(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0012】
以下、添付図面を参照して、本発明の実施の形態について説明する。なお、以下の説明では、既に説明したものと同様のものには同じ符号を付してその説明を省略する。
【0013】
また、図面は模式的なものであり、寸法比などは現実のものとは異なることに留意すべきである。従って、具体的な寸法比などは以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。
【0014】
また、以下に示す実施の形態は、この発明の技術的思想を具体化するための例示であって、この発明の実施の形態は、構成部品の材質、形状、構造、配置等を下記のものに特定するものではない。この発明の実施の形態は、要旨を逸脱しない範囲内で種々変更して実施できる。
【0015】
図1は、本発明の一実施形態(以下、本実施形態という)の半導体装置10の側面断面図である。
図2(a)および(b)は、それぞれ、半導体装置10の製造工程毎の側面断面図である。
【0016】
半導体装置10は、放熱性の金属製基板12と、金属製基板12上に位置する熱硬化性樹脂材14とを備えている。熱硬化後の熱硬化性樹脂材14は、金属製基板12上に位置し加熱圧着により熱硬化してなる電気絶縁性の下層樹脂15sと、下層樹脂15s上に位置し熱硬化してなる上層樹脂16sと、からなる。上層樹脂16sの熱硬化温度(その温度以上では熱硬化する温度)は、下層樹脂15sよりも高い。また、上層樹脂16sには、硬化する際に接着力が生じており、下層樹脂15sおよび上層樹脂16sは何れも接着層としての役割を果たしている。
【0017】
更に、半導体装置10は、上層樹脂16s上のリードフレーム18と、リードフレーム18上に接着材20で接合(実装)された半導体素子22と、金属製基板12の下面側を露出するように全体を覆う封止樹脂(モールド樹脂)24とを備えている。
【0018】
ここで、熱硬化性樹脂は、熱による硬化反応の初期段階では粘度が連続的に低下し、ある時期に粘度が最低となり溶融状態となる。更に加熱を続けると、熱硬化反応により粘度が上昇に転換し、粘度が最大に達し反応が終了したときに熱硬化が完了する。下層樹脂15sや上層樹脂16sはこのように熱硬化反応が完了したものであり、後述の未硬化下層樹脂15fや未硬化上層樹脂16fは熱硬化反応が完了してない段階のものである。なお、未硬化下層樹脂15fや未硬化上層樹脂16fの熱硬化反応が完了するまでの時間は、熱硬化させる際の温度の保持時間(温度保持時間)によって変わってくる。
【0019】
(製造方法)
以下、半導体装置10の製造方法について説明する。本実施形態では、下層樹脂15sと、下層樹脂15s上に形成され上層樹脂16sの形成材である未硬化上層樹脂16sとを金属製基板12上に形成してなる中間体17を製造しておく。
【0020】
中間体17を製造するには、例えば、まず、下層樹脂15sの形成材となる未硬化下層樹脂15fと、上層樹脂16sの形成材となる未硬化上層樹脂16fと、からなる熱硬化性樹脂材14を金属製基板12上に載置する。未硬化上層樹脂16fとしては、熱硬化する際に接着力が発生する樹脂であって、未硬化下層樹脂15fの熱硬化反応完了時には熱硬化反応を未完了にすることが可能な性質のものを用いる。なお、未硬化上層樹脂16fのシリカの含有量を多くすることで、上層樹脂16sの熱伝導性が高くなり、半導体素子22で発生した熱を金属製基板12に逃がし易くすることができ、半導体素子22を冷却する上で好ましい。
【0021】
熱硬化性樹脂材14の載置後、未硬化下層樹脂15fの熱硬化が完了して下層樹脂15sが形成され、かつ、未硬化上層樹脂16fでは熱硬化が完了せずにリードフレーム18が加熱圧着可能となるような熱処理条件で、金属製基板12に熱硬化性樹脂材14を載置したものを熱処理して中間体17を得る。
【0022】
中間体17の製造後、または、中間体17の製造と併行して、本実施形態では、
図2(a)に示すように、リードフレーム18の所定位置(例えば所定の島部)に半導体素子22を導電性の接着材20などで接合してなる第2中間体37を製造しておく。
【0023】
そして、金属製基板12が下方側に位置するように、上記の中間体17を押圧用位置に載置し、その上に、第2中間体37を載置する(
図2(b)参照)。
【0024】
本実施形態では、未硬化下層樹脂15fを熱硬化させる際に、リードフレーム18の温度を、未硬化上層樹脂16fの接触部が軟化(溶融)して更に硬化反応が促進される温度とする。従って、加熱圧着させる際のリードフレーム18の温度は、未硬化上層樹脂16fの熱硬化温度(硬化反応温度)よりも高い。
【0025】
なお、半導体素子22をリードフレーム18に接合する前にリードフレーム18を熱硬化性樹脂材14上に載置し、その後に半導体素子22をリードフレーム18に接合させる形態にすることも可能である。また、未硬化下層樹脂15fは、加熱圧着でなく塗布接着するものであってもよい。
【0026】
未硬化下層樹脂15fを金属製基板12に加熱圧着させた時点では、未硬化上層樹脂16fの熱硬化反応は完了しておらず、未硬化上層樹脂16fは半硬化状態(柔らかさを保った状態)である。この状態で、金属製基板12の下面側を露出させるように樹脂成形(モールド成形)することで、
図1に示したような半導体装置10が得られる。この樹脂成形では、ポストキュア時に、未硬化上層樹脂16fが完全に熱硬化して上層樹脂16sとなる。なお、ポストキュアとは、樹脂成形で応力緩和により材料を安定化させるために行う加熱エージングのことである。
【0027】
以上説明したように、本実施形態では、樹脂成形前では未硬化上層樹脂16fを完全には熱硬化させておらず、封止樹脂24を樹脂成形で形成する際に完全に熱硬化させて上層樹脂16sにしている。従って、樹脂成形前に完全に熱硬化している場合に比べ、上層樹脂16sに生じる内部応力を大きく緩和することができ、上層樹脂16sとリードフレーム18とが剥離し難くなる。更に、ポストキュア前ではいまだ完全には熱硬化しておらず、ポストキュア時に完全に熱硬化するので、上層樹脂16sでの内部応力緩和効果がより顕著となっている。
【0028】
また、未硬化下層樹脂15fを加熱圧着で熱硬化させる際に、リードフレーム18の温度を、未硬化上層樹脂16fの接触部が軟化(溶融)する温度とする。従って、未硬化上層樹脂16fの必要な部分のみ溶融状態とすることができる。これにより、加熱圧着する際に未硬化上層樹脂16fに異物が付着して接着することを顕著に防止することができ、封止樹脂24と上層樹脂16sとの接着性が増大する。また、加熱圧着する際に未硬化上層樹脂16fが不必要に周辺に流れ出すことを防止できる。また、リードフレーム18と上層樹脂16sとの密着性が良好となり、かつ接着強度が向上し、しかも上層樹脂16sの厚みを一定厚にコントロールすることが容易である。その上、リードフレーム18の温度の自由度が大きいので製造工程の簡易化が図られる。
【0029】
また、未硬化上層樹脂16fを樹脂成形時に熱硬化させるときには、下層樹脂15fが既に完全に熱硬化している。従って、リードフレーム18が下層樹脂15fに沈み込むことが回避されており、下層樹脂15sの厚みを一定厚みにすることができるので、下層樹脂15fによる電気絶縁性を確実に確保することができる。
【0030】
なお、半導体装置10を回路基板等に取り付けて使用することはもちろん可能である。また、半導体装置10が回路基板を有する構成にすることももちろん可能であり、半導体装置10としてIPM(Intelligent Power Module)を製造してもよい。
【0031】
(実施例)
以下、上記実施形態の具体的な実施例を説明する。なお、以下の実施例の図は、内部構造をわかり易くするために、封止樹脂を二点鎖線で描いている。
【0032】
(実施例1)
図3(a)および(b)は、それぞれ、実施例1の半導体装置の平面図および側面図である。
図4は、実施例1の半導体装置の製造工程を説明する説明図である。実施例1の半導体装置10aは、回路基板を有していない半導体装置である。
【0033】
実施例1の半導体装置10aを製造するには、
図4に示す組込み工程P1を行う。この組込み工程P1では、まず、リードフレーム18(18p、18q)に半導体素子22(22p、22q)をはんだ付けすることで、半導体素子(チップ)22をリードフレーム18に電気接続させるとともに固着する(ステップS1)。そして、はんだ付け後の洗浄としてフラックス洗浄(炉付け後洗浄)を行う(ステップS2)。
【0034】
次に、半導体素子22とリードフレーム18との電気接続をワイヤボンディングで行う。ここでは、Alワイヤ(アルミニウムワイヤ)を用いてワイヤボンディングを行い(ステップS3)、更に、Auワイヤ(金ワイヤ)を用いてワイヤボンディングを行う(ステップS4)。これらのワイヤボンディングでは、半導体素子22のリード端子、パワー側、制御側のリードフレーム18への接続を行う。
【0035】
その後、内観検査を行う(ステップS5)。更に、熱硬化性樹脂材(絶縁シート)14を金属製基板12の所定位置に載置し、半導体素子22が搭載されたリードフレーム18の電極を未硬化上層樹脂16fに当接させ、リードフレーム18を押圧して未硬化下層樹脂15fを金属製基板12に加熱圧着させる(ステップS6)。その際、リードフレーム18を、未硬化上層樹脂16fの熱硬化温度よりも高い温度に加熱して未硬化上層樹脂16f上に載置し押圧する。
【0036】
ステップS6では、プレヒートとして、半導体素子22が搭載されたリードフレーム18と、熱硬化性樹脂材(絶縁シート)14とを別ヒータにて予備加熱することを、90℃で2分間行う。プレヒートの温度、時間としては、70〜90℃で1〜2分間の範囲で行うことが好ましい。その後、熱硬化性樹脂材14を接着用のジグに移動させて金属製基板12の所定位置に載置し、上記加熱圧着をする際の本ヒートとして、120℃で60秒間加熱する。本ヒートの温度、時間としては、120〜140℃、50〜90秒間の範囲で行うことが好ましい。
【0037】
また、ステップS6は、後述のTRMによる樹脂封止の直前に行うことが好ましい。これは、熱硬化性樹脂材14がステップS2の洗浄(フラックス洗浄)に弱いこと、Auワイヤは熱処理にあまり強くないこと、熱硬化性樹脂材14が柔らかいため、上記のワイヤボンディングを良好に行うには熱硬化性樹脂材14の配置前のほうが好ましいこと、などの理由による。
【0038】
ステップS6が終了した段階では、未硬化上層樹脂16fは完全には硬化しておらず半硬化状態となっている。
【0039】
その後、TRM(トランスファーモールド)による樹脂封止を175℃で170秒間行う(ステップS7)。TRMによるこのときの温度は、170〜180℃の範囲であることが好ましい。
【0040】
TRMによる樹脂封止後、ポストキュアを行う。このポストキュアを行う過程で、封止樹脂24が完全に硬化するとともに、未硬化上層樹脂16fが完全に熱硬化して上層樹脂16sとなる(ステップS8)。ポストキュアの温度は175℃、時間は4.5時間である。ポストキュアの温度は175〜180℃の範囲であることが好ましく、ポストキュアの時間は4〜5時間の範囲であることが好ましい。
【0041】
その後、成形されたものを成形金型から分離し(ステップS9)、HT検査(ステップS10)、RT検査(ステップS11)を行う。
【0042】
更に、リードカット(ステップS12)を行い、
図3に示すような半導体装置10aが得られる。更に、外観検査(ステップS13)を行い、梱包して出荷商品とする(ステップS14)。
【0043】
(実施例2)
図5(a)および(b)は、それぞれ、実施例2の半導体装置の平面図および側面図である。実施例2の半導体装置(IPM)10bは、実施例1に比べ、セラミック基板38b上に回路が形成された回路基板40bを有する。回路基板40bの水平投影面積は、封止樹脂24の水平投影面積の25%以上の面積となっており、これにより、回路基板40bによって、封止樹脂24とリードフレーム18(18q、18r)との熱膨張係数の違いによる歪を充分に抑えることが可能になっている。例えば銅製のリードフレーム18の熱膨張係数に対して封止樹脂24の熱膨張係数は60%以下であるが、このように熱膨張係数が大きく異なっても、回路基板40bによって上記歪が抑えられている。なお、リードフレーム18rには半導体素子は搭載されていない。
【0044】
また、回路基板40bの裏面が封止樹脂24から露出しており、回路基板40bの放熱性に優れている。
【0045】
本実施例では、半導体装置10bを製造する際、実施例1に比べ、
図4に示す基板工程P2が付加されている。基板工程P2では、回路作成のための印刷をセラミック基板38bに行う(ステップS15)。そして、基板にパーツマウント(基板に電子部品を搭載すること)を行う(ステップS16)。
【0046】
更に、ダイマウント(基板にチップ(半導体素子)を搭載すること)を行う(ステップS17)。
【0047】
そして、ダイマウントを行うために半導体素子22に付けた接着剤を硬化させ(ステップS18)、部品検査を行う(ステップ19)。その後、このようにして製造された回路基板40bを、リードフレーム18とともに設けられている固定用フレーム(図示せず)に固定し、実施例1のステップS3以下を行う。その際、ステップS3、S4では、回路基板40bとリードフレーム18とのワイヤボンディングも行う。
【0048】
(実施例3)
図6(a)および(b)は、それぞれ、実施例3の半導体装置の平面図および側面図である。実施例3の半導体装置10cは、セラミック基板38c上に回路が形成された回路基板40cがリードフレーム18(18q、18t)の裏面側(下面側)に接続されている半導体装置である。回路基板40cの水平投影面積は、封止樹脂24の水平投影面積の25%以上の面積となっており、これにより、実施例2と同様、回路基板40cによって、封止樹脂24とリードフレーム18との熱膨張係数の違いによる歪を充分に抑えることが可能になっている。また、回路基板40cの裏面は封止樹脂24から露出しており、回路基板40cの放熱性に優れている。
【0049】
本実施例では、半導体装置10cを製造する際、実施例2に比べ、
図4に示すように、ステップS19を行った後、貼り付け用の接着剤を基板表面側(基板の上面側)の所定位置に塗布し、リードフレーム18の裏面側の所定位置に基板(回路基板40c)を貼り付ける(ステップS20)。その後、実施例2と同様にステップS3以下を行う。
【0050】
(実施例4)
図7(a)および(b)は、それぞれ、実施例4の半導体装置の平面図および側面図である。実施例4の半導体装置10dは、セラミック基板38d上に回路が形成された回路基板40dがリードフレーム18(18q、18t)の表面側(上面側)に接続されている半導体装置である。回路基板40dの水平投影面積は、封止樹脂24の水平投影面積の25%以上の面積となっており、これにより、実施例2と同様、回路基板40dによって、封止樹脂24とリードフレーム18との熱膨張係数の違いによる歪を充分に抑えることが可能になっている。また、回路基板40dは裏面側も含めて封止樹脂24内に内包されており、回路基板40dの絶縁性に優れている。
【0051】
本実施例では、半導体装置10dを製造する際、実施例3に比べ、貼り付け用の接着剤を基板裏面側(基板の下面側)の所定位置に塗布し、リードフレーム18の表面側(上面側)の所定位置に基板(回路基板40d)を貼り付ける。
【0052】
(実施例5)
図8(a)および(b)は、それぞれ、実施例5の半導体装置の平面図および側面図である。実施例5の半導体装置10eは、回路基板を有していない半導体装置であり、実施例1のリードフレーム18qに代えて、厚みが大きいリードフレーム18uを備えている。このように、他のリードフレームに比べて厚みが異なるリードフレーム18uを用いても、実施例1と同様に良好な半導体装置10eとすることができる。
【0053】
(実施例6)
図9(a)および(b)は、それぞれ、実施例6の半導体装置の平面図および側面図である。実施例6の半導体装置10fは、実施例5に比べ、セラミック基板38f上に回路が形成された回路基板40fを有する。回路基板40fの水平投影面積は、封止樹脂24の水平投影面積の25%以上の面積となっている。これにより、他のリードフレームに比べて厚みが大きいリードフレーム18uを用いても、実施例2と同様、回路基板40fによって、封止樹脂24とリードフレーム18との熱膨張係数の違いによる歪を充分に抑えることが可能になっている。また、回路基板40fの裏面が封止樹脂24から露出しており、回路基板40fの放熱性に優れている。