み出しタイミングの遅延を利用し、試料Sにおける所定部位(同一部位)の光像が第2の撮像装置20の各画素列20bで露光されるように、対物レンズ15の視野V内での試料Sの所定部位の移動とローリング読み出しとを同期させている。第2の光路L2に光路差生成部材21が配置されていることにより、各画素列20bからの画像データには、試料Sの同一部位において対物レンズ15の焦点位置が変更されたときと等価のコントラスト情報が含まれることとなり、当該情報に基づいて合焦点情報を迅速かつ精度良く算出できる。
【0052】
また、画像取得装置Mでは、ローリング読み出しが可能な二次元撮像素子を用いて第2の撮像装置20を構成しているので、光路差生成部材21を第2の光路L2に配置することで、対物レンズ15の合焦点情報の算出の際の対物レンズ15の駆動が不要となる。したがって、焦点制御中の振動等の発生を抑えることができる。
【0053】
画像取得装置Mでは、合焦点算出部37により、第2の撮像装置20の各画素列20bのうち、少なくとも2つの画素列20bで読み出された画像データのコントラスト値の差分に基づいて、試料Sの合焦点情報が算出される。この手法では、第2の撮像装置20において、第1の撮像装置18に入射する光像よりも前に焦点が合った光像(前ピン)と、後に焦点が合った光像(後ピン)とをそれぞれ取得できる。これらの画像データのコントラスト値の差分を用いることで、試料Sの合焦点情報を精度良く算出できる。また、画像取得装置Mでは、合焦点算出部37により、第2の撮像装置20の各画素列20bで読み出された画像データのコントラスト値の分布に基づいて、試料Sの合焦点情報が算出される。この手法では、画像データのコントラスト値の分布に基づいて、試料の合焦点情報を精度良く算出できる。
【0054】
なお、合焦点算出部37で試料Sの合焦点情報の算出に前ピン・後ピン方式を用いる場合において対物レンズ15の視野位置のスキャンを双方向スキャンとする場合(
図6参照)には、
図4に示した光路差生成部材21に代えて、
図15に示すように、試料Sの走査に伴う撮像面20a上での第2の光像の移動方向(Z方向)について、厚さが連続的に厚くなる部分及び厚さが連続的に薄くなる部分が対称的に設けられた光路差生成部材を用いることが必要となる。
【0055】
図15(a)に示す例では、光路差生成部材41Aは、断面三角形のプリズム状をなし、撮像面20aのZ方向の中央部分に頂部が略一致するように配置されている。この例では、撮像面20aに入射する第2の光像は、撮像面20aにおけるZ方向の中央部分で最も光路が長くなり、撮像面20aにおけるZ方向の両端部分に向かうほど光路が短くなる。
図15(b)に示す例では、光路差生成部材41Bは、断面直角三角形のプリズム状をなす2つのガラス部材を組み合わせて構成され、各ガラス部材が撮像面20aにおけるZ方向の一方の半分領域と他方の半分領域とに重なるようにそれぞれ配置されている。この例では、撮像面20aにおけるZ方向の端部で最も光路が長くなり、撮像面20aのZ方向の端部側から中央側に向かうほど光路が短くなる。
図15(c)に示す例では、光路差生成部材41Cは、断面等脚台形状をなし、その斜面が撮像面20aにおけるZ方向の一方の端部領域と他方の端部領域とに重なるように配置されている。この例では、撮像面20aにおけるZ方向の中央部分では光路長に変化が生じず、Z方向の端部においてのみZ方向の両端部分に向かうほど光路が短くなる。
【0056】
合焦点算出部37で試料Sの合焦点情報の算出に前ピン・後ピン方式を用いる場合において対物レンズ15の視野位置のスキャンを一方向スキャンとする場合、及び合焦点算出部37で試料Sの合焦点情報の算出にコントラスト分布方式を用いる場合には、光路差生成部材21,31A〜31Cを用いることができるほか、例えば
図16に示す光路差生成部材を用いることができる。
【0057】
図16(a)に示す例では、光路差生成部材41Dは、断面直角三角形のプリズム状をなし、その斜面が撮像面20aにおけるZ方向の一方の半分領域のみに重なるように配置されている。この例では、光路差生成部材41Dが配置されている領域において、Z方向の中央部分に向かうほど光路が短くなる。
図16(b)に示す例では、光路差生成部材41Eは、断面台形状をなし、その斜面が撮像面20aの全体に重なるように配置されている。この例では、撮像面20aのZ方向の一方の端部側から他方の端部側に向かって一様に光路が短くなる。
【0058】
また、光路差生成部材21,41A〜41Eでは、いずれも連続的に厚みが増減しているが、
図17に示すように、Z方向に寸法の異なるガラス部材を寸法順に複数枚組み合わせ、厚みが段階的に変化する光路差生成部材51を用いてもよい。このような光路差生成部材51を用いても、上述した実施形態と同様の作用効果を得ることができる。なお、この場合、各ガラス部材におけるZ方向の寸法差は、第2の撮像装置20における各画素列20bのZ方向の寸法の整数倍とすることが好ましい。また、各ガラス部材のZ方向の縁部の位置と、各画素列20bのZ方向の縁部の位置とを一致させることが好ましい。
【0059】
上述した実施形態では、バーチャルスライド画像を生成する装置を例示したが、本発明に係る画像取得装置は、ステージ等によって試料を所定の速度で走査しながら画像を取得する装置であれば、種々の装置に適用することができる。