(58)【調査した分野】(Int.Cl.,DB名)
前記主軸指令出力部は、前記目標ねじ深さから戻り完了位置に至る間の前記主軸の総戻り回転量と最高戻り回転速度とを前記タップ加工プログラムから取得して、該総戻り回転量と該最高戻り回転速度とを前記主軸指令として前記主軸制御部に送り、
前記初期動作制御部は、前記最高戻り回転速度を目標値とする速度制御により、前記目標ねじ深さから、又は前記目標ねじ深さよりも予め定めた回転数だけ戻った初期戻り位置から、前記主軸を駆動源の許容電流を最大限に利用した最大能力で加速逆回転させ、
前記最大加速度検出部は、前記主軸が前記目標ねじ深さから加速逆回転する間の前記主軸の逆回転の最大加速度を検出又は取得し、
前記残回転量検出部は、前記総戻り回転量と前記回転位置とに基づき、現在位置から前記戻り完了位置に至るまでの前記主軸の残戻り回転量を検出し、
前記現在速度検出部は、前記回転位置に基づき前記主軸の逆回転の現在速度を検出し、
前記減速動作制御部は、前記最大能力での加速逆回転の後に、速度制御により前記主軸を減速逆回転させて予め定めた中間戻り回転速度に到達させ、
前記位置決め動作制御部は、前記主軸が前記中間戻り回転速度に到達した後に、前記逆回転の最大加速度と前記残戻り回転量と前記逆回転の現在速度とに基づき、位置制御により前記主軸を前記逆回転の最大加速度に対応する最大減速度で減速逆回転させるとともに前記戻り完了位置で停止させ、
前記減速動作制御部は、前記減速逆回転のための速度指令を、前記残戻り回転量と前記逆回転の現在速度とを用いて逐次更新し、前記主軸を前記中間戻り回転速度に到達させたときの前記残戻り回転量が、前記位置制御の下で前記戻り完了位置で停止するまでの前記主軸の位置決め戻り回転量と等しくなるように、逐次更新される該速度指令により前記主軸を減速逆回転させる、
請求項1に記載の制御装置。
前記位置決め動作制御部は、前記主軸を前記目標ねじ深さで停止させずに、前記目標ねじ深さへの到達後、位置制御により前記主軸を前記初期戻り位置まで、前記最大能力での減速回転における最大減速度と同じ逆回転の最大加速度で加速逆回転させ、
前記初期動作制御部は、前記初期戻り位置から前記主軸を前記最大能力で加速逆回転させ、
前記最大加速度検出部は、前記最大減速度を前記逆回転の最大加速度として取得する、
請求項2に記載の制御装置。
前記数値制御部は、前記残回転量を監視して前記残回転量が第1の所定値以下になったときに、タップ加工が前記目標ねじ深さに達したと判断する、請求項2〜4のいずれか1項に記載の制御装置。
前記数値制御部は、前記残戻り回転量を監視して前記残戻り回転量が第2の所定値以下になったときに、戻り動作が完了したと判断する、請求項2〜5のいずれか1項に記載の制御装置。
前記数値制御部は、前記残回転量に基づき前記主軸の現在位置を認識するとともに前記残送り量に基づき前記送り軸の現在位置を認識する位置認識部を備える、請求項7に記載の制御装置。
前記数値制御部は、前記残回転量と前記残送り量と前記ねじピッチとに基づき、前記同期運転の同期誤差を計算する同期誤差計算部を備える、請求項7又は8に記載の制御装置。
前記数値制御部は、前記残戻り回転量に基づき前記主軸の現在位置を認識するとともに前記残戻り送り量に基づき前記送り軸の現在位置を認識する位置認識部を備える、請求項10に記載の制御装置。
前記数値制御部は、前記残戻り回転量と前記残戻り送り量と前記ねじピッチとに基づき、前記同期運転の同期誤差を計算する同期誤差計算部を備える、請求項10又は11に記載の制御装置。
【発明を実施するための形態】
【0013】
以下、添付図面を参照して本発明の実施の形態を説明する。全図面に渡り、対応する構成要素には共通の参照符号を付す。
【0014】
図1は、一実施形態による工作機械の制御装置10の構成を機能ブロックで示す。制御装置10は、主軸12と送り軸14との同期運転によりタップ加工を行う工作機械(例えば旋盤、ボール盤、マシニングセンタ等)において、送り軸14が、タップ加工プログラムPで指定されるねじピッチを考慮しながら、主軸12の回転動作に追従するように動作する同期運転(いわゆるマスター・スレーブ同期方式)を制御するものである。図示しないが、主軸12は、ワークや工具を把持する把持部を加工に必要な速度で回転運動させるサーボモータ等の駆動装置に設定される制御軸である。図示しないが、送り軸14は、ワークや工具を支持する支持部を加工に必要な速度で送り運動させるサーボモータ等の駆動装置に設定される制御軸である。例えば旋盤では、主軸12で回転するワークに対して工具を送り軸14で直線送りしたり、主軸12で回転するワークを工具に対して送り軸14で直線送りしたりすることができる。またボール盤では、主軸12で回転する工具をワークに対して送り軸14で直線送りしたり、主軸12で回転する工具に対してワークを送り軸14で直線送りしたりすることができる。いずれの場合も、動作中の加減速トルクに比較的余裕の有る送り軸14が、動作中の加減速トルクに比較的余裕の無い主軸12に追従するように動作することで、同期誤差を低減して加工精度を向上させることができる。なお本発明において、工作機械の構成は特に限定されない。
【0015】
制御装置10は、タップ加工プログラムPに基づき主軸指令CS及び送り軸指令CFを作成する数値制御部16と、主軸指令CSに従って主軸12の回転動作を制御する主軸制御部18と、主軸12の回転位置を検出する回転検出部20と、送り軸指令CFに従って、回転検出部20が検出した回転位置に基づき送り軸14の送り動作を制御する送り軸制御部22とを備える。数値制御部16は、タップ加工プログラムPを解釈するプログラム解釈部24と、プログラム解釈部24の解釈に従い主軸指令CSを作成して、主軸制御部18に主軸指令CSを送る主軸指令出力部26と、プログラム解釈部24の解釈に従い送り軸指令CFを作成して、送り軸制御部22に送り軸指令CFを送る送り軸指令出力部28とを備える。数値制御部16は、公知のCNC装置のハードウェア構成を有することができる。
【0016】
主軸指令出力部26は、タップ加工の開始に先立ち、プログラム解釈部24が解釈したタップ加工プログラムPの指令値から、加工開始位置(回転位置)から目標ねじ深さ(回転位置)に至る間の主軸12の総回転量S0と最高回転速度V0とを取得して、これら総回転量S0と最高回転速度V0とを主軸指令CSとして主軸制御部18に送る。例えばタップ加工プログラムPが、主軸12の最高回転速度(この例では1分間当りの最大回転数)V0を3000rev/minとして、ねじピッチ1.25mm、ねじ深さ30mmの雌ねじを加工する指令を含む場合、加工開始位置から目標ねじ深さに至る間の主軸12の総回転量S0は、30÷1.25=24(rev)となるから、主軸指令出力部26は、V0=3000(rev/min)とS0=24(rev)とを主軸制御部18に通知する。このように主軸指令CSは、主軸12を目標ねじ深さまで回転運動させるための位置指令や加減速指令を含まないものとなっている。
【0017】
主軸制御部18は、回転検出部20が検出した主軸12の回転位置FBS(すなわちフィードバック値)を用いて、一般的なフィードバック制御により主軸12の回転動作を制御する。送り軸制御部22は、送り軸14の送り位置のフィードバック値に加えて、主軸12の回転位置FBSを用いて、フィードバック制御により主軸12の動作に追従する送り軸14の送り動作を制御する。なお回転検出部20は、主軸12の駆動装置の動作位置を検出するエンコーダ等の位置検出器(図示せず)の出力から、回転位置FBSを取得することができる。
【0018】
主軸制御部18は、主軸指令出力部26から送られた最高回転速度V0を目標値とする速度制御により加工開始位置から主軸12を最大能力で加速回転させる初期動作制御部30と、最大能力での加速回転中に回転位置FBSに基づき主軸12の最大加速度A0(単位は例えばrev/min
2)を検出する最大加速度検出部32と、主軸指令出力部26から送られた総回転量S0と回転位置FBSとに基づき、現在位置(回転位置)から目標ねじ深さに至るまでの主軸12の残回転量Srを検出する残回転量検出部34と、回転位置FBSに基づき主軸12の現在速度Vcを検出する現在速度検出部36と、最大能力での加速回転の後に、速度制御により主軸12を減速回転させて予め定めた中間回転速度Viに到達させる減速動作制御部38と、主軸12が中間回転速度Viに到達した後に、最大加速度A0と残回転量Srと現在速度Vcとに基づき、位置制御により主軸12を最大能力で減速回転させて目標ねじ深さに到達させる位置決め動作制御部40とを備える。位置決め動作制御部40は、主軸12を目標ねじ深さで停止させるように構成できる。或いは、位置決め動作制御部40は、主軸12を目標ねじ深さで停止させないように構成できる。
【0019】
制御装置10は、工作機械を用いたタップ加工において、ワークの下穴を工具で目標ねじ深さまで切削するための主軸12の動作(本願で切削動作と称する)を制御することができる。また制御装置10は、工作機械を用いたタップ加工において、ワークの下穴を目標ねじ深さまで切削加工した後に工具をワークから引き抜くための主軸12の動作(本願で戻り動作と称する)を制御することができる。
【0020】
図2は、制御装置10が実行する工作機械制御方法の一実施形態としての、タップ加工における主軸12の切削動作制御方法を示す。以下、
図2に示す切削動
作制御フローの一例を
図1と共に参照して、制御装置10の構成の詳細を説明する。まずステップS1で、数値制御部16(主軸指令出力部26)は主軸制御部18に、主軸12の総回転量S0と最高回転速度V0とを指令する。ステップS2で、主軸制御部18(初期動作制御部30、最大加速度検出部32、残回転量検出部34)は、加工開始位置から、最高回転速度V0を目標速度として主軸12を、駆動源の許容電流を最大限に利用した最大能力で加速回転させて切削動作を実行し、その間の最大加速度A0を検出するとともに、現在位置からの残回転量Srを逐次検出する。検出した残回転量Srは、検出の都度、主軸制御部18が数値制御部16に通知する。
【0021】
次にステップS3で、主軸制御部18(現在速度検出部36)は、最大能力での加速回転中に現在速度Vcを逐次検出し、検出の都度、現在速度Vcが最高回転速度V0に到達していないか否かを判断する。VcがV0に到達していない場合、ステップS4で、主軸制御部18は、残回転量Srが総回転量S0の1/2以下になっているか否かを判断する。SrがS0の1/2以下になっている場合、ステップS5で、主軸制御部18(減速動作制御部38)は、主軸12を中間回転速度Viまで減速回転させて切削動作を継続実行する。SrがS0の1/2以下になっていない場合はステップS3に戻る。
【0022】
ここで
図3を参照すると、現在速度Vcが最高回転速度V0に到達する前に残回転量Srが総回転量S0の1/2になった場合(ステップS3及びS4の判断がいずれもYESの場合)の、主軸12の切削動作の一例が、速度−時間曲線(時間軸の上側の曲線)で示されている。
図3において、Vbは、始動から速度Vbまでは一定トルクでの加速(つまり一定加速度)が可能な回転速度(例えば主軸モータの基底速度)として、主軸12に予め設定されたものであって、例えば制御装置10のメモリ(図示せず)に制御用パラメータの1つとして格納できるものである。なお実用上、速度Vbは、主軸モータの基底速度(主軸モータと主軸12との間に減速比が存在する場合は減速比を考慮した速度)以下であればよい。
【0023】
ステップS2における主軸12の最大能力の加速回転は、
図3の時間T1及びT2で実行され、時間T1(加工開始位置での始動から速度Vbに達するまでの時間)の一定加速度の間に最大加速度A0が検出される。主軸12の回転速度がVbを超えると、主軸モータの特性により、主軸12の加速度は最大加速度A0から漸減する。残回転量Srが総回転量S0の1/2になった(つまり加工開始からの回転量が総回転量S0の1/2になった)時点A(ステップS4の判断がYESとなった時点)で、主軸12の動作は加速回転から減速回転に変わり、時間T3で、ステップS5における主軸12の減速回転が実行される。
【0024】
時間T3(ステップS5)においても、主軸制御部18(残回転量検出部34、現在速度検出部36)は、主軸12の現在位置からの残回転量Sr及び現在速度Vcを逐次検出する。そして主軸制御部18(減速動作制御部38)は、時間T3(ステップS5)において、速度制御により点Aから主軸12を中間回転速度Viまで減速回転させるが、この間、減速回転のための速度指令Cvを、残回転量Srと現在速度Vcとを用いて逐次更新する(速度指令Cvを
図3に破線で示す)。具体的には、減速動作制御部38は、主軸12を所定の中間回転速度Viに到達させたときの主軸12の残回転量Srが、位置決め動作制御部40による位置制御の下で目標ねじ深さに到達するまでの主軸12の位置決め回転量Sposと等しくなるように、速度指令Cvを逐次更新して、逐次更新される速度指令Cvにより主軸12を減速回転させる。
【0025】
ここで、位置決め回転量Sposは、位置決め動作制御部40が主軸12を、現在速度Vc(以下の説明では1秒間当りの回転数(単位はrev/s)とする)から、ステップS2で検出した最大加速度A0(rev/s
2)に対応する最大減速度A0(負の値)で減速したときに、Sr=0かつVc=0となる(つまり目標ねじ深さに到達する)ことが予測される時点B(
図3)の位置に対応し、Sr=0の点から見た残回転量Sr(負の値)の絶対値として、以下の式により求められる。
公式:Vc
2=2×|A0|×|Sr|から、
|Sr|=Vc
2/(2×|A0|)=Spos
【0026】
この実施形態では、点Bから目標ねじ深さまでの位置制御の演算を容易にするべく、主軸12を点Bから一定の最大減速度A0で減速することを前提としている。したがって点Bでは、主軸12の現在速度VcはVbに達しているものとする。つまり位置決め回転量Sposは、
Spos=Vb
2/(2×|A0|)
として求めることができる。そしてこの前提によれば、中間回転速度Viは、点Bでの主軸の現在速度Vbとなる。
【0027】
上記前提の下で、主軸12を中間回転速度Vi(=Vb)に到達させたときの残回転量Srが主軸12の位置決め回転量Sposに等しいとした場合、時間T3における主軸12の残回転量(つまり現在位置)Srと現在速度Vc(rev/s)と現在減速度Ac(rev/s
2)との関係は、以下の式で表わされる。
公式:Vc
2−Vb
2=2×|Ac|×(Sr−Spos)から、
|Ac|=(Vc
2−Vb
2)/(2×(Sr−Spos))
【0028】
時間T3(ステップS5)において、主軸制御部18(減速動作制御部38)は、主軸12の残回転量Srと現在速度Vcとを常時監視して、上記した現在減速度Acに速度指令更新周期Tctl(sec)(つまり減速動作制御部38が速度指令を作成して主軸12に通知する周期)を乗じた値を現在速度Vc(つまり直前の速度指令Cv)から減算し、新たな速度指令Cvとする。速度指令Cvは以下の式で表わされる。
Cv=Vc−Ac×Tctl
この式に従って、減速動作制御部38は、速度指令Cvを速度指令更新周期Tctlで逐次更新する。主軸12は、点Aから点Bに至る間、逐次更新される速度指令Cvに従って、減速度Acを徐々に増加させながら減速回転し、中間回転速度Vi(=Vb)まで減速したと同時に点Bに到達する(
図3)。
【0029】
再び
図2を参照すると、ステップS6で、主軸制御部18(位置決め動作制御部40)は、主軸12の残回転量Srの絶対値|Sr|が、|Sr|=Vb
2/(2×|A0|)(以下、等式1と称する)を満たしているか否か(つまり主軸12の回転位置が点Bに到達したか否か)を判断する。等式1を満たしている場合、ステップS7で、主軸制御部18(位置決め動作制御部40)は、主軸12を最大減速度A0で減速回転してSr=0の点(つまり目標ねじ深さ)に到達させるための指令(
図3の動作例では、主軸12を目標ねじ深さで停止させるための指令)を作成し、この指令により主軸12を位置制御する。等式1を満たしていない場合は、等式1が満たされるまで判断を繰り返す。主軸12は、主軸制御部18(位置決め動作制御部40)からの指令に従い、点Bから目標ねじ深さに向かって最大減速度A0で減速回転して切削動作を実行し、Sr=0になった時点で目標ねじ深さに到達する(
図3の動作例では、目標ねじ深さで停止する)。このように、点Bから目標ねじ深さに到達するまでの時間T4(
図3)では、主軸制御部18は主軸12を位置制御することになる(位置指令から求められた定加速度状の速度指令を破線で例示する)。
【0030】
ステップS3で、現在速度Vcが最高回転速度V0に到達していると判断した場合、ステップS8で、主軸制御部18は、最高回転速度V0に到達したときの主軸12の、加工開始位置からの回転量(つまり回転位置FBS)を、加速時回転量Saとして保存する。そしてステップS9で、主軸制御部18は、残回転量Srが加速時回転量Sa以下になっているか否かを判断する。SrがSa以下になっている場合、ステップS5に進み、次いでステップS6及びステップS7を実行して、目標ねじ深さまでの切削動作を行う。SrがSa以下になっていない場合は、SrがSa以下になるまで判断を繰り返す。
【0031】
ここで
図4を参照すると、残回転量Srが総回転量S0の1/2になる前に現在速度Vcが最高回転速度V0に到達した場合(ステップS3の判断がNOの場合)の、主軸12の切削動作の一例が、速度−時間曲線(時間軸の上側の曲線)で示されている。
図4に示すように、ステップS2における主軸12の最大能力の加速回転が時間T1及びT2で実行され、時間T1(加工開始位置での始動から速度Vbに達するまでの時間)の一定加速度の間に最大加速度A0が検出される。主軸12の回転速度がVbを超えると、主軸モータの特性により、主軸12の加速度が最大加速度A0から漸減する。主軸12の現在速度Vcは、残回転量Srが総回転量S0の1/2になる前に最高回転速度V0に到達し、その後、時間T5に渡り一定速度V0(加速度零)で主軸12が回転して切削動作を継続する。残回転量Srが加速時回転量Saに等しくなった時点A(ステップS9の判断がYESとなった時点)で、主軸12の動作は加速回転から減速回転に変わる。次いで、時間T3(ステップS5)で、前述した減速度Acを漸増させながらの主軸12の減速回転(速度制御)が実行され、時間T4(ステップS7)で、最大減速度A0での主軸12の減速回転(位置制御)が実行される。時間T1、T2、T3及びT4では、主軸12は
図3に示す動作と同様に動作する。
【0032】
図3及び
図4のいずれの動作例においても、主軸制御部18が主軸12の加工開始位置から目標ねじ深さまでの回転動作を制御する間、送り軸制御部22(
図1)は、主軸12の回転位置FBSを用いて、送り軸14を主軸12の動作に追従するように制御して送り動作を行わせる。数値制御部16は、主軸制御部18がステップS1〜ステップS9の処理を実行する間、主軸制御部18から通知される残回転量Srを監視して、残回転量Srが第1の所定値(零に近い極小値)以下になったときに、タップ加工が目標ねじ深さに達したと判断する。
【0033】
工作機械を用いたタップ加工においては、ワークの下穴を目標ねじ深さまで切削加工した後、工具をワークから引き抜くための主軸12の戻り動作を実行する必要がある。上記実施形態において、位置決め動作制御部40が主軸12を目標ねじ深さで停止させるように構成される場合、制御装置10は、この戻り動作に際し、加工開始位置から目標ねじ深さまでの上記した切削動作制御と同様の制御を行うことができる。
図5は、制御装置10が実行する工作機械制御方法の一実施形態としての、タップ加工における主軸12の戻り動作制御方法を示す。また
図3及び
図4は、前述した主軸12の切削動作に加えて、同切削動作に対応する主軸12の戻り動作を、速度−時間曲線(時間軸の下側の曲線)で示している。以下、
図3〜
図5を
図1と共に参照して、制御装置10による戻り動作の制御フローの一例を説明する。
【0034】
数値制御部16(主軸指令出力部26)は、
図2の処理フローでタップ加工が目標ねじ深さに達したと判断した後に、ステップS10で、プログラム解釈部24が解釈したタップ加工プログラムPの指令値から、目標ねじ深さから戻り完了位置に至る間の主軸12の総戻り回転量S0′と最高戻り回転速度V0′とを取得して、これら総戻り回転量S0′と最高戻り回転速度V0′とを主軸指令CSとして主軸制御部18に送る。戻り動作の主軸指令CSも、主軸12を戻り完了位置まで回転運動させるための位置指令や加減速指令を含まないものとなっている。なお戻り完了位置は、加工開始位置と同一であってもよいし、加工開始位置と異なっていてもよい。戻り完了位置が加工開始位置と同一の場合、総戻り回転量S0′は切削時の総回転量S0と等しくなるが、最高戻り回転速度V0′は切削時の最高回転速度V0に必ずしも一致しない。また、総戻り回転量S0′及び最高戻り回転速度V0′が切削時の総回転量S0及び最高回転速度V0と同一の場合、戻り動作は切削動作と実質的に同じ速度−時間曲線を示すが、総戻り回転量S0′及び最高戻り回転速度V0′が切削時の総回転量S0及び最高回転速度V0と異なる場合、戻り動作は切削動作と必ずしも同じ速度−時間曲線を示さない。
【0035】
ステップS11で、主軸制御部18(初期動作制御部30、最大加速度検出部32、残回転量検出部34)は以下の処理を行う。初期動作制御部30は、最高戻り回転速度V0′を目標値とする速度制御により、目標ねじ深さ(速度零)から主軸12を、駆動源の許容電流を最大限に利用した最大能力で加速逆回転させて戻り動作を実行する。最大加速度検出部32は、目標ねじ深さからの最大能力での加速逆回転中に回転位置FBSに基づき主軸12の逆回転の最大加速度A0′を検出する。残回転量検出部34は、総戻り回転量S0′と回転位置FBSとに基づき、現在位置から戻り完了位置に至るまでの主軸12の残戻り回転量Sr′を逐次検出する。検出した残戻り回転量Sr′は、検出の都度、主軸制御部18が数値制御部16に通知する。
【0036】
次にステップS12で、主軸制御部18(現在速度検出部36)は、最大能力での加速逆回転中に回転位置FBSに基づき逆回転の現在速度Vc′を逐次検出し、検出の都度、現在速度Vc′が最高戻り回転速度V0′に到達していないか否かを判断する。Vc′がV0′に到達していない場合、ステップS13で、主軸制御部18は、残戻り回転量Sr′が総戻り回転量S0′の1/2以下になっているか否かを判断する。Sr′がS0′の1/2以下になっている場合、ステップS14で、主軸制御部18(減速動作制御部38)は、最大能力での加速逆回転の後に、速度制御により主軸12を減速逆回転させて戻り動作を継続実行し、中間戻り回転速度Vi′に到達させる。Sr′がS0′の1/2以下になっていない場合はステップS12に戻る。
【0037】
ここで
図3を参照すると、逆回転の現在速度Vc′が最高戻り回転速度V0′に到達する前に残戻り回転量Sr′が総戻り回転量S0′の1/2になった場合(ステップS12及びS13の判断がいずれもYESの場合)の、主軸12の戻り動作の一例が、速度−時間曲線(時間軸の下側の曲線)で示されている。ステップS11における主軸12の最大能力の加速逆回転は、
図3の時間T6及びT7で実行され、時間T6(目標ねじ深さでの始動から前述した速度Vb(但し逆回転)に達するまでの時間)の一定加速度の間に、逆回転の最大加速度A0′が検出される。主軸12の回転速度がVbを超えると、主軸モータの特性により、主軸12の加速度は最大加速度A0′から漸減する。残戻り回転量Sr′が総戻り回転量S0′の1/2になった(つまり戻り開始からの回転量が総戻り回転量S0′の1/2になった)時点C(ステップS13の判断がYESとなった時点)で、主軸12の動作は加速逆回転から減速逆回転に変わり、時間T8で、ステップS14における主軸12の減速逆回転が実行される。
【0038】
時間T8(ステップS14)においても、主軸制御部18(残回転量検出部34、現在速度検出部36)は、主軸12の現在位置からの残戻り回転量Sr′及び逆回転の現在速度Vc′を逐次検出する。そして主軸制御部18(減速動作制御部38)は、時間T8(ステップS14)において、速度制御により点Cから主軸12を中間戻り回転速度Vi′まで減速
逆回転させるが、この間、減速逆回転のための速度指令Cv′を、残戻り回転量Sr′と逆回転の現在速度Vc′とを用いて逐次更新する(速度指令Cv′を
図3に破線で示す)。具体的には、減速動作制御部38は、主軸12を所定の中間戻り回転速度Vi′に到達させたときの主軸12の残戻り回転量Sr′が、位置決め動作制御部40による位置制御の下で戻り完了位置で停止するまでの主軸12の位置決め戻り回転量Spos′と等しくなるように、速度指令Cv′を逐次更新して、逐次更新される速度指令Cv′により主軸12を減速逆回転させる。
【0039】
ここで、位置決め回転量Spos′は、前述した位置決め回転量Sposと同様に以下の式により求められる。
Spos′=Vb
2/(2×|A0′|)
なお、この実施形態では、点Dから戻り完了位置までの位置制御の演算を容易にするべく、主軸12を点Dから一定の最大減速度A0′(逆回転の最大加速度A0′に対応(負の値))で減速することを前提としている。したがって点Dでは、主軸12の現在速度Vc′はVbに達しているものとする(つまり中間戻り回転速度Vi′=Vb)。
【0040】
上記前提の下で、主軸12を中間戻り回転速度Vi′(=Vb)に到達させたときの残戻り回転量Sr′が主軸12の位置決め戻り回転量Spos′に等しいとした場合、時間T8における主軸12の残戻り回転量(つまり現在位置)Sr′と現在速度Vc′(rev/s)と現在減速度Ac′(rev/s
2)との関係は、以下の式で表わされる。
公式:Vc′
2−Vb
2=2×|Ac′|×(Sr′−Spos′)から、
|Ac′|=(Vc′
2−Vb
2)/(2×(Sr′−Spos′))
【0041】
時間T8(ステップS14)において、主軸制御部18(減速動作制御部38)は、主軸12の残戻り回転量Sr′と逆回転の現在速度Vc′とを常時監視して、上記した現在減速度Ac′に速度指令更新周期Tctl(sec)を乗じた値を現在速度Vc′(つまり直前の速度指令Cv′)から減算し、新たな速度指令Cv′とする。速度指令Cv′は以下の式で表わされる。
Cv′=Vc′−Ac′×Tctl
この式に従って、減速動作制御部38は、速度指令Cv′を速度指令更新周期Tctlで逐次更新する。主軸12は、点Cから点Dに至る間、逐次更新される速度指令Cv′に従って、減速度Ac′を徐々に増加させながら減速逆回転し、中間戻り回転速度Vi′(=Vb)まで減速したと同時に点Dに到達する(
図3)。
【0042】
再び
図5を参照すると、ステップS15で、主軸制御部18(位置決め動作制御部40)は、主軸12の残戻り回転量Sr′の絶対値|Sr′|が、|Sr′|=Vb
2/(2×|A0′|)(以下、等式2と称する)を満たしているか否か(つまり主軸12の回転位置が点Dに到達したか否か)を判断する。等式2を満たしている場合、ステップS16で、主軸制御部18(位置決め動作制御部40)は、主軸12を最大減速度A0′で減速逆回転してSr′=0の点(つまり戻り完了位置)で停止させるための指令を作成し、この指令により主軸12を位置制御する。等式2を満たしていない場合は、等式2が満たされるまで判断を繰り返す。主軸12は、主軸制御部18(位置決め動作制御部40)からの指令に従い、点Dから戻り完了位置に向かって最大減速度A0′で減速逆回転して戻り動作を実行し、Sr′=0になった時点で戻り完了位置に到達して停止する。このように、点Dから戻り完了位置に到達するまでの時間T9(
図3)では、主軸制御部18は主軸12を位置制御することになる(位置指令から求められた定加速度状の速度指令を破線で例示する)。
【0043】
ステップS12で、現在速度Vc′が最高戻り回転速度V0′に到達していると判断した場合、ステップS17で、主軸制御部18は、最高戻り回転速度V0′に到達したときの主軸12の、目標ねじ深さからの回転量(つまり回転位置FBS)を、戻り動作の加速時回転量Sa′として保存する。そしてステップS18で、主軸制御部18は、残戻り回転量Sr′が加速時回転量Sa′以下になっているか否かを判断する。Sr′がSa′以下になっている場合、ステップS14に進み、次いでステップS15及びステップS16を実行して、戻り完了位置までの戻り動作を行う。Sr′がSa′以下になっていない場合は、Sr′がSa′以下になるまで判断を繰り返す。
【0044】
ここで
図4を参照すると、残戻り回転量Sr′が総戻り回転量S0′の1/2になる前に逆回転の現在速度Vc′が最高戻り回転速度V0′に到達した場合(ステップS12の判断がNOの場合)の、主軸12の戻り動作の一例が、速度−時間曲線(時間軸の下側の曲線)で示されている。
図4に示すように、ステップS11における主軸12の最大能力の加速逆回転が時間T6及びT7で実行され、時間T6(目標ねじ深さでの始動から前述した速度Vb(但し逆回転)に達するまでの時間)の一定加速度の間に、逆回転の最大加速度A0′が検出される。主軸12の回転速度がVbを超えると、主軸モータの特性により、主軸12の加速度が最大加速度A0′から漸減する。主軸12の現在速度Vc′は、残戻り回転量Sr′が総戻り回転量S0′の1/2になる前に最高戻り回転速度V0′に到達し、その後、時間T10に渡り一定速度V0′(加速度零)で主軸12が逆回転して戻り動作を継続する。残戻り回転量Sr′が加速時回転量Sa′に等しくなった時点C(ステップS18の判断がYESとなった時点)で、主軸12の動作は加速逆回転から減速逆回転に変わる。次いで、時間T8(ステップS14)で、前述した減速度Ac′を漸増させながらの主軸12の減速逆回転(速度制御)が実行され、時間T9(ステップS16)で、最大減速度A0′での主軸12の減速
逆回転(位置制御)が実行される。時間T6、T7、T8及びT9では、主軸12は
図3に示す動作と同様に動作する。
【0045】
図3及び
図4のいずれの動作例においても、主軸制御部18が主軸12の目標ねじ深さから戻り完了位置までの逆回転動作を制御する間、送り軸制御部22(
図1)は、主軸12の回転位置FBSを用いて、送り軸14を主軸12の動作に追従するように制御して逆送り動作を行わせる。数値制御部16は、主軸制御部18がステップS10〜ステップS18の処理を実行する間、主軸制御部18から通知される残戻り回転量Sr′を監視して、残戻り回転量Sr′が第2の所定値(零に近い極小値)以下になったときに、戻り動作が完了して工具がワークから引き抜かれたと判断する。
【0046】
図1〜
図5に示す実施形態による制御装置10は、主軸12に加工開始位置から目標ねじ深さまでの切削動作を行わせる際に、数値制御部16が主軸制御部18に対して、主軸12の総回転量S0と最高回転速度V0のみを主軸指令CSとして通知し、主軸制御部18がこの主軸指令CSに従い、最高回転速度V0を目標に許容電流を最大限に使用した最大出力で主軸12を加速させて切削動作を実行するとともに、その間の最大加速度A0と逐次検出する主軸12の残回転量Sr及び現在速度Vcとに基づき、主軸12を最大減速度A0で減速させながら目標ねじ深さまでの切削動作を最短時間で継続実行して目標ねじ深さに到達させるように構成されている。したがって制御装置10によれば、数値制御部16に対し主軸12の出力特性に対応する加減速指令を作成するためのパラメータの設定や調整等を行う必要がなく、より簡単な構成で、主軸12の加速能力を最大限に発揮させる加減速制御を行って、タップ加工のサイクルタイムを短縮することが可能になる。
【0047】
しかも制御装置10は、主軸12の最大能力での加速回転の後に、主軸12の残回転量Srと現在速度Vcとに応じて、減速回転のための速度指令Cvを逐次更新し、漸増する減速度Acで点Aから主軸12を減速回転させて、中間回転速度Vi(=Vb)に達したときの残回転量Srが位置決め回転量Sposと等しくなる速度制御を実行するようにしたから、点Bから主軸12を最大減速度A0で減速させる位置制御への、速度制御からの切り替えを、待ち時間を要することなく円滑に行うことができる。この待ち時間は、点Aから速度Vbを一定の目標値として主軸12を最大能力で減速回転する場合に、その後の位置制御を正確に点Bから開始できるようにするべく、速度Vbへの到達後に主軸12を僅かに定速回転させる間に消費されるものである。したがって制御装置10によれば、主軸12の減速回転中の速度制御から位置制御への切り替えに待ち時間を要しないので、タップ加工のサイクルタイムをさらに短縮することができ、また、速度制御から位置制御への切替時における加速度の急激な変化を回避できるので、加速度の変化に起因して主軸12に生じ得る機械構造上の衝撃を軽減できる。
【0048】
また、上記実施形態による制御装置10は、主軸12に目標ねじ深さから戻り完了位置までの戻り動作を行わせる際に、数値制御部16が主軸制御部18に対して、主軸12の総戻り回転量S0′と最高戻り回転速度V0′のみを主軸指令CSとして通知し、主軸制御部18がこの主軸指令CSに従い、最高戻り回転速度V0′を目標に許容電流を最大限に使用した最大出力で主軸12を加速させて戻り動作を実行するとともに、その間の最大加速度A0′と逐次検出する主軸12の残戻り回転量Sr′及び現在速度Vc′とに基づき、主軸12を最大減速度A0′で減速させながら戻り完了位置までの戻り動作を最短時間で継続実行して戻り完了位置で停止させるように構成されている。したがって制御装置10によれば、数値制御部12に対し主軸12の出力特性に対応する加減速指令を作成するためのパラメータの設定や調整等を行う必要がなく、より簡単な構成で、主軸12の加速能力を最大限に発揮させる加減速制御を行って、タップ加工のサイクルタイムを短縮することが可能になる。
【0049】
しかも制御装置10は、主軸12の最大能力での加速逆回転の後に、主軸12の残戻り回転量Sr′と現在速度Vc′とに応じて、減速逆回転のための速度指令Cv′を逐次更新し、漸増する減速度Ac′で点Cから主軸12を減速逆回転させて、中間戻り回転速度Vi′(=Vb)に達したときの残戻り回転量Sr′が位置決め戻り回転量Spos′と等しくなる速度制御を実行するようにしたから、点Dから主軸12を最大減速度A0′で減速させる位置制御への、速度制御からの切り替えを、前述した待ち時間を要することなく円滑に行うことができる。したがって制御装置10によれば、主軸12の減速逆回転中の速度制御から位置制御への切り替えに待ち時間を要しないので、タップ加工のサイクルタイムをさらに短縮することができ、また、速度制御から位置制御への切替時における加速度の急激な変化を回避できるので、加速度の変化に起因して主軸12に生じ得る機械構造上の衝撃を軽減できる。
【0050】
図1に示す制御装置10は、上記した工作機械制御方法とは異なる工作機械制御方法を実行できる。
図6は、制御装置10が実行できる工作機械制御方法の他の実施形態としての、タップ加工における主軸12の切削及び戻り動作制御方法を示す。また
図7及び
図8は、それぞれ
図3及び
図4に対応する図であって、
図6の実施形態における主軸12の切削及び戻り動作の2つの例を示す。以下、
図1、
図2、
図5〜
図8を参照して、他の実施形態による工作機械制御方法(タップ加工の切削及び戻り動作制御方法)、並びに当該方法を実行する制御装置10の構成を説明する。
【0051】
概説すると、
図6〜
図8の実施形態において、制御装置10は、主軸12を加工開始位置(回転位置)から目標ねじ深さ(回転位置)に到達させるまでの間は、
図2に示すタップ加工の切削動作制御方法と同様のステップを実行して、主軸12の切削動作を制御する。そして制御装置10の主軸制御部18(位置決め動作制御部
40)は、主軸12を目標ねじ深さに到達させたときに、主軸12を目標ねじ深さで停止させることなく(つまり加速度を零にすることなく)、最大能力での減速回転における最大減速度A0(負の値)と同じ逆回転の最大加速度A0′(負の値)で、主軸12を、目標ねじ深さよりも予め定めた回転数だけ戻った回転位置(以下、初期戻り位置)まで、最大能力で加速逆回転させるように構成される。主軸12を初期戻り位置まで加速逆回転させた後は、制御装置10は、
図5に示すタップ加工の戻り動作制御方法と同様のステップを実行して、主軸12の戻り動作を制御する。この実施形態の構成を以下に詳述するが、
図2及び
図5のフローチャートの構成要素に対応する構成要素の説明は適宜省略する。
【0052】
図6に示すように、制御装置10はまずステップU1で、
図2に示すステップS1〜S6、S8、S9を実行する。すなわち、数値制御部16(主軸指令出力部26)は主軸制御部18に、主軸12の総回転量S0と最高回転速度V0とを指令する(ステップS1)。主軸制御部18(初期動作制御部30、最大加速度検出部32、残回転量検出部34)は、加工開始位置から、最高回転速度V0を目標速度として主軸12を最大能力で加速回転させて切削動作を実行し、その間の最大加速度A0及び残回転量Srを検出する(ステップS2)。次いで主軸制御部18(現在速度検出部36)は、最大能力での加速回転中に現在速度Vcを逐次検出し、現在速度Vcが最高回転速度V0に到達していないか否かを判断する(ステップS3)。VcがV0に到達していない場合、主軸制御部18は、残回転量Srが総回転量S0の1/2以下になっているか否かを判断し(ステップS4)、SrがS0の1/2以下になっている場合、主軸制御部18(減速動作制御部38)は、主軸12を中間回転速度Vi(=Vb)まで減速回転させて切削動作を継続実行する(ステップS5)。他方、現在速度Vcが最高回転速度V0に到達していると判断(ステップS3)した場合、主軸制御部18は、最高回転速度V0に到達したときの主軸12の、加工開始位置からの回転量(つまり回転位置FBS)を、加速時回転量Saとして保存し(ステップS8)、残回転量Srが加速時回転量Sa以下になっているか否かを判断する(ステップS9)。SrがSa以下になっている場合、主軸制御部18(減速動作制御部38)は、主軸12を中間回転速度Vi(=Vb)まで減速回転させて切削動作を継続実行する(ステップS5)。次いで主軸制御部18(位置決め動作制御部40)は、主軸12の現在位置における残回転量Srが、|Sr|=Vb
2/(2×|A0|)(等式1)を満たしているか否かを判断する(ステップS6)。
【0053】
ここで
図7を参照すると、
図6のステップU1において、切削動作中に現在速度Vcが最高回転速度V0に到達する前に残回転量Srが総回転量S0の1/2になった場合(
図2のステップS3及びS4の判断がいずれもYESの場合)の、主軸12の切削動作の一例が、速度−時間曲線(時間軸の上側の曲線)で示されている。
図7の速度−時間曲線における時間T1、T2、T3及びT4の主軸12の動作は、前述した
図3の速度−時間曲線における時間T1、T2、T3及びT4の主軸12の動作に対応する。すなわち
図7に示すように、時間T1及びT2で、主軸12の最大能力の加速回転(速度制御)が実行され、残回転量Srが総回転量S0の1/2になった時点A(ステップS4の判断がYESとなった時点)で、主軸12の動作は加速回転から減速回転に変わり、時間T3で、漸増する減速度Acでの主軸12の減速回転(速度制御)が実行され、時間T4で、最大減速度A0での主軸12の減速回転(位置制御)が実行される。
【0054】
制御装置10がステップU1(
図2のステップS1→S2→S3→S4→S5→S6)を実行することにより、主軸12は、
図7に示す時間T1、T2、T3及びT4において、上記したように
図3に示す時間T1、T2、T3及びT4の動作と同様に動作する。但し主軸制御部18(位置決め動作制御部40)は、
図2のステップS6で、主軸12の残回転量Srが前述した等式1を満たしている(つまり主軸12の回転位置が点Bに到達した)と判断したときに、
図6のステップU2で、主軸12を最大減速度A0で減速回転してSr=0の点(つまり目標ねじ深さ)に到達させた後も引き続き最大減速度A0と同じ逆回転の最大加速度A0′(つまりA0=A0′)で主軸12を初期戻り位置(
図7の点E)まで加速逆回転させるための指令を作成し、この指令により主軸12を位置制御する。
【0055】
図7に示すように、主軸12は、主軸制御部18(位置決め動作制御部40)からの指令に従い、点Bから目標ねじ深さに向かって最大減速度A0で減速回転しながら切削動作を遂行し、Sr=0になった時点で目標ねじ深さに到達する(時間T4)。目標ねじ深さに到達した瞬間、主軸12の現在速度Vcは零になるが、さらに主軸12は、主軸制御部18(位置決め動作制御部40)からの指令に従い、最大減速度A0を維持して逆回転の最大加速度A0′を生じ、現在速度Vc(負の値)を徐々に増加させる加速逆回転により、時間T6に渡って、目標ねじ深さから点Eに向かう戻り動作を遂行する。このように、点Bから目標ねじ深さに到達するまでの時間T4及び目標ねじ深さから点Eに到達するまでの時間T6において、主軸制御部18は主軸12を位置制御し(ステップU2)、主軸12を一定の加速度(すなわち最大減速度A0及び逆回転の最大加速度A0′)で連続的に動作させる(位置指令から求められた定加速度状の速度指令を破線で例示する)。なお主軸12は、目標ねじ深さで現在速度Vcが零になるが、これは瞬時的なものであって、目標ねじ深さで停止するものではない。
【0056】
主軸12の初期戻り位置(点E)は任意に設定できる。例えば
図7に示すように、切削動作中に最大減速度A0での減速回転(位置制御)を開始した点Bと同様に、主軸12の逆回転の現在速度Vc′が所定速度Vbに達する位置を、点Eとすることができる。この場合の点Eは、目標ねじ深さから|Sr|=Vb
2/(2×|A0|)に相当する回転量だけ逆回転した位置となる。時間T6における主軸12の位置制御による戻り動作自体は、
図3に示す時間T6における主軸12の速度制御による戻り動作に類似するが、制御の特性として、速度制御による最大能力の加速回転時の最大加速度A0(時間T1)に比べて、位置制御による最大能力の減速回転時の最大減速度A0(時間T4)は若干低く抑えられ、その結果、時間T6における逆回転の最大加速度A0′も、時間T1の最大加速度A0より若干低くなる傾向がある。
【0057】
他方、
図8を参照すると、
図6のステップU1において、切削動作中に残回転量Srが総回転量S0の1/2になる前に現在速度Vcが最高回転速度V0に到達した場合(
図2のステップS3の判断がNOの場合)の、主軸12の切削動作の一例が、速度−時間曲線(時間軸の上側の曲線)で示されている。
図8の速度−時間曲線における時間T1、T2、T5、T3及びT4の主軸12の動作は、前述した
図4の速度−時間曲線における時間T1、T2、T5、T3及びT4の主軸12の動作に対応する。すなわち
図8に示すように、時間T1及びT2で、主軸12の最大能力の加速回転(速度制御)が実行されて、主軸12の現在速度Vcが最高回転速度V0に到達し、その後、時間T5に渡り一定速度V0で主軸12が回転して切削動作を継続し、残回転量Srが加速時回転量Saに等しくなった時点A(ステップS9の判断がYESとなった時点)で、主軸12の動作は加速回転から減速回転に変わり、時間T3で、漸増する減速度Acでの主軸12の減速回転(速度制御)が実行され、時間T4で、最大減速度A0での主軸12の減速回転(位置制御)が実行される。
【0058】
制御装置10がステップU1(
図2のステップS1→S2→S3→S8→S9→S5→S6)を実行することにより、主軸12は、
図8に示す時間T1、T2、T5、T3及びT4において、上記したように
図4に示す時間T1、T2、T5、T3及びT4の動作と同様に動作する。但し主軸制御部18(位置決め動作制御部40)は、
図2のステップS6で、主軸12の残回転量Srが前述した等式1を満たしている(つまり主軸12の回転位置が点Bに到達した)と判断したときに、
図6のステップU2で、主軸12を最大減速度A0で減速回転してSr=0の点(つまり目標ねじ深さ)に到達させた後も引き続き最大減速度A0と同じ逆回転の最大加速度A0′(つまりA0=A0′)で主軸12を初期戻り位置(
図8の点E)まで加速逆回転させるための指令を作成し、この指令により主軸12を位置制御する。
【0059】
図8に示すように、主軸12は、主軸制御部18(位置決め動作制御部40)からの指令に従い、点Bから目標ねじ深さに向かって最大減速度A0で減速回転しながら切削動作を遂行し、Sr=0になった時点で目標ねじ深さに到達する(時間T4)。目標ねじ深さに到達した瞬間、主軸12の現在速度Vcは零になるが、さらに主軸12は、主軸制御部18(位置決め動作制御部40)からの指令に従い、最大減速度A0を維持して逆回転の最大加速度A0′を生じ、現在速度Vc(負の値)を徐々に増加させる加速逆回転により、時間T6に渡って、目標ねじ深さから点Eに向かう戻り動作を遂行する。このように、点Bから目標ねじ深さに到達するまでの時間T4及び目標ねじ深さから点Eに到達するまでの時間T6において、主軸制御部18は主軸12を位置制御し(ステップU2)、主軸12を一定の加速度(すなわち最大減速度A0及び逆回転の最大加速度A0′)で連続的に動作させる(位置指令から求められた定加速度状の速度指令を破線で例示する)。このように、
図8に示す時間T4及びT6における主軸12の動作は、
図7に示す時間T4及びT6における主軸12の動作に対応する。
【0060】
図7及び
図8のいずれの動作例においても、主軸制御部18が主軸12の加工開始位置から目標ねじ深さまでの回転動作を制御する間、送り軸制御部22は、主軸12の回転位置FBSを用いて、送り軸14を主軸12の動作に追従するように制御して送り動作を行わせる。数値制御部16は、主軸制御部18が上記したステップU1及びステップU2の処理を実行する間、主軸制御部18から通知される残回転量Srを監視して、残回転量Srが第1の所定値(零に近い極小値)以下になったときに、タップ加工が目標ねじ深さに達したと判断する。そして数値制御部16(主軸指令出力部26)は、タップ加工が目標ねじ深さに達したと判断した後に、ステップU2と並行して、ステップU3(
図6)で、プログラム解釈部24が解釈したタップ加工プログラムPの指令値から、目標ねじ深さから戻り完了位置に至る間の主軸12の総戻り回転量S0′と最高戻り回転速度V0′とを取得して、これら総戻り回転量S0′と最高戻り回転速度V0′とを主軸指令CSとして主軸制御部18に送る。
【0061】
主軸12が初期戻り位置(点E)に到達した後、ステップU4(
図6)で、主軸制御部18(初期動作制御部30)は、最高戻り回転速度V0′を目標速度として初期戻り位置(点E)から戻り完了位置に向かって主軸12を、駆動源の許容電流を最大限に利用した最大能力で加速逆回転させて戻り動作を実行する。また主軸制御部18(残回転量検出部34)は、総戻り回転量S0′と回転位置FBSとに基づき、現在位置から戻り完了位置に至るまでの主軸12の残戻り回転量Sr′を逐次検出する。検出した残戻り回転量Sr′は、検出の都度、主軸制御部18が数値制御部16に通知する。この実施形態では、最大加速度検出部32は、時間T6の主軸12の
逆回転の最大加速度を検出せず、時間T4の最大能力での減速回転における最大減速度A0(時間T1における最大加速度A0に相当)を、主軸12が目標ねじ深さから加速逆回転する間の逆回転の最大加速度A0′として取得する。
【0062】
次に制御装置10は、ステップU5(
図6)で、
図5に示すステップS12〜S18を実行する。すなわち、主軸制御部18(現在速度検出部36)は、最大能力での加速逆回転中に回転位置FBSに基づき逆回転の現在速度Vc′を逐次検出し、現在速度Vc′が最高戻り回転速度V0′に到達していないか否かを判断する(ステップS12)。Vc′がV0′に到達していない場合、主軸制御部18は、残戻り回転量Sr′が総戻り回転量S0′の1/2以下になっているか否かを判断し(ステップS13)、Sr′がS0′の1/2以下になっている場合、主軸制御部18(減速動作制御部38)は、主軸12を中間戻り回転速度Vi′(=Vb)まで減速逆回転させて戻り動作を継続実行する(ステップS14)。他方、現在速度Vc′が最高戻り回転速度V0′に到達していると判断(ステップS12)した場合、主軸制御部18は、最高戻り回転速度V0′に到達したときの主軸12の、目標ねじ深さからの回転量(つまり回転位置FBS)を、戻り動作の加速時回転量Sa′として保存し(ステップS17)、残戻り回転量Sr′が加速時回転量Sa′以下になっているか否かを判断する(ステップS18)。Sr′がSa′以下になっている場合、主軸制御部18(減速動作制御部38)は、主軸12を中間戻り回転速度Vi′(=Vb)まで減速逆回転させて戻り動作を継続実行する(ステップS14)。その後、主軸制御部18(位置決め動作制御部40)は、主軸12の現在位置における残戻り回転量Sr′が、|Sr′|=Vb
2/(2×|A0′|)(等式2)を満たしているか否かを判断し(ステップS15)、等式2を満たしている場合、主軸12を最大減速度A0′(時間T6における逆回転の最大加速度A0′に対応する値)で減速逆回転してSr′=0の点(つまり戻り完了位置)で停止させるための指令を作成し、この指令により主軸12を位置制御する(ステップS16)。主軸12は、主軸制御部18(位置決め動作制御部40)からの指令に従い、戻り完了位置に向かって最大減速度A0′で減速逆回転して戻り動作を実行し、Sr′=0になった時点で停止する。
【0063】
ここで
図7を参照すると、
図6のステップU5において、逆回転の現在速度Vc′が最高戻り回転速度V0′に到達する前に残戻り回転量Sr′が総戻り回転量S0′の1/2になった場合(
図5のステップS12及びS13の判断がいずれもYESの場合)の、主軸12の戻り動作の一例が、速度−時間曲線(時間軸の下側の曲線)で示されている。
図7の速度−時間曲線における時間T7、T8及びT9の主軸12の動作は、前述した
図3の速度−時間曲線における時間T7、T8及びT9の主軸12の動作に対応する。
図7の動作例では、主軸12は、時間T6で目標ねじ深さから初期戻り位置(点E)に到達した後に、逆回転の現在速度Vc′がVb(負の値)を超えるので、最大能力での加速逆回転において、主軸モータの特性により、主軸12の逆回転の加速度がA0′から漸減する(時間T7)。残戻り回転量Sr′が総戻り回転量S0′の1/2になった時点C(
図5のステップS13の判断がYESとなった時点)で、主軸12の動作は加速逆回転から減速逆回転に変わり、時間T8で、漸増する減速度Ac′での主軸12の減速逆回転(速度制御)が実行され、時間T9で、最大減速度A0′での主軸12の減速逆回転(位置制御)が実行される。
【0064】
他方、
図8を参照すると、
図6のステップU5において、残戻り回転量Sr′が総戻り回転量S0′の1/2になる前に逆回転の現在速度Vc′が最高戻り回転速度V0′に到達した場合(
図5のステップS12の判断がNOの場合)の、主軸12の戻り動作の一例が、速度−時間曲線(時間軸の下側の曲線)で示されている。
図8の速度−時間曲線における時間T7、T10、T8及びT9の主軸12の動作は、前述した
図4の速度−時間曲線における時間T7、T10、T8及びT9の主軸12の動作に対応する。
図8の動作例では、主軸12が初期戻り位置(点E)に到達した後の時間T7で、
図7の動作例と同様の漸減する加速度A0′による主軸12の最大能力の加速逆回転が実行され、主軸12の現在速度Vc′が最高戻り回転速度V0′に到達する。その後、時間T10に渡り一定速度V0′で主軸12が逆回転して戻り動作を継続する。残戻り回転量Sr′が加速時回転量Sa′に等しくなった時点C(
図5のステップS18の判断がYESとなった時点)で、主軸12の動作は加速逆回転から減速逆回転に変わり、時間T8で、漸増する減速度Ac′での主軸12の減速逆回転(速度制御)が実行され、時間T9で、最大減速度A0′での主軸12の減速逆回転(位置制御)が実行される。
【0065】
図7及び
図8のいずれの動作例においても、主軸制御部18が主軸12の目標ねじ深さから戻り完了位置までの逆回転動作を制御する間、送り軸制御部22は、主軸12の回転位置FBSを用いて、送り軸14を主軸12の動作に追従するように制御して逆送り動作を行わせる。数値制御部16は、主軸制御部18が上記したステップU3〜ステップU5の処理を実行する間、主軸制御部18から通知される残戻り回転量Sr′を監視して、残戻り回転量Sr′が第2の所定値(零に近い極小値)以下になったときに、戻り動作が完了して工具がワークから引き抜かれたと判断する。
【0066】
図6〜
図8に示す実施形態による制御装置10は、
図1〜
図5の実施形態による制御装置10と同様に、主軸12に加工開始位置から目標ねじ深さまでの切削動作を行わせる際に、数値制御部16が主軸制御部18に対して、主軸12の総回転量S0と最高回転速度V0のみを主軸指令CSとして通知し、主軸制御部18がこの主軸指令CSに従い、最高回転速度V0を目標に許容電流を最大限に使用した最大出力で主軸12を加速させて切削動作を実行するとともに、その間の最大加速度A0と逐次検出する主軸12の残回転量Sr及び現在速度Vcとに基づき、主軸12を最大減速度A0で減速させながら目標ねじ深さまでの切削動作を最短時間で継続実行して目標ねじ深さに到達させるように構成されている。したがって制御装置10によれば、数値制御部16に対し主軸12の出力特性に対応する加減速指令を作成するためのパラメータの設定や調整等を行う必要がなく、より簡単な構成で、主軸12の加速能力を最大限に発揮させる加減速制御を行って、タップ加工のサイクルタイムを短縮することが可能になる。
【0067】
しかも制御装置10は、主軸12の最大能力での加速回転の後に、主軸12の残回転量Srと現在速度Vcとに応じて、減速回転のための速度指令Cvを逐次更新し、漸増する減速度Acで点Aから主軸12を減速回転させて、中間回転速度Vi(=Vb)に達したときの残回転量Srが位置決め回転量Sposと等しくなる速度制御を実行するようにしたから、点Bから主軸12を最大減速度A0で減速させる位置制御への、速度制御からの切り替えを、前述した待ち時間を要することなく円滑に行うことができる。したがって制御装置10によれば、主軸12の減速回転中の速度制御から位置制御への切り替えに待ち時間を要しないので、タップ加工のサイクルタイムをさらに短縮することができ、また、速度制御から位置制御への切替時における加速度の急激な変化を回避できるので、加速度の変化に起因して主軸12に生じ得る機械構造上の衝撃を軽減できる。
【0068】
さらに、
図6〜
図8に示す実施形態による制御装置10は、主軸12に目標ねじ深さから戻り完了位置までの戻り動作を行わせる際に、切削動作の終了時に主軸12を目標ねじ深さで停止させることなく(つまり加速度を零にすることなく)、最大減速度A0(負の値)と同じ逆回転の最大加速度A0′(負の値)で、主軸12を所定の初期戻り位置まで位置制御で加速逆回転させるように構成されている。この構成により、主軸12の動作を切削動作から戻り動作に切り替えるときの加速度の変化が無くなるので、加速度の変化に起因して主軸12に生じ得る機械構造上の衝撃や、加速度の変化に起因して主軸12と送り軸14との間に生じ得る同期誤差の増加を、未然に回避することができる。
【0069】
図6〜
図8に示す実施形態による制御装置10では、主軸12を初期戻り位置まで位置制御で加速逆回転させた後は、数値制御部16が主軸制御部18に対して通知した主軸12の総戻り回転量S0′と最高戻り回転速度V0′のみの主軸指令CSに従い、主軸12を最大出力で加速させて戻り動作を実行するとともに、動作反転時の逆回転の最大加速度A0′に対応する最大減速度A0′で主軸12を減速させながら戻り完了位置までの戻り動作を最短時間で継続実行して戻り完了位置で停止させるように構成されている。したがって制御装置10によれば、数値制御部12に対し主軸12の出力特性に対応する加減速指令を作成するためのパラメータの設定や調整等を行う必要がなく、より簡単な構成で、主軸12の加速能力を最大限に発揮させる加減速制御を行って、タップ加工のサイクルタイムを短縮することが可能になる。
【0070】
ところで、工作機械を用いたタップ加工においては、制御装置がタップ加工の間に主軸の回転位置や送り軸の送り位置を継続して認識することが望ましい。
図9は、主軸及び送り軸の位置認識機能を付加した変形例による制御装置50の構成を機能ブロックで示す。制御装置50は、位置認識機能を付加した点以外は、
図1の制御装置10と同様の構成を有する。対応する構成要素には共通する参照符号を付して、その詳細な説明を省略する。
【0071】
制御装置50は、タップ加工プログラムPに基づき主軸指令CS及び送り軸指令CFを作成する数値制御部16と、主軸指令CSに従って主軸12の回転動作を制御する主軸制御部18と、主軸12の回転位置を検出する回転検出部20と、送り軸指令CFに従って、回転検出部20が検出した回転位置に基づき送り軸14の送り動作を制御する送り軸制御部22と、送り軸14の送り位置を検出する送り検出部52とを備える。数値制御部16の送り軸指令出力部28は、タップ加工の開始に先立ち、プログラム解釈部24が解釈したタップ加工プログラムPの指令値から、目標ねじ深さに相当する送り軸14の総送り量D0(mm)とねじピッチP(mm/rev)とを取得して、これら総送り量D0とねじピッチPとを送り軸指令CFとして送り軸制御部22に送る。このように送り軸指令CFは、送り軸14を目標ねじ深さまで送り運動させるための位置指令や加減速指令を含まないものとなっている。
【0072】
送り軸制御部22は、回転検出部20が検出した主軸12の回転位置FBSと、ねじピッチPと、送り検出部52が検出した送り軸14の送り位置FBF(すなわちフィードバック値)とに基づき、送り軸14の送り動作を制御する送り動作制御部54と、総送り量D0と送り位置FBFとに基づき、現在位置から目標ねじ深さに至るまでの送り軸14の残送り量Drを検出する残送り量検出部56とを備える。なお送り検出部52は、送り軸14の駆動装置の動作位置を検出するエンコーダ等の位置検出器(図示せず)の出力から、送り位置FBFを取得することができる。
【0073】
主軸制御部18の残回転量検出部34は、主軸12を加工開始位置から目標ねじ深さまで切削動作させる間、主軸12の現在位置からの残回転量Srを逐次検出し、検出の都度、残回転量Srを数値制御部16に通知する。送り軸制御部22の残送り量検出部56は、送り軸14を加工開始位置から目標ねじ深さまで送り動作させる間、送り軸14の現在位置からの残送り量Drを逐次検出し、検出の都度、残送り量Drを数値制御部16に通知する。さらに送り軸制御部22は、加工開始時の送り軸14の初期位置Di(送り位置FBF)を数値制御部16に通知する。
【0074】
数値制御部16は、残回転量Srに基づき主軸12の現在位置を認識するとともに残送り量Drに基づき送り軸14の現在位置を認識する位置認識部58を備える。位置認識部58は、タップ加工プログラムPから取得した主軸12の総回転量S0と、主軸制御部18から通知された主軸12の残回転量Srとを用いて、主軸12の現在位置を(S0−Sr)として認識する。また位置認識部58は、タップ加工プログラムPから取得した送り軸14の総送り量D0と、送り軸制御部22から通知された送り軸14の残送り量Dr及び初期位置Diとを用いて、送り軸14の現在位置を(D0−Dr+Di)として認識する。
【0075】
上記構成を有する制御装置50では、数値制御部16が生成する主軸指令CSに主軸12の位置指令や加減速指令が含まれず、また数値制御部16が生成する送り軸指令CFに送り軸14の位置指令や加減速指令が含まれない構成であっても、数値制御部16の位置認識部58は、主軸12及び送り軸14の現在位置を認識することができる。したがって制御装置50によれば、フィードバック制御を実行する主軸制御部18及び送り軸制御部22の上位コントローラである数値制御部16が、主軸12及び送り軸14の動作状態を、タップ加工の実行中に常に把握ないし管理でき、以て、タップ加工制御の信頼性を向上させることができる。
【0076】
制御装置50においては、タップ加工の戻り動作を制御する間も同様に、数値制御部16の位置認識部58が、主軸12及び送り軸14の現在位置を認識することができる。この場合、前述したように数値制御部16が、タップ加工が目標ねじ深さに達したと判断したときに、送り軸指令出力部28は、プログラム解釈部24が解釈したタップ加工プログラムPの指令値から、目標ねじ深さに相当する送り軸14の総戻り送り量D0′(mm)とねじピッチP(mm/rev)とを取得して、これら総戻り送り量D0′とねじピッチPとを送り軸指令CFとして送り軸制御部22に送る。通常、総戻り送り量D0′は総送り量D0に一致する。
【0077】
送り軸制御部22の送り動作制御部54は、主軸12の戻り動作の回転位置FBSと、ねじピッチPと、送り軸14の戻り動作の送り位置FBFとに基づき、送り軸14の戻り送り動作を制御する。送り軸制御部22の残送り量検出部56は、総戻り送り量D0′と送り位置FBFとに基づき、現在位置から戻り完了位置に至るまでの送り軸14の残戻り送り量Dr′を検出する。主軸制御部18の残回転量検出部34は、主軸12を目標ねじ深さから戻り完了位置まで戻り動作させる間、主軸12の現在位置からの残戻り回転量Sr′を逐次検出し、検出の都度、残戻り回転量Sr′を数値制御部16に通知する。送り軸制御部22の残送り量検出部56は、送り軸14を目標ねじ深さから戻り完了位置まで戻り送り動作させる間、送り軸14の現在位置からの残戻り送り量Dr′を逐次検出し、検出の都度、残戻り送り量Dr′を数値制御部16に通知する。さらに送り軸制御部22は、戻り動作開始時の送り軸14の初期位置Di′(送り位置FBF)を数値制御部16に通知する。数値制御部16の位置認識部58は、主軸12の総戻り回転量S0′と残戻り回転量Sr′とを用いて主軸12の現在位置(S0′−Sr′)を認識するとともに、送り軸14の総戻り送り量D0′と残戻り送り量Dr′と初期位置Di′とを用いて送り軸14の現在位置(D0′−Dr′+Di′)を認識する。
【0078】
工作機械を用いたタップ加工においては、制御装置がタップ加工の間に主軸と送り軸との同期誤差を継続して認識することが望ましい。
図10は、主軸と送り軸との同期誤差認識機能を付加した変形例による制御装置60の構成を機能ブロックで示す。制御装置60は、同期誤差認識機能を付加した点以外は、
図1の制御装置10と同様の構成を有する。対応する構成要素には共通する参照符号を付して、その詳細な説明を省略する。
【0079】
制御装置60は、タップ加工プログラムPに基づき主軸指令CS及び送り軸指令CFを作成する数値制御部16と、主軸指令CSに従って主軸12の回転動作を制御する主軸制御部18と、主軸12の回転位置を検出する回転検出部20と、送り軸指令CFに従って、回転検出部20が検出した回転位置に基づき送り軸14の送り動作を制御する送り軸制御部22と、送り軸14の送り位置を検出する送り検出部52とを備える。数値制御部16の送り軸指令出力部28は、タップ加工の開始に先立ち、プログラム解釈部24が解釈したタップ加工プログラムPの指令値から、目標ねじ深さに相当する送り軸14の総送り量D0(mm)とねじピッチP(mm/rev)とを取得して、これら総送り量D0とねじピッチPとを送り軸指令CFとして送り軸制御部22に送る。このように送り軸指令CFは、送り軸14を目標ねじ深さまで送り運動させるための位置指令や加減速指令を含まないものとなっている。
【0080】
送り軸制御部22は、回転検出部20が検出した主軸12の回転位置FBSと、ねじピッチPと、送り検出部52が検出した送り軸14の送り位置FBF(すなわちフィードバック値)とに基づき、送り軸14の送り動作を制御する送り動作制御部54と、総送り量D0と送り位置FBFとに基づき、現在位置から目標ねじ深さに至るまでの送り軸14の残送り量Drを検出する残送り量検出部56とを備える。主軸制御部18の残回転量検出部34は、主軸12を加工開始位置から目標ねじ深さまで切削動作させる間、主軸12の現在位置からの残回転量Srを逐次検出し、検出の都度、残回転量Srを数値制御部16に通知する。送り軸制御部22の残送り量検出部56は、送り軸14を加工開始位置から目標ねじ深さまで送り動作させる間、送り軸14の現在位置からの残送り量Drを逐次検出し、検出の都度、残送り量Drを数値制御部16に通知する。
【0081】
数値制御部16は、残回転量Srと残送り量DrとねじピッチPとに基づき、主軸12と送り軸14との同期運転の同期誤差を計算する同期誤差計算部62を備える。同期誤差計算部62は、主軸制御部18から通知された主軸12の残回転量Sr(rev)と、送り軸制御部22から通知された送り軸14の残送り量Dr(mm)と、ねじピッチP(mm/rev)とを用いて、主軸12と送り軸14との同期誤差Eを下記の式により計算する。
同期誤差Eを主軸12の回転量に換算して計算する場合:
E(rev)=Sr−Dr/P
同期誤差Eを送り軸14の送り量に換算して計算する場合:
E(mm)=Sr×P−Dr
【0082】
上記構成を有する制御装置60では、数値制御部16が主軸12及び送り軸14のフィードバック制御を行わない構成であっても、数値制御部16の同期誤差計算部62は、主軸12と送り軸14との同期誤差Eを求めることができる。したがって制御装置60によれば、フィードバック制御を実行する主軸制御部18及び送り軸制御部22の上位コントローラである数値制御部16が、主軸12と送り軸14との同期誤差Eを、タップ加工の実行中に常に把握ないし管理でき、以て、タップ加工制御の信頼性を向上させることができる。
【0083】
制御装置60の数値制御部16は、同期誤差計算部62が求めた同期誤差Eを表示装置64に表示させる表示制御部66を備えることができる。この構成によれば、工作機械がタップ加工を実行している最中に、オペレータが同期誤差Eを逐次確認でき、以て、同期誤差Eに応じた対策を迅速に遂行することが可能になる。
【0084】
制御装置60においては、タップ加工の戻り動作を制御する間も同様に、数値制御部16の同期誤差計算部62が、主軸12と送り軸14との同期誤差Eを計算することができる。この場合、前述したように数値制御部16が、タップ加工が目標ねじ深さに達したと判断したときに、送り軸指令出力部28は、プログラム解釈部24が解釈したタップ加工プログラムPの指令値から、目標ねじ深さに相当する送り軸14の総戻り送り量D0′(mm)とねじピッチP(mm/rev)とを取得して、これら総戻り送り量D0′とねじピッチPとを送り軸指令CFとして送り軸制御部22に送る。通常、総戻り送り量D0′は総送り量D0に一致する。
【0085】
送り軸制御部22の送り動作制御部54は、主軸12の戻り動作の回転位置FBSと、ねじピッチPと、送り軸14の戻り動作の送り位置FBFとに基づき、送り軸14の戻り送り動作を制御する。送り軸制御部22の残送り量検出部56は、総戻り送り量D0′と送り位置FBFとに基づき、現在位置から戻り完了位置に至るまでの送り軸14の残戻り送り量Dr′を検出する。主軸制御部18の残回転量検出部34は、主軸12を目標ねじ深さから戻り完了位置まで戻り動作させる間、主軸12の現在位置からの残戻り回転量Sr′を逐次検出し、検出の都度、残戻り回転量Sr′を数値制御部16に通知する。送り軸制御部22の残送り量検出部56は、送り軸14を目標ねじ深さから戻り完了位置まで戻り送り動作させる間、送り軸14の現在位置からの残戻り送り量Dr′を逐次検出し、検出の都度、残戻り送り量Dr′を数値制御部16に通知する。数値制御部16の同期誤差計算部62は、主軸12の残戻り回転量Sr′と送り軸14の残戻り送り量Dr′とねじピッチPとを用いて、主軸12と送り軸14との同期誤差E(E=Sr′−Dr′/P又はE=Sr′×P−Dr′)を計算する。
【0086】
上記した制御装置10、50、60の構成は、主軸12と送り軸14との同期運転を制御する工作機械の制御方法として記述できる。この制御方法は、制御装置10、50、60が、加工開始位置から目標ねじ深さに至る間の主軸12の総回転量S0と最高回転速度V0とをタップ加工プログラムPから取得するステップと、最高回転速度V0を目標値とする速度制御により加工開始位置から主軸12を最大能力で加速回転させるステップと、最大能力での加速回転中に主軸12の回転位置フィードバック値FBSに基づき主軸12の最大加速度A0を検出するステップと、総回転量S0と回転位置フィードバック値FBSとに基づき、現在位置から目標ねじ深さに至るまでの主軸12の残回転量Srを検出するステップと、回転位置フィードバック値FBSに基づき主軸12の現在速度Vcを検出するステップと、最大能力での加速回転の後に、速度制御により主軸12を減速回転させて予め定めた中間回転速度Viに到達させるステップと、主軸12が中間回転速度Viに到達した後に、最大加速度A0と残回転量Srと現在速度Vcとに基づき、位置制御により主軸12を最大能力で減速回転させて目標ねじ深さに到達させるステップとを備え、主軸12を中間回転速度Viに到達させるステップは、減速回転のための速度指令Cvを、残回転量Srと現在速度Vcとを用いて逐次更新し、主軸12を中間回転速度Viに到達させたときの残回転量Srが、位置制御の下で目標ねじ深さに到達するまでの主軸12の位置決め回転量Sposと等しくなるように、逐次更新される速度指令Cvにより主軸12を減速回転させるステップを含むものである。このとき、主軸12を目標ねじ深さで停止させるように構成できる。或いは、主軸12を目標ねじ深さで停止させないように構成できる。
【0087】
また上記制御方法は、制御装置10、50、60が、目標ねじ深さから戻り完了位置に至る間の主軸12の総戻り回転量S0′と最高戻り回転速度V0′とをタップ加工プログラムPから取得するステップと、最高戻り回転速度V0′を目標値とする速度制御により、目標ねじ深さから、又は目標ねじ深さよりも予め定めた回転数だけ戻った初期戻り位置から、主軸12を最大能力で加速逆回転させるステップと、主軸12が目標ねじ深さから加速逆回転する間の逆回転の最大加速度A0′を検出又は取得するステップと、総戻り回転量S0′と主軸12の回転位置フィードバック値FBSとに基づき、現在位置から戻り完了位置に至るまでの主軸12の残戻り回転量Sr′を検出するステップと、回転位置フィードバック値FBSに基づき主軸12の逆回転の現在速度Vc′を検出するステップと、最大能力での加速逆回転の後に、速度制御により主軸12を減速逆回転させて予め定めた中間戻り回転速度Vi′に到達させるステップと、主軸12が中間戻り回転速度Vi′に到達した後に、逆回転の最大加速度A0′と残戻り回転量Sr′と逆回転の現在速度Vc′とに基づき、位置制御により主軸12を最大能力で減速逆回転させるとともに戻り完了位置で停止させるステップとを備え、主軸12を中間戻り回転速度Vi′に到達させるステップは、減速逆回転のための速度指令Cv′を、残戻り回転量Sr′と逆回転の現在速度Vc′とを用いて逐次更新し、主軸12を中間戻り回転速度Vi′に到達させたときの残戻り回転量Sr′が、位置制御の下で戻り完了位置で停止するまでの主軸12の位置決め戻り回転量Spos′と等しくなるように、逐次更新される速度指令Cv′により主軸12を減速逆回転させるステップを含むものである。
【0088】
これら制御方法によれば、前述した制御装置10、50、60の効果と同等の効果が奏される。