特許第6089101号(P6089101)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ テレフオンアクチーボラゲット エル エム エリクソン(パブル)の特許一覧

特許60891013GPPLTEネットワークにおけるプーリングされるトランスポート機能及び制御機能
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6089101
(24)【登録日】2017年2月10日
(45)【発行日】2017年3月1日
(54)【発明の名称】3GPPLTEネットワークにおけるプーリングされるトランスポート機能及び制御機能
(51)【国際特許分類】
   H04W 92/12 20090101AFI20170220BHJP
   H04W 88/08 20090101ALI20170220BHJP
   H04W 88/12 20090101ALI20170220BHJP
【FI】
   H04W92/12
   H04W88/08
   H04W88/12
【請求項の数】24
【全頁数】24
(21)【出願番号】特願2015-514620(P2015-514620)
(86)(22)【出願日】2013年5月7日
(65)【公表番号】特表2015-524200(P2015-524200A)
(43)【公表日】2015年8月20日
(86)【国際出願番号】IB2013053672
(87)【国際公開番号】WO2013179160
(87)【国際公開日】20131205
【審査請求日】2015年4月13日
(31)【優先権主張番号】13/484,903
(32)【優先日】2012年5月31日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】598036300
【氏名又は名称】テレフオンアクチーボラゲット エルエム エリクソン(パブル)
(74)【代理人】
【識別番号】100095957
【弁理士】
【氏名又は名称】亀谷 美明
(74)【代理人】
【識別番号】100096389
【弁理士】
【氏名又は名称】金本 哲男
(74)【代理人】
【識別番号】100101557
【弁理士】
【氏名又は名称】萩原 康司
(74)【代理人】
【識別番号】100128587
【弁理士】
【氏名又は名称】松本 一騎
(72)【発明者】
【氏名】コモー、アドリアン
(72)【発明者】
【氏名】ドナルド、ディヴィッド
(72)【発明者】
【氏名】ミュラ、ラリー
(72)【発明者】
【氏名】リチャーズ、クリストファー
【審査官】 篠田 享佑
(56)【参考文献】
【文献】 特表2009−504047(JP,A)
【文献】 特開2013−197895(JP,A)
【文献】 3rd Generation Partnership Project,Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2(Release 10),3GPP TS 36.300 V10.7.0 (2012-03),2012年 3月14日,50、51ページ
(58)【調査した分野】(Int.Cl.,DB名)
H04B 7/24− 7/26
H04W 4/00−99/00
3GPP TSG RAN WG1−4
SA WG1−4
CT WG1、4
(57)【特許請求の範囲】
【請求項1】
共有ネットワーク上で複数のeNodeB(eNB)(802)についてのトランスポート及び制御機能を管理するためのトランスポート及び制御(T&C)プールエンティティとして機能するように構成されるサーバであって、
前記サーバは、コンピュータ命令を実行するように構成されるプロセッサ(1520)と、前記コンピュータ命令を記憶するように構成されるメモリ(1510)と、を備え、前記コンピュータ命令は、Tプールコンポーネント及びCプールコンポーネントへと分離され、
前記Cプールコンポーネントは、拡張制御プレーンで動作してユーザ機器(UE)と通信する第1のPDCP(Packet Data Convergence Protocol)コンポーネントと、前記拡張制御プレーンで動作してeNBと通信するRRC(Radio Resource Controller)コンポーネントと、を含み、
前記Tプールコンポーネントは、拡張データプレーンで動作して前記UEと通信する第2のPDCPコンポーネントと、前記拡張データプレーンで動作してサービングゲートウェイ(SGW)と通信するGTP(General Packet Radio System Tunneling Protocol)コンポーネントと、を含む、
サーバ。
【請求項2】
前記共有ネットワークは、IPネットワーク(808)である、請求項1のサーバ。
【請求項3】
前記複数のeNB(802)に関連付けられる、前記サーバと他のトランスポート及び制御(T&C)プールエンティティ(1102)との間のモビリティイベントを管理するように構成されるモビリティイベントコンポーネント、をさらに含む、請求項1又は請求項2のいずれかのサーバ。
【請求項4】
拡張される前記サーバは、他のトランスポート及び制御(T&C)プールエンティティ(1102)との通信のための修正されたX2インタフェース(504)コンポーネント、をさらに含む、請求項1〜3のいずれかのサーバ。
【請求項5】
前記サーバは、前記サーバと前記複数のeNB(802)との間のセキュリティを管理するように構成されるデータプレーンセキュリティコンポーネント、をさらに含む、請求項1〜4のいずれかのサーバ。
【請求項6】
前記データプレーンセキュリティコンポーネントは、前記複数のeNB(802)への送信前にデータを暗号化し、前記複数のeNB(802)から受信されるデータを逆暗号化する、ように構成される暗号化/逆暗号化コンポーネント、をさらに含む、請求項5のサーバ。
【請求項7】
ランスポートパケットの送信前にデータ量を低減するように構成される圧縮コンポーネント、をさらに含む、請求項1〜6のいずれかのサーバ。
【請求項8】
前記圧縮コンポーネントは、ロバストヘッダ圧縮(RoHC)を使用するように構成される、請求項7のサーバ。
【請求項9】
前記GTPコンポーネントは、拡張される汎用トンネリングプロトコルを使用する、請求項1〜8のいずれかのサーバ。
【請求項10】
前記拡張される汎用トンネリングプロトコルは、パケットをGTPv1−Pの拡張される汎用トンネリングプロトコルのパケットとして識別するように構成される未使用ヘッダ位置を有するGTPv1−U仕様プロトコルである、請求項9のサーバ。
【請求項11】
前記拡張される汎用トンネリングプロトコルは、パケットをGTPv1−Pの拡張される汎用トンネリングプロトコルのパケットとして識別するように構成されるメッセージタイプフィールドを有するGTPv1−U仕様プロトコルである、請求項9のサーバ。
【請求項12】
前記サーバは、拡張されるサービングゲートウェイ(S−GW)ノード(704)である、請求項1〜11のいずれかのサーバ。
【請求項13】
前記サーバは、汎用ハードウェアプラットフォーム及び前記共有ネットワーク内の既存のネットワークノードのうちの一方において実装される、管理用eNBサーバ(502)である、請求項のサーバ。
【請求項14】
前記サーバは、拡張されるモビリティ管理エンティティ(MME)(910)である、請求項のサーバ。
【請求項15】
前記サーバは、サービングゲートウェイ(S−GW)ノード(706)と組み合わせられる拡張されるMMEである、請求項14のサーバ。
【請求項16】
複数の拡張されるnodeB(eNB)(802)及び前記複数の拡張されるnodeB(eNB)(802)に関連付けられるセルの管理についてのトランスポート及び制御(T&C)機能を一元化するための、メモリに記憶され、プロセッサ上で実行される方法であって、前記方法は、
前記複数のeNB(802)の各々に関連付けられる前記T&C機能を1つ以上のT&Cプールエンティティ(906)に配備することと、
前記複数のeNBに関連付けられるモビリティイベントを、インタフェースを使用して前記1つ以上のT&Cプールエンティティ(906)間で協調させることと、
制御シグナリング及びデータパケットを、前記制御シグナリング及びデータパケットに関連付けられる共有ネットワークにわたるプロトコルを使用して、前記複数のeNB(802)と前記1つ以上のT&Cプールエンティティ(906)との間で送信することと
を含む、方法。
【請求項17】
前記T&Cプールエンティティ(906)は、既存のネットワークノードに組み込まれる、請求項16の方法。
【請求項18】
前記T&Cプールエンティティ(906)は、汎用ハードウェアノードに組み込まれる、請求項16の方法。
【請求項19】
前記1つ以上のT&Cプールエンティティ(906)により、前記複数のeNB(802)からのPHY、MAC、及びRLCの複数の測定値の間の相関をとることと、
前記1つ以上のT&Cプールエンティティ(906)により、前記測定値に基づいて前記複数のeNB(802)にわたる第1段階の無線リソース割り当てを行うことと
をさらに含む、請求項16〜18のいずれかの方法。
【請求項20】
第1のノード(618)におけるトランスポート機能と第2のノード(616)における制御機能とによって前記T&Cプールエンティティ(906)を構成すること、をさらに含む、請求項16〜19のいずれかの方法。
【請求項21】
前記インタフェースは、修正されたX2インタフェース(504)である、請求項16〜20のいずれかの方法。
【請求項22】
前記送信することは、IPベースの共有ネットワーク(808)上で実行される、請求項16〜21のいずれかの方法。
【請求項23】
前記送信することの前に前記T&Cプールエンティティ(906)によりパケット圧縮を実行すること、をさらに含む、請求項16〜22のいずれかの方法。
【請求項24】
前記パケット圧縮は、ロバストヘッダ圧縮(RoHC)である、請求項23の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般に、電気通信システムに関し、具体的には、eNodeBエンティティからPDCP(Packet Data Convergence Protocol)機能及びRLC(Radio Link Control)プロトコル機能を切り離すための方法、システム、デバイス、及びソフトウェアに関する。
【背景技術】
【0002】
従来技術の図1に描かれた、WCDMA(wideband code division multiple access)ネットワーク又はUMTS(universal mobile telecommunications system)ネットワークといった、既存の3GPP(Third Generation Partnership Program)のUTRAN(universal terrestrial radio access networks)100は、UTRAN102を2つのエンティティに分ける。第1のエンティティは、無線ネットワークコントローラ(RNC)104であり、第2のエンティティは、nodeB106である。RNC104は、それが接続されたnodeB106デバイスを、無線リソース管理機能とモビリティ管理機能の一部とを提供することにより制御する。RNC104はまた、ユーザデータを、ユーザ機器(UE)108への及びユーザ機器(UE)108からの中継の間に損なわれることから保護するために、データ暗号化/逆暗号化サービスを提供する。nodeB106は、セルの定義されたエリア内のUE108との通信のための送信機及び受信機を提供する。UE108が地理的な場所を変える際の1つのnodeB106から異なるRNC104の制御下の別のnodeB106へのUE108のハンドオーバーを容易にするために、RNC104は、コアネットワーク110と隣接RNC106の双方と通信しなくてはならない。
【0003】
図1の3GPP UTRAN100とは対照的に、従来技術の図2に描かれたLTE(Long Term Evolution)ベースのEUTRAN(evolved universal terrestrial radio access networks)100のアーキテクチャは、LTEネットワークからRNC104を取り除いている。RNC104の機能は、モビリティ管理エンティティ(MME)202及びeNB(evolved Node-B)204のような双方のコアネットワーク要素に分散させられている。複雑化の要因として、RNC106の機能の一部のeNB204への導入は、UE108がセル内を動き回り及び1つのeNB204から別へと移行するために、eNB204間で情報を交換するための新たなeNB間インタフェース206についての要件、及び複雑なハンドオフシグナリングプロトコル、という結果を生じさせている。
【0004】
さらに、従来のLTE無線アクセスネットワーク(RAN)は、S1インタフェース208を介してMME202/サービングゲートウェイ(S−GW)エンティティに接続された分散型eNB204によって構成され、eNB204は、X2インタフェース206により互いに接続される。LTE eNB204は、無線リソース管理(RRM)(即ち、無線ベアラ制御、無線流入制御、接続モビリティ制御、及び上りリンクと下りリンクとの双方におけるUE108へのリソースの動的な割り当て)、ユーザデータストリームのインターネットプロトコル(IP)ヘッダ圧縮及び暗号化、MME202へのルーティングがUE108によって提供された情報から決定されることができない場合のUE108のアタッチメントでのMME202の選択、S−GW202へのユーザプレーンデータのルーティング、MME202から発信するページングメッセージのスケジューリング及び送信、MME202又はO&M(Operations and Maintenance)から発信されるブロードキャスト情報のスケジューリング及び送信、モビリティ及びスケジューリングのための測定及び測定レポート構成、といったトランスポート及び制御(T&C)ケイパビリティをサポートするための機能群をホスティングする。
【0005】
既存の3GPP eNB302の機能300の従来技術の図3に描かれているように、eNB302が、LTEネットワークにより要するT&C機能を具現化するので、共通的な共有型のUTRAN102RNC104は必要とされない。具体的には、eNB302は、eNB302のセルカバレッジエリアにおけるUE108のためのモビリティと無線リソースとを管理する無線リソース制御(RRC)304の機能と、ユーザプレーンメッセージ及び制御プレーンメッセージのためにより下位のレイヤにL3サービスを提供するPDCP(Packet Data Coverage Protocol)306の機能とを含む。L3サービスの例は、重複検出及び削除を含むデータの順序性(in-sequence)デリバリ、ユーザプレーンデータ及び制御プレーンデータのユーザプレーンIPヘッダ圧縮及び暗号化、並びにユーザプレーンデータ及び制御プレーンデータの完全性保護である。各々のeNB302は従来、緊密に結合された地理的エリアをカバーする少数のセルをサポートする。1つのeNB302あたりのセルの個数は普通限られていて、例えば、1つのeNB302あたり3つのセルであり、eNB302に組み込まれたRRC304の機能及びPDCP306の機能は、eNB302によって制御されるセルとそれらのセルに関連付けられるUE108とをサポートすることに限られる。
【0006】
先に説明されたアーキテクチャに関連付けられる問題は、これらのサービスの使用において予想される成長によって強まる。ワイヤレスブロードバンドトラフィックは、さほど遠くない将来、毎年2倍を超えて増えることが予想される。この成長にペースを合わせることは、任意の所与の地理的エリアにおけるセルの数の比例的な増加を要するであろう。ヘテロジーニアスネットワークをサポートするLTEアドバンストの特徴の導入と、より多くの数のセルの要件とにより、所与の地理的エリアにおけるセルの数は100倍を上回る増加が予期され、これに伴いセル間モビリティイベントの数は比例的に増加する。
【0007】
モビリティ管理機能を提供するeNB302に関連付けられて浮かび上がってきている別の問題は、Multi−RAT(Multiple Radio Access Technology)を含むネットワーク展開の進化傾向、即ち、WCDMA、WiFi、及びCDMAといった異なる無線接続技術間のモビリティである。この問題は、LTE eNB302のアーキテクチャがモビリティ管理機能を含むがゆえに発生する。結果として、ハードウェア技術の各々を認識することをeNB302に要求するモビリティ協調の一部が、eNB302レベルで分散させられる。
【0008】
増加するセル密度に関連付けられる既存のアーキテクチャに伴う問題に関連する別の問題は、eNB302間でのユーザコンテキスト(例えば、セキュリティ鍵、ロバストヘッダ圧縮(ROHC)、RRC304、及びセッションステート)の転送の数が、モビリティイベントの数の増加とともに増加することである。このデータが正常であること及び時間に敏感であることは、UE108が1つのeNB302のカバレッジエリアから別へと移行している間にユーザセッションを維持するのにクリティカルである。転送の要件を満たすことの失敗は、破棄された呼又はセッションという結果を生じる。しかしながら、この要件を満たすことは、複雑で、誤りを被りやすく、必要なハイレベルのモビリティ性能を提供するようにRANを設計することは、相対的に静的なネットワーク及び著しい動作オーバーヘッドを要する。一方で、LTEネットワークは今、それらのライフサイクルの成長過程にあるので、結果として、本質的に静的でないネットワークにおいてモビリティ性能を維持することは、ネットワークオペレータにとって問題が多く、高価であろう。さらに、MME/S−GWノード202は現在、相対的に限られた数のS1インタフェースをハンドリングするように設計されている。結果として、これらのノードは、展開されるeNB302の数の100倍効率的に機能しようと四苦八苦するであろう。
【0009】
従来技術の図4に描かれているように、PDCP406とRLC408との間のインタフェース410は、eNB402に関連付けられる内部的なソフトウェアインタフェースとして定義されている。それに応じて、このインタフェースのために仕様化されたプロトコル又はトランスポートは無く、即ち、eNB402の外側へRRC404及びPDCP406の機能を分散させる手法は無い。描かれている従来技術のeNB402において、機能間のインタフェースは3GPP仕様により定義されておらず、それら機能を物理的に別個のネットワーク要素に配置することを可能とする仕組みは存在しないことに留意すべきである。
【0010】
上で説明した条件下で効率的に機能し、上で説明した解決策と比較してより良好なネットワーク性能をより低い運用コスト及びより高い信頼性と共に可能とする解決策について、市場の圧力が高まりつつある。
【0011】
[略語/頭字語]
3GPP Third Generation Partnership Program
CDMA Code Division Multiple Access
DRB Data Radio Bearer
EUTRAN Evolved Universal Terrestrial Radio Access Network
GPRS General Packet Radio Service
GTP GPRS Tunnelling Protocol
IANA Internet Assigned Numbers Authority
IP Internet Protocol
LTE Long Term Evolution
MAC Medium Access Layer
MME Mobility Management Entity
Multi−RAT Multiple Radio Access Technology
O&M Operation and Maintenance
PDCP Packet Data Convergence Protocol
PDU Protocol Data Unit
PHY Physical Layer
RAN Radio Access Network
RBS Radio Base Station
RLC Radio Link Control
RNC Radio Network Controller
ROHC Robust Header Compression
RRC Radio Resource Control
RRM Radio Resource Management
SCTP Stream Control Transmission Protocol
S−GW Serving Gateway
SRB Signal Radio Bearer
T&C Transport and Control Functions
TEID Tunnel Endpoint Identifier
UDP User Datagram Protocol
UE User Equipment
UMTS Universal Mobile Telecommunications System
UTRAN Universal Terrestrial Radio Access Network
WCDMA Wideband Code Division Multiple Access
WiFi Trademark for Wireless IEEE 802.11 Standards
【発明の概要】
【課題を解決するための手段】
【0012】
一態様によると、共有ネットワーク上で複数のeNodeB(eNB)についてのトランスポート機能を管理するためのサーバは、コンピュータ命令を実行するように構成されるプロセッサと上記コンピュータ命令を記憶するように構成されるメモリとを含み、上記コンピュータ命令は、さらに、複数のeNBについてのトランスポート機能を、上記複数のeNBから切り離される(decoupled)やり方で管理するように構成されるPDCP(Packet Data Convergence Protocol)コンポーネントと、上記共有ネットワーク上で上記サーバと上記複数のeNBとの間でトランスポートパケットを送信するように構成されるシグナリングプロトコルコンポーネントとを含む。
【0013】
この態様によると、一実施形態では、共有ネットワークはIPネットワークである。一実施形態では、サーバは、モビリティイベントを管理するように構成されるモビリティイベントコンポーネントをさらに含む。モビリティイベントは、サーバと他のトランスポート及び制御プール(T&C)エンティティとの間で上記複数のeNBに関連付けられる。一実施形態では、拡張されるサーバは、他のT&Cプールエンティティとの通信のための修正されたX2インタフェースコンポーネントをさらに含む。いくつかの実施形態では、サーバは、サーバと複数のeNBとの間のセキュリティを管理するように構成されるデータプレーンセキュリティコンポーネントをさらに含む。これらの実施形態において、データプレーンセキュリティコンポーネントは、複数のeNBへの送信前にデータを暗号化し、複数のeNBから受信されたデータを逆暗号化するように構成される暗号化/逆暗号化コンポーネントをさらに含み得る。いくつかの実施形態では、サーバは、トランスポートパケットの送信前にデータ量を低減するように構成される圧縮コンポーネントをさらに含む。いくつかの実施形態において、圧縮コンポーネントは、ロバストヘッダ圧縮を使用するように構成される。一実施形態では、シグナリングプロトコルコンポーネントは、拡張される汎用トンネリングプロトコルを使用する。いくつかの実施形態では、拡張される汎用トンネリングプロトコルは、パケットをGTPv1−Pの拡張される汎用トンネリングプロトコルのパケットとして識別するように構成される未使用ヘッダ位置を有するGTPv1−U仕様プロトコルである。一実施形態では、拡張される汎用トンネリングプロトコルは、パケットをGTPv1−Pの拡張される汎用トンネリングプロトコルのパケットとして識別するように構成されるメッセージタイプフィールドを有するGTPv1−U仕様プロトコルである。一実施形態では、シグナリングプロトコルコンポーネントは、非標準的(nonstandard)で一意のポート番号又は非標準的で一意のペイロードプロトコル識別子が、パケットをS1AP−Pパケットとして識別するために使用される、拡張されるS1AP−Pプロトコルを使用する。一実施形態では、サーバは、拡張されるサービングゲートウェイ(S−GW)ノードである。一実施形態では、サーバは、複数のeNBから切り離された制御機能を管理するように構成されるRRCコンポーネントをさらに含む。この実施形態において、サーバは、複数のeNBについてのトランスポート機能及び制御機能の双方を管理する。一実施形態では、サーバは、汎用ハードウェアプラットフォームと共有ネットワーク内の既存のネットワークノードとの1つにおいて実装される、管理用eNBサーバである。一実施形態において、サーバは、拡張されるモビリティ管理エンティティ(MME)である。別の実施形態では、サーバは、サービングゲートウェイ(S−GW)ノードと組み合わせられる拡張されるMMEである。
【0014】
別の態様によると、複数の拡張されるeNodeB(eNB)及びそれらに関連付けられるセルの管理についてのトランスポート及び制御(T&C)機能を一元化するための、メモリに記憶され、プロセッサ上で実行される方法は、上記複数のeNBの各々に関連付けられる上記T&C機能を1つ以上のT&Cプールエンティティに配備することと、上記複数のeNBに関連付けられるモビリティイベントを、インタフェースを使用して上記1つ以上のT&Cプールエンティティ間で協調させることと、制御シグナリング及びデータパケットを、上記制御シグナリング及びデータパケットに関連付けられる共有ネットワークにわたるプロトコルを使用して、上記複数のeNBと上記1つ以上のT&Cプールエンティティとの間で送信することとを含む。
【0015】
この態様によると、一実施形態では、トランスポート及び制御(T&C)プールエンティティは、既存のネットワークノードに組み込まれる。別の実施形態では、T&Cプールエンティティは、汎用ハードウェアノードに組み込まれる。いくつかの実施形態では、方法は、1つ以上のT&Cプールエンティティにより、複数のeNBからのPHY、MAC、及びRLC測定値の間の相関をとることを含む。これらの実施形態において、方法は、1つ以上のT&Cプールエンティティにより、測定値に基づいて複数のeNBにわたる第1段階の無線リソース割り当てを行うことをさらに含む。一実施形態では、方法は、第1のノードにおけるトランスポート機能と第2のノードにおける制御機能とによってT&Cプールエンティティを構成することをさらに含む。一実施形態において、インタフェースは、修正されたX2インタフェースである。一実施形態において、送信することは、IPベースの共有ネットワーク上で実行される。別の実施形態では、方法は、送信することの前にT&Cプールエンティティによりパケット圧縮を実行することをさらに含む。この実施形態において、パケット圧縮は、ロバストヘッダ圧縮であり得る。
【図面の簡単な説明】
【0016】
添付図面は、例示的な実施形態を示す。
【0017】
図1図1は、従来技術のUMTSネットワークアーキテクチャを描いている。
図2図2は、従来技術のE−UTRANを描いている。
図3図3は、従来技術の3GPP eNBとそれに関連付けられる機能とを描いている。
図4図4は、従来技術の3GPP LTEソフトウェア階層化アーキテクチャを描いている。
図5図5は、MME/S−GWとセルのより大きなグループとの間でトランスポート及び制御機能を提供する例示的なM−eNBを描いている。
図6図6は、専用T&Cプールエンティティによる3GPP E−UTRANソフトウェア階層分離(layering separation)の例示的な実施形態を描いている。
図7図7は、PDCP及びRRC機能と共に統合されるMMEサーバ及びS−GWサーバの例示的な実施形態を描いている。
図8図8は、T&CプールエンティティとeNBとの間のノード間PDCP−RLCインタフェースの例示的な実施形態を描いている。
図9図9は、制御プレーン及びユーザプレーンのためのPDCP−PDUメッセージングのためのT&Cプールインタフェース及びプロトコルの例示的な実施形態を描いている。
図10図10は、PDCP制御インタフェースを用いた別個のトランスポート及び制御エンティティの例示的な実施形態を描いている。
図11図11は、PDCP−PDUを交換するためのGTPv1−Pプロトコルエンティティの例示的な実施形態を描いている。
図12図12は、PDCP−PDUを交換するためのS1AP−Pプロトコルエンティティの例示的な実施形態を描いている。
図13A図13Aは、PDCP制御データ交換用の専用インタフェースを使用したスタンドアロンの別個のトランスポート及び制御エンティティの例示的な実施形態を描いている。
図13B図13Bは、MMEと共に統合される制御機能と、スタンドアロンのトランスポートエンティティと、の例示的な実施形態を描いている。
図13C図13Cは、S−GWと共に統合されるトランスポート機能と、スタンドアロンの制御エンティティと、の例示的な実施形態を描いている。
図13D図13Dは、MMEと共に統合される制御機能と、S−GWと共に統合されるトランスポート機能と、の例示的な実施形態を描いている。
図14図14は、トランスポート及び制御機能を一元化するための例示的な方法の実施形態を描いている。
図15図15は、トランスポート及び制御機能を一元化するための方法を実装するための例示的なコンピューティング環境を描いている。
【発明を実施するための形態】
【0018】
例示的な実施形態の以下の詳細な説明は、添付図面を参照する。異なる図面における同一の参照番号は、同一の又は同様の要素を特定するものである。また、以下の詳細な説明は、本発明を限定するものではない。その代わりに、本発明の範囲は、添付された特許請求の範囲により定義される。
【0019】
本明細書全体を通しての「一実施形態」又は「実施形態」への言及は、実施形態に関連して説明された特定の特徴、構造、又は特性が、本発明の少なくとも一実施形態に含まれることを意味する。かくして、本明細書全体を通してのさまざまな箇所における「一実施形態において」又は「実施形態において」という句の出現は、必ずしもすべてが同一の実施形態に言及しているわけではない。さらに、特定の特徴、構造、又は特性は、1つ以上の実施形態において任意の適切な手法で組み合わせられることができる。
【0020】
本明細書において説明される複数の例示的な実施形態は、当該例示的な実施形態に関連付けられ得る共通する特性のセットを有する。ここで、図5及び1つの例示的な実施形態を見ると、eNBエンティティから、PDCP機能及びRRC機能を切り離すことができる。ネットワーク500の例示的な実施形態の一態様では、RRC機能及びPDCP機能に関連付けられるコンピュータ処理が、eNBから間引かれる(depopulated)。例示的な実施形態において、複数のeNBから間引かれるPDCP機能及びRRC機能(L3)はT&Cプールとしても知られることに留意すべきである。例示的な実施形態を続けると、eNBは、それらがL1機能及びL2機能のみにフォーカスさせられるので、管理がより単純になる。新たなエンティティである、管理用(managed)eNB(M−eNB)502が、L3T&Cプール機能を取り扱う。次に、例示的な実施形態において、L3T&Cプール機能は、汎用ハードウェアプラットフォームを使用して実装され得るか、又は、既存のネットワーク要素に組み込まれ得る。例示的な実施形態を続けると、L3T&Cプール機能は一元化させられるので、それらは、はるかにより多くの数のeNBに、またそれに対応して、はるかにより多くの数のセル506に、L3サービスを提供する。
【0021】
例示的な実施形態を続けると、M−eNB502は、多数のeNB(セル)、キャリア、及びRATからの物理、媒体アクセス、及び無線リンクの複数の測定値の間の相関をとる(correlate)ことができ、それにより、M−eNB502が多数のeNB(セル)にわたる第1段階の無線リソース割り当て(例えば、周波数選択的スケジューリング)を行うことが可能になる。例示的な実施形態において、リソース割り当てが、数百ミリ秒〜数秒オーダーの相対的に長寿命(long-lived)なものであることに留意すべきである。さらに、例示的な実施形態において、トランスポートトラフィックデータの量と制御トラフィックデータの量とが、並びにそれらに関連付けられるプロセッサ及びメモリの要件が対称的ではないという事実を利用して、トランスポート機能を制御機能から物理的に分離することができる、ということに留意すべきである。
【0022】
例示的な実施形態を続けると、T&Cプール機能は、モビリティイベントの期間中の適正な送信エンドユーザステート及びエンドユーザトラフィックを管理し、従って、ステート及びトラフィックデータのeNB間の転送の要件が除去される。次に、例示的な実施形態では、相対的に少ない数のT&C間接続と共に、修正されたインタフェースX2’504がM−eNB502間に展開される。例示的な実施形態を続けると、IPベースの共有ネットワークを通じてeNBとT&Cプール機能との間で制御シグナリングとデータパケットとを送信するためのプロトコルが定義される。例示的な実施形態において、既存の3GPP仕様は、共有ネットワークを通じてT&Cパケットを送信するためのシグナリングプロトコルを提供しない、ということに留意すべきである。
【0023】
次に、例示的な実施形態において、LTE T&C機能は、データプレーンのためのレイヤ3(ネットワークレイヤ)以上のIPパケット処理にとって専用である、ということに留意すべきである。例えば、データプレーンセキュリティは、セキュアで、無許可のアクセスから保護されるネットワーク位置で実行されるべきである。例示的な実施形態を続けると、LTEデータプレーン機能はまた、限定ではないものの、エンドユーザセッションのための暗号化及び完全性の鍵処理資材(keying material)の生成及び管理を含み、これに応じて、これらの機能を一元的に実行することにより、データプレーンパケットはeNBへの送信の期間中にセキュアである。例示的な実施形態のこの特徴は、既存のLTEネットワークよりも高いレベルのセキュリティを提供するものであり、既存のLTEネットワークでは、MME510とeNBとの間で上記機能性が分散され、それに伴ってオペレータのコアネットワークからeNBへと完全性の鍵処理資材が送出されることになり、ユーザのデータパケットはeNBに到達するまで3GPPセキュリティが適用されないままとされる。
【0024】
1つの例示的な実施形態によると、RoHCを使用したIPパケット圧縮は、圧縮(信号オーバーヘッドの節約)が可能な限りオペレータのネットワークの近くで達成される場合、また、モビリティイベントが1つのeNBから他への複雑なRoHCステートの転送を要しない状況において、より良好な性能を提供する。例示的な実施形態において、RoHCステートのコンテキストは、eNBのモビリティイベントにとって透過的である、ということに留意すべきである。
【0025】
例示的な実施形態によると、T&Cアーキテクチャは、1つ以上のeNBのためのPDCP機能及びRRC機能を含むM−eNB502のようなT&Cエンティティを備える。この例示的な実施形態において、M−eNB502からMME/S−GW510への上方へ向かうS1インタフェース508は変わらないままである、ということに留意すべきである。
【0026】
ここで図6を見ると、M−eNB602のような専用T&Cプールエンティティのための3GPP E−UTRANソフトウェア階層分離(layering separation)600の例示的な実施形態が描かれている。例示的な実施形態において、ソフトウェア階層分離600は、進化型制御プレーン604と進化型データプレーン606との間で分割され、MME608からUE612までが進化型制御プレーン604であり、S−GW610からUE614までが進化型データプレーン606である、ということに留意すべきである。次に、例示的な実施形態において、M−eNB602は、進化型制御プレーン604におけるCプール616と、進化型データプレーン606におけるTプール618とを備える。次に、例示的な実施形態において、Cプール616は、RRCコンポーネント620とPDCPコンポーネント622とを備える。例示的な実施形態を続けると、Tプール618は、GTP624とPDCP626とを備える。例示的な実施形態において、RoHC及び暗号化/完全性がM−eNB602からUE612、614までにわたる、ということに留意すべきである。
【0027】
例示的な実施形態を続けると、単一のeNBが、eNBのグループのための専用T&Cプロバイダであってもよい。この例示的な実施形態のアーキテクチャにおいて、グループにおけるeNBのすべてではなく1つが、T&C eNBのリソースを使用し得る。この例示的な実施形態は、ネットワークが既存のeNBで構成され、異種型のスモールセルによって増強されている場合に特に有用である。この例示的な実施形態において、T&C eNBは、より上位のレイヤの制御及びリソース管理のための単一ポイントとして動作しながら、より下位のレイヤの無線機能の分散を提供して、より小さくより単純な多数のeNB要素のために、コントローラとして動作し、T&Cコンテキストを維持する。
【0028】
ここで図7を見ると、1つ以上のセルのためのT&C機能(PDCP/RRC)を統合することによって既存のMME702、S−GW704、及びMME/S−GW706のノードの役割を拡張する例示的な実施形態が描かれている。例示的な実施形態において、これらのノードに関連付けられるS1インタフェースは、MME702、S−GW704、及びMME/S−GW706のノード内の内部的な論理インタフェースとなる、ということに留意すべきである。
【0029】
ここで例示的な実施形態の別の態様についての図8を見ると、共有IPネットワーク上でT&Cパケットを送信するためのシグナリングプロトコル800である。例示的な実施形態は、eRBS802(即ち、eNB)とT&Cプール機能804との間の新たなインタフェースを含み、IPネットワーク808上でのPDCP−PDU806のメッセージの交換のためのプロトコルを仕様化する。さらに、例示的な実施形態では、ユーザプレーントランスポート機能と制御プレーン機能と共設されない場合の応用例に関し、これらの機能の間でPDCP制御データを交換するためのインタフェース及びプロトコル810が定義される。例示的な実施形態において、IPネットワーク808はIPネットワーク808上でUDP812又はSCTP814を使用し得る、ということに留意すべきである。
【0030】
ここで例示的な実施形態の別の態様についての図9を見ると、新たなインタフェース及びプロトコル900が描かれている。例示的な実施形態を続けると、E−UTRANネットワークを通じたPDCP−PDUのトランスポート、即ち限定ではないもののIPネットワークといった共有通信ネットワークにわたるネットワークノード間のPDCP−PDUメッセージの交換、をサポートするように、制御プレーンについては3GPP TS36.412“S1 Signaling Transport”及びTS36.413“S1 Application Protocol (S1AP)”(参照によりここに取り入れられる)が、ユーザプレーンについては3GPP TS36.414“S1 Data Transport”及びTS29.281“General Packet Radio System Tunneling Protocol User Plane (GTPv1-U)”(参照によりここに取り入れられる)が拡張される。例示的な実施形態において、これらの拡張されたインタフェース及びプロトコルは、制御プレーンについてはSx−PDCP−c902、ユーザプレーンについてはSx−PDCP−u904とラベリングされている、ということに留意すべきである。さらに、例示的な実施形態において、Sx−PDCP−c902インタフェース及びプロトコルは、制御プレーンにおいてT&Cプール機能906とeNB914との間の通信ケイパビリティを提供し、Sx−PDCP−u904インタフェース及びプロトコルは、ユーザプレーンにおいてT&Cプール機能908とeNB916との間の通信ケイパビリティを提供する、ということに留意すべきである。
【0031】
例示的な実施形態を続けると、T&Cプール機能906とMME910との間のS1−MMEインタフェース及びプロトコル、並びにT&Cプール機能908とS−GW912との間のS1−Uインタフェース及びプロトコルは、変わらないままであるが、T&Cプール機能906、908は、例えばUTRAN RNC又はUTRAN MME及びS−GWであるがこれに限定されない既存のネットワーク要素と統合され得る(例えば、制御機能のRRCとRRCのためのPDCPとがRNCと共に統合されてもよく、ユーザプレーントラフィックのPDCP機能群がS−GWと共に統合されてもよい)。例示的な実施形態において、拡張されたインタフェース902、904が、同一の又は異なるプロトコルのいずれかを使用する単一の物理インタフェースとして存在してもよい、ということに留意すべきである。さらに、T&Cプール906、908は物理ノードというよりもむしろ機能エンティティであり、別個のスタンドアロンノードに配置されてもよく、又は、例えばMME910及びS−GW912であるがこれに限定されない既存のノード内に統合され及び共設されてもよいこと、に留意すべきである。
【0032】
ここで図10を見ると、別々のノード1000においてインスタンス化される制御プレーン機能及びユーザプレーン機能を有する、例示的な実施形態が描かれている。例示的な実施形態を続けると、制御ノード1002とトランスポートノード1004との間でPDCP制御データを交換するためのインタフェースが定義される。例示的な実施形態において、このノードはPDCP Ctrl1006とラベリングされていることに留意すべきである。さらに、例示的な実施形態において、このインタフェースは、ノード1002、1004間でPDCP制御データを交換するためにGTPv1−Pプロトコル又はS1AP−Pプロトコルを使用し得るが、これに限定されるものではない、ということに留意すべきである。また、例示的な実施形態において、トランスポート及び/又は制御エンティティがS−GW又はMMEノードへと統合される場合、既存のS11インタフェース、即ち3GPP TS23.401(参照によりここに取り入れられる)及びTS36.300(参照によりここに取り入れられる)内の新たな情報要素として、PDCP制御データを含むことができる、ということに留意すべきである。
【0033】
例示的な実施形態を続けると、PDCP−PDUは、修正を伴う既存のGTPv1−Uプロトコル及び/又はS1APプロトコルを使用して、カプセル化され、トランスポートされ得る。例示的な実施形態において、インタフェース上で送出される制御メッセージ及びユーザプレーントラフィックメッセージは、ここで説明されている修正された3GPP TS36.414のS1−Uインタフェースプロトコルを使用して送出され得る、ということに留意すべきである。代替の例示的な実施形態において、Sx−PDCP−cインタフェース及びSx−PDCP−uインタフェース上で送出される制御メッセージ及びユーザプレーントラフィックメッセージは、ここで説明されているように、修正された3GPP TS36.412のシグナリングトランスポート及びTS36.413のS1APインタフェースプロトコルを使用して送出され得る。例示的な実施形態の別の態様では、Sx−PDCP−cインタフェース上で送出される制御メッセージが、ここで説明されている、修正された3GPP TS36.412のS1APインタフェースプロトコル上で送出され得る一方で、Sx−PDCP−uインタフェース上で送出されるユーザプレーンメッセージは、ここで説明されている、修正された3GPP TS36.414のS1−Uインタフェースプロトコル上で送出され得る。例示的な実施形態において、T&CプールとRBS(eNB)との間のメッセージシーケンスは、S1AP仕様及びGTPv1−U仕様のメッセージシーケンスと一致する、ということに留意すべきである。
【0034】
例示的な実施形態の別の態様において、T&Cプールエンティティは、標準的なS1−U及びS1−Cインタフェースを使用する既存の従来のeNBセルからのトラフィックを、ここで説明されているM−eNBセルから効率的に区別することができ、この能力は、T&Cプールエンティティに対してインタフェースする全ての既存のeNBセル及びM−eNBセルからのトラフィックを多重化することを可能とすることによって、より単純なネットワーク展開を提供する。さらに、例示的な実施形態では、eNBセルがそれらのPDCP及びRRC機能についてT&Cプールを使用するためにアップグレードされることで、T&Cプールは、対象のeNBに対するそのインタフェースについていかなる再構成をも要しない。
【0035】
ここで図11を見ると、PDCP−PDUを交換するための例示的な実施形態のGTPv1−Pプロトコルエンティティ1100が描かれている。GTPv1−Uプロトコルに基づいた例示的な実施形態のプロトコルエンティティ1100は、GTPv1−Pエンティティの所与のペア間でカプセル化されるPDCP−PDUメッセージを搬送するためのGTPv1−Pトンネルを定義するために使用される。例示的な実施形態を続けると、GTPv1−Pプロトコルエンティティ1100は、T&Cプール1102におけるPDCP1106エンティティ及びM−eNB1104におけるRLC1108エンティティに、パケット送受信サービスを提供する。次に、例示的な実施形態において、GTPv1−Pプロトコルエンティティは、ある数のGTPv1−Pトンネルエンドポイントからトラフィックを受信し、ある数のGTPv1−Pトンネルエンドポイントにトラフィックを送信する。例示的な実施形態において、留意すべきこととして、既存のGTPv1−Uインタフェースとここで説明されているGTPv1−Pインタフェースとの共存を想定して、メッセージのヘッダはメッセージ内容の標識を含み、それにより既存のGTPv1−UメッセージをGTPv1−Pメッセージから区別することができる。
【0036】
【表1】
【0037】
例示的な実施形態を続けると、表1に示されているように、GTPv1−Pパケットは、第1のオクテットのうち4番目のビットを1に設定することによって、GTPv1−Uパケットから区別され得る。例示的な実施形態の別の態様において、第2のオクテット内で示されるメッセージタイプフィールドは、GTPv1−Pパケットに含まれるPDCP−PDUのタイプを示すために使用されることができ、例えば、SRB PDCPデータPDU、7ビット又は12ビットのシーケンス番号のDRB PDCPデータPDU、RoHCフィードバックパケットPDCP制御PDU、又はPDCPステータスレポートPDCP制御PDUなどである。例示的な実施形態を続けると、GTPv1−Pヘッダに存在するTEIDが、どのPDCP及びRLCインスタンスが所与のTEIDを維持するかを曖昧性無く識別し、即ち、TEIDは無線ベアラを一意に識別する。
【0038】
別の例示的な実施形態において、各PDCP−PDUは、送出ノードでGTPv1−Pヘッダ内にカプセル化される。例示的な実施形態の一態様において、GTPv1−Pヘッダの第1のオクテットのうち4番目のビットは、このGTPv1−PパケットがPDCP−PDUペイロードを含むことを示すために1に設定される。例示的な実施形態において、このビット位置は現在は予約されており未使用であること、M−eNB及びT&Cプールエンティティのみによって検査されるであろうことに留意すべきである。例示的な実施形態を続けると、GTPv1−Pパケットが続いて、パケットの宛先への送信前に、GTPv1−U仕様に従いUDP及びIPの中にさらにカプセル化される。
【0039】
次に、例示的な実施形態において、宛先UDPポートは、GTPv1−U仕様(3GPP TS29.281、参照によりここに包含される)と同一であってもよく、即ち、UDPポート2152又は異なるポート、例えば、1024〜49151のIANA登録ポート範囲内から選ばれたポートが使用され得る。例示的な実施形態において、GTPv1−Uプロトコルによって使用されるポートとは異なる宛先ポートを選ぶことで、受信ノード、例えば、T&Cプールエンティティ又はS−GWは、UDPネットワークレイヤでメッセージを区別して、より効率的な処理のためにノード内で内部的にメッセージをルーティングするフレキシビリティを可能にし得る、ということに留意すべきである。さらに、例示的な実施形態において、留意すべきこととして、IP及びUDPヘッダは通信の受信エンドで取り除かれ、PDCP−PDUを交換することについて相互に合意済みのポートでGTPv1−Pパケットが受信される場合、受信エンティティは、受信されるパケットがPDCP−PDUを含むことを前提とすることができる。
【0040】
例示的な実施形態を続けると、GTPv1−Pヘッダは、パケットのペイロードがPDCP−PDUを含むことを示すこともできる。次に、例示的な実施形態において、ペイロードのコンテンツは、PDCP−PDUの処理を担うPDCP機能エンティティに渡され、パケットヘッダ内のメッセージタイプ及びTEIDフィールドに基づいて、PDCP−PDUは、そのPDCP−PDUのための一意のPDCP又はRLCインスタンスに関連付けられ得る。
【0041】
ここで図12を見ると、S1AP/S1−MMEプロトコル1200に基づいたPDCP−PDUメッセージングの図が描かれている。例示的な実施形態は、MMEノード1202、T&Cプールノード1204、M−eNBノード1206、及びUEノード1208を備える。例示的な実施形態において、M−eNBノードが進化型RBSノード又は進化型eNBノードとしても知られることに留意すべきである。例示的な実施形態を続けると、T&Cプールと進化型eNBとが既存のS1APプロトコル及びS1−MMEインタフェースを用いてPDCP−PDUを交換するために、S1APプロトコルについて、及びオプションでS1−MMEインタフェースについて複数の拡張を要する。例示的な実施形態において、拡張されたプロトコルがここでS1AP−Pと呼ばれることに留意すべきである。
【0042】
例示的な実施形態の別の態様において、S1APプロトコルは、メッセージタイプ、MME UE S1AP ID及びeNB UE S1AP IDというフィールドを含むシグナリングメッセージを有し、それらは、S1AP/S1−MMEを用いてPDCP−PDUを交換するためにペイロードがPDCP−PDUデータを含む場合に、拡張された形で構成され及び解釈されることになる。次に、例示的な実施形態において、SCTPポートは、S1AP仕様(3GPP TS36.412、参照によりここに包含される)と同一であってよく、即ち、UDPポート36412又は異なるポート、例えば、1024〜49151のIANA登録ポート範囲内から選ばれたポートが使用され得る。例示的な実施形態において、S1APプロトコルによって使用されるポートとは異なる宛先ポートを選ぶことで、受信ノード、例えば、T&Cプールエンティティ又は進化型eNBは、UDPネットワークレイヤでメッセージを区別して、より効率的な処理のためにノード内で内部的にメッセージをルーティングするフレキシビリティを可能にし得る、ということに留意すべきである。
【0043】
例示的な実施形態を続けると、SCTPペイロードプロトコル識別子を相違させることができ、PDCP−PDUはASN.1で符号化されないものとする。例示的な実施形態において、留意すべきこととして、PDCP−PDUは、修正されたS1APパケット内で、未修正のバイト配列データ(byte aligned data)として含まれるものとする。さらに、例示的な実施形態において、既存のS1APヘッダフィールドに対する修正は、S1AP及びS1AP−Pトラフィックが、同一のエンティティ、例えばT&Cプールエンティティによって別個に終端され処理されることを可能にする、ということに留意すべきである。
【0044】
ここで図13を見ると、トランスポート及び制御エンティティが共有ネットワークによって分離された、4つの例示的なPDCP制御インタフェースが描かれている。例示的な実施形態において、PDCP制御データがGTPv1−P、S1AP−P、及びs11インタフェースプロトコルのいずれか1つ又は組み合わせによって交換され得ることに留意すべきである。例示的な実施形態を続け、図13Aを見ると、PDCP制御データは、GTPv1−P又はS1AP−Pメッセージング1302のいずれかを使用して、T1304ノードとC1306ノードとの間で交換される。次に、例示的な実施形態の図13Bを見ると、PDCP制御データは、Tノード1308とS−GWノード1312との間のGTPv1−Pメッセージング1314と、S−GWノード1312とMME+Cノード1310との間のS11インタフェースメッセージング1316とを使用して、Tノード1308とMME+Cノード1310との間で交換される。例示的な実施形態の図13Cを続けると、PDCP制御データは、Cノード1320とMMEノード1322との間のS1AP−Pプロトコルメッセージング1324と、MMEノード1322とS−GW+Tノード1318との間のS11インタフェースメッセージング1326とを使用して、SGW+T1318とCノード1320との間で交換される。次に、例示的な実施形態の図13Dを見ると、PDCP制御データは、S−GW+Tノード1324とMME+Cノード1326との間のS11プロトコルメッセージング1328を使用して、S−GW+Tノード1324とMME+Cノード1326との間で交換される。例示的な実施形態において、上述された構成の各々についてトランスポート及び制御機能が同様にUTRAN RNCノードと統合され得ることに留意すべきである。例示的な実施形態を続けると、RNCがLTEネットワークのための制御機能群を統合し得る一方で、トランスポートは、当該トランスポート機能を含むS−GWとeNBとの間で直接、最適にルーティングされる。例示的な実施形態の別の態様において、トランスポート機能は、eNBに統合され得る。
【0045】
ここで説明されている実施形態は、さまざまな利点及び恩恵を提供し得る。例えば、T&C機能は、非常に多数のeNBセル、潜在的には何万もの、より小さくより簡易的でより安価なeNBをサポートするようにスケーリングされることができ、その理由は次の通りである:より少ない機能がeNBに存在する;エンドユーザデータプレーンセキュリティが、遠隔で潜在的にセキュアでないeNBサイトへのセンシティブな鍵処理資材の分散なしに、一元化されたエンティティで適用され、即ち、T&C機能からUEまでデータプレーンパケットがセキュア化される;限定ではないもののRoHCといったIPレイヤ3及びレイヤ4のサービスを、オペレータのコアネットワークのより近くで適用することができ、eNBまでのIPネットワークにこれらのサービスからの恩恵を受けさせることができ、RoHCが提供するデータ圧縮からの恩恵をネットワークのより多くが受けることが可能となり、例えば、オペレータのネットワーク内のトラフィックが低減される;T&Cエンティティが、多数のeNBからのPHY、MAC、及びRLCの測定値の相関をとって、第1段階の無線リソース割り当て、例えば周波数選択的スケジューリングを行うことを可能とし、これらリソース割り当ては相対的に長寿命(数百ミリ秒〜数秒)であり、より効率的なやり方で無線リソースを利用することを可能とし、それによりT&Cプールによって管理されるeNBセルのキャパシティは増加することになる;このアーキテクチャは、ユーザトラフィックを転送するか又はユーザセッション及びセルリソースを制御するかのいずれかに専用の別個のハードウェアプラットフォームの開発を可能にし、ユーザトラフィック及び制御トラフィックの非対称性により、ハードウェアプラットフォームが特定のタスクのためにコスト最適化されることを可能にする。さらに留意すべきこととして、本プロトコルは、T&CプールエンティティをMME及びS−GWノードに統合すること、又は別個のノードに配置することを可能とする。
【0046】
ここで図14を見ると、複数のeNB及びそれらに関連付けられるセルの効率的な管理のためにトランスポート及び制御機能を一元化するための例示的な方法の実施形態1400が描かれている。まず、例示的な方法の実施形態1400のステップ1402で、eNBに含まれるトランスポート及び制御機能が複数のeNBの各々から切り離され、T&Cプールエンティティに再配置される。例示的な方法の実施形態1400において、T&Cプールエンティティは既存のネットワークノード又は汎用ハードウェアノードであることができるがこれに限定されない、ということに留意すべきである。
【0047】
次に、例示的な方法の実施形態のステップ1404で、T&Cプールエンティティ間の通信及びT&Cプールエンティティ間の協調モビリティイベントのために、T&Cプールエンティティへのインタフェースが生成され、展開される。例示的な方法の実施形態において、留意すべきこととして、生成されるプロトコルは、既存のeNBからのパケットとここで説明されている拡張されたeNBからのパケットとをノードが同時に処理することを可能にする、既存のプロトコルの拡張版(enhancements)とすることができる。
【0048】
次に、例示的な方法の実施形態のステップ1406で、共有ネットワーク上でeNBと1つ以上のT&Cプールエンティティとの間で制御シグナリング及びデータパケットを送信するためのプロトコルが生成され、eNB及びT&Cプールエンティティへ展開される。例示的な方法の実施形態において、留意すべきこととして、生成されるプロトコルは、既存のプロトコルの拡張版とすることができる。さらに、例示的な実施形態において、共有ネットワークがIPネットワークであり得ることに留意すべきである。
【0049】
ここで図15を見ると、クレーミングされる主題が実装され得る適切なコンピューティングシステム環境1500の例であるが、上で明確にされたように、コンピューティングシステム環境1500は、例示的な実施形態のための適切なコンピューティング環境の一例にすぎず、クレーミングされる主題の使用又は機能の範囲についていかなる限定をも示唆することを意図しない。さらに、コンピューティング環境1500は、クレーミングされる主題に関連し、及び例示的なコンピューティング環境1500において示されるコンポーネントの任意の1つ又は組み合わせに関連する、いかなる依存関係又は要件をも示唆することを意図しない。
【0050】
図15を続けると、先に説明されたイノベーションを実装するためのデバイスの例は、コンピュータ1510の形態の汎用コンピューティングデバイスを含む。コンピュータ1510のコンポーネントは、処理ユニット1520、システムメモリ1530、及びシステムメモリを含むさまざまなシステムコンポーネントを処理ユニット1520に結合するシステムバス1590を含み得るが、これに限定されない。システムバス1590は、さまざまなバスアーキテクチャのいずれかを使用したメモリバス又はメモリコントローラ、周辺機器用バス、及びローカルバスを含むいくつかのタイプのバス構造のいずれかであり得る。
【0051】
コンピュータ1510は、さまざまなコンピュータ読取可能な媒体を含み得る。コンピュータ読取可能な媒体は、コンピュータ1510によってアクセスされ得る任意の利用可能な媒体であり得る。限定ではなく例として、コンピュータ読取可能な媒体は、コンピュータ記憶媒体及び通信媒体を含み得る。コンピュータ記憶媒体は、コンピュータ読取可能な命令、データ構造、プログラムモジュール、又は他のデータといった情報の記憶のために任意の方法又は技術において実装される、揮発性及び不揮発性の並びに取り外し可能な及び取り外し不可能な媒体を含む。コンピュータ記憶媒体は、RAM、ROM、EEPROM、フラッシュメモリ、又は他のメモリ技術、CDROM、デジタル多用途ディスク(DVD)、又は他の光学ディスクストレージ、磁気カセット、磁気テープ、磁気ディスクストレージ、又は他の磁気記憶デバイス、又は、所望の情報を記憶するために使用されることができ、かつコンピュータ1510によってアクセスされ得る、任意の他の媒体を含むが、これに限定されない。通信媒体は、コンピュータ読取可能な命令、データ構造、プログラムモジュール、又は、搬送波若しくは他のトランスポートメカニズムといった変調データ信号における他のデータを具現化することができ、任意の適切な情報伝達媒体を含み得る。
【0052】
システムメモリ1530は、読み取り専用メモリ(ROM)及び/又はランダムアクセスメモリ(RAM)のような揮発性及び/又は不揮発性メモリの形態のコンピュータ記憶媒体を含み得る。例えばスタートアップ中にコンピュータ1510内の要素間で情報を転送するのに役立つ基本的なルーチンを含むBIOS(basic input/output system)が、メモリ1530に記憶され得る。メモリ1530はまた、処理ユニット1520によって直ちにアクセス可能な及び/又は現在動作されているデータ及び/又はプログラムモジュールを含み得る。非限定的な例として、メモリ1530はまた、オペレーティングシステム、アプリケーションプログラム、他のプログラムモジュール、及びプログラムデータを含み得る。
【0053】
コンピュータ1510はまた、他の取り外し可能/取り外し不可能で揮発性/不揮発性のコンピュータ記憶媒体を含み得る。例えば、コンピュータ1510は、取り外し不可能で不揮発性の磁気媒体に読み書きするハードディスクドライブ、取り外し可能で不揮発性の磁気ディスクに読み書きする磁気ディスクドライブ、及び/又は、CD−ROM又は他の光学媒体のような取り外し可能で不揮発性の光学ディスクに読み書きする光学ディスクドライブを含み得る。例示的な動作環境において使用され得る、他の取り外し可能/取り外し不可能で揮発性/不揮発性のコンピュータ記憶媒体は、磁気テープカセット、フラッシュメモリカード、デジタル多用途ディスク、デジタルビデオテープ、ソリッドステートRAM、ソリッドステートROM、等を含むが、これに限定されない。ハードディスクドライブは、インタフェースのような取り外し不可能なメモリインタフェースを通じてシステムバス1590に接続されることができ、磁気ディスクドライブ又は光学ディスクドライブは、インタフェースのような取り外し可能なメモリインタフェースによってシステムバス1590に接続され得る。
【0054】
ユーザは、キーボード、若しくは、マウス、トラックボール、タッチパッドのようなポインティングデバイス及び/又は他のポインティングデバイス、といった入力デバイスを通じてコンピュータ1510にコマンド及び情報を入力し得る。他の入力デバイスは、マイクロフォン、ジョイスティック、ゲームパッド、サテライトディッシュ、スキャナ、又は同様のデバイスを含み得る。これらの及び/又は他の入力デバイスは、ユーザ入力1540、及びシステムバス1590に結合された関連付けられるインタフェース(単数又は複数)によって、処理ユニット1520に接続され得るが、パラレルポート、ゲームポート、又はユニバーサルシリアルバス(USB)のような他のインタフェース及びバス構造によって接続されることもできる。
【0055】
グラフィックスサブシステムもまた、システムバス1590に接続され得る。加えて、モニタ又は他のタイプのディスプレイデバイスが、出力インタフェース1550のようなインタフェースによってシステムバス1590に接続されることができ、出力インタフェース1550がまた、ビデオメモリと通信し得る。モニタに加えて、コンピュータはまた、スピーカー及び/又は印刷デバイスのような他の周辺出力デバイスを含むことができ、スピーカー及び/又は印刷デバイスもまた、出力インタフェース1550によって接続され得る。
【0056】
処理ユニット1520は、より高い計算パワー及び並列演算ケイパビリティを提供する複数の処理コアを含むことができる。さらに、コンピューティング環境1500は、より高い計算パワー及び並列演算ケイパビリティを提供する複数の処理ユニットを含み得る。コンピューティング環境1500は、マルチプロセッサ及びマルチコアプロセッサケイパビリティの組み合わせであることもできる、ということに留意すべきである。
【0057】
コンピュータ1510は、リモートサーバ1570のような1つ以上の他のリモートコンピュータへの論理接続を使用して、ネットワーク化され又は分散された環境において動作することができ、リモートサーバ1570はまた、デバイス1510とは異なる媒体ケイパビリティを有し得る。リモートサーバ1570は、パーソナルコンピュータ、サーバ、ルータ、ネットワークPC、ピアデバイス、又は他の共通ネットワークノード、及び/又は、任意の他のリモート媒体消費デバイス又は送信デバイスであることができ、コンピュータ1510について上述された要素のいずれか又はすべてを含み得る。図15に描かれた論理接続は、ローカルエリアネットワーク(LAN)又は広域ネットワーク(WAN)といったネットワーク1580を含むが、他のネットワーク/バスを含むこともできる。
【0058】
LANネットワーキング環境において使用される場合、コンピュータ1510は、ネットワークインタフェース1560又はアダプタによってLAN1580に接続される。WANネットワーキング環境において使用される場合、コンピュータ1510は、モデムのような通信コンポーネント、又はインターネットのようなWAN上で通信を確立するための他の手段を含み得る。モデムのような通信コンポーネントは、内部的又は外部的であり得るが、入力1540のユーザ入力インタフェース及び/又は他の適切なメカニズムによってシステムバス1590に接続され得る。
【0059】
ネットワーク化された環境において、コンピュータ1510に関し描かれたプログラムモジュール、又はその一部は、リモートメモリ記憶デバイスに記憶され得る。示され説明されたネットワーク接続は例示的なものであり、コンピュータ間で通信リンクを確立する他の手段が使用され得ることに留意すべきである。
【0060】
加えて、本願において使用される場合、「コンポーネント」、「ディスプレイ」、「インタフェース」といった用語、及び他の同様の用語は、コンピューティングデバイス、いずれかのハードウェア、ハードウェアとソフトウェアの組み合わせ、ソフトウェア、又は仮想キーボードを実装するコンピューティングデバイスに適用された場合に実行されるソフトウェアのことを言うように意図される、ということに留意すべきである。例えば、コンポーネントは、プロセッサ上で実行中のプロセス、プロセッサ、オブジェクト、実行ファイル、実行スレッド、プログラム、及びコンピューティングデバイスであり得るが、これに限定されない。例として、コンピューティングデバイスで実行中のアプリケーションもコンピューティングデバイスも、どちらもコンポーネントであり得る。1つ以上のコンポーネントが、プロセス及び/又は実行スレッドの中に存在することができ、コンポーネントは、1つのコンピューティングデバイス上に局所化されることができ、及び/又は、2つ以上のコンピューティングデバイス及び/又は通信可能に接続されたモジュール間で分散させられ得る。さらに、本願において使用される場合、「システムユーザ」、「ユーザ」といった用語、及び同様の用語は、上述されたコンピューティングデバイスを操作する人間のことを言うように意図される、ということに留意すべきである。
【0061】
さらに、「推論する(infer)」又は「推論(inference)」という用語は、概して、イベント及び/又はデータから捕捉される観測結果のセットから、システム、環境、ユーザ、及び/又は意思の状態を論理解釈し又は推論する処理をいう。捕捉されるイベント及びデータは、ユーザデータ、デバイスデータ、環境データ、振る舞いデータ、アプリケーションデータ、明示及び暗示データ、等を含み得る。推論は、例えば、特定のコンテキスト又は動作を識別するために用いられることができ、又は、複数の状態にわたる確率分布を生成し得る。推論は、対象の複数の状態にわたる確率分布の演算がデータ及びイベントの考慮に基づいているという点で確率的であり得る。推論はまた、イベント及び/又はデータのセットからより高いレベルのイベントを構成するために用いられる技法のことをいうこともできる。そのような推論は、イベントが時間的にごく近接して互いに関連付けられようとそうでなかろうと、及び、イベント及びデータが1つのイベント及びデータソースに由来しようといくつかのイベント及びデータソースに由来しようと、観測されるイベント及び/又は記憶されるイベントデータのセットからの新たなイベント又は動作の構築という結果を生じる。
【0062】
上述された例示的な実施形態は、本イノベーションの限定ではなく、すべての態様における例示であるように意図される。かくして、本イノベーションについて、本明細書に含まれる説明から当業者により導き出され得る、詳細な実装の多くの変形が可能である。すべてのそのような変形及び修正は、以下の特許請求の範囲によって定義される本イノベーションの範囲及び思想内にあるとみなされる。本出願の説明において使用された要素、動作、又は命令は、そのようなものとして明示的に説明されない限り、本発明にとって重要なもの又は不可欠なものと解釈されるべきではない。また、本明細書において使用される場合、冠詞の「a」は、1つ以上の項目を含むように意図される。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13A
図13B
図13C
図13D
図14
図15