【文献】
Fernando Cruz-Roldan et al.,Zero-padding or cyclic prefix for MDFT-based filter bank multicarrier communications,Signal Processing 92(2012),ELSEVIER,2012年 7月,pp.1646-1657
(58)【調査した分野】(Int.Cl.,DB名)
前記出力信号を生成するために、前記追加された波形を切り出すステップをさらに含み、ここで前記データバーストは、N個のOFDM-OQAMシンボルを有し、ここでNは整数であり、OFDM-OQAMシンボル間の時間間隔は、T/2である、
請求項4に記載の方法。
前記データバーストがN個のOFDM-OQAMシンボルを有し、ここでNは整数であり、および前記2つ以上の係数が1でありおよびNは偶数であるか、または、前記2つ以上の係数が1、-j、-1、およびjの間で交互に繰り返すおよびNは奇数である、請求項5に記載の方法。
前記第1無線デバイスまたは前記第2無線デバイスが可動性の高いユーザ装置である時、送信ブロックの両端でOQAMシンボルをガードシンボルとしてリザーブするステップをさらに含み、ここで、前記出力信号を送信するステップは、前記出力信号を前記送信ブロック上で送信するステップを含む、
請求項1に記載の方法。
【発明を実施するための形態】
【0010】
異なる図面において、対応する数字と記号は、通常、特に断らない限り対応する部分を示す。図面は、実施形態の関連する態様を明確に図示するために描かれており、必ずしも縮尺通りではない。
【0011】
1つまたは複数の実施形態の例示的な実装が以下に提供されるが、開示されるシステムおよび/または方法は、現在知られているか、または既存であるかにかかわらず、任意の数の技術を使用して実施され得ることを理解されたい。本開示は、本明細書で図示され説明される例示的な設計および実装形態を含む、以下に示される例示的な実装形態、図面、および技術に全く限定されるべきではなく、添付の特許請求の範囲内、および等価物の全範囲内で変形され得る。
【0012】
直交周波数分割多重(OFDM)/オフセット直交振幅変調(OQAM)は、送信バーストの両端で、送信時間またはテールからのオーバヘッドを招く、マルチキャリア送信技術である。一例において、OFDM/OQAMは、プロトタイプフィルタの周波数変調されたバージョンのバンクと、入力アップサンプリングOQAMシーケンスの線形畳み込みとして表される。線形的に畳み込まれた(linearly convolved)フィルタを使用してもよく、オーバヘッドのフィルタリングが作成される。一例において、ハード打ち切り(hard truncation)は、オーバヘッドを減少するために使用される。ハード打ち切りは、オーバヘッドを完全に除去する。しかしながら、これは、信号の時間端に近い変調されたシンボルのパルス型を、非直交させて変形させることにより、OQAMシンボルの符号間干渉(ISI)および、キャリア間干渉(ICI)の原因となる。また、OFDM/OQAM信号のスペクトルのサイドローブの減衰は、信号の端で、打ち切りによって、急激な遷移から負の影響を受ける。打ち切りは、両スペクトルサイドローブでの問題、および信号エラーベクトル振幅(EVM)を有する。
【0013】
実施形態において、重み付けされた巡回的に畳み込まれたフィルタリングは、OFDM/OQAMにおいて、オーバヘッドを減少するために使用される。巡回的に畳み込まれたフィルタリングで、重み付きデータブロックのシーケンスは、OFDM/OQAM変調のための入力として使用される。重みは、変調器の出力が周期的になるように決定される。これは、変調器および復調器における重み付き巡回畳み込みと等しい。
【0014】
図1は、データを通信するためのネットワーク100を図示している。ネットワーク100は、サービスエリア106、UE104およびUE105を含む複数のユーザ装置(UE)、ならびにバックホールネットワーク108を有する通信コントローラ102を含む。2つのUEが描かれているが、より多数のUEが存在してもよい。通信コントローラ102は、特に、基地局、LTE用基地局(eNB)、ピコセル、フェムトセル、および他の無線利用可能なデバイス等、UE104およびUE105とのアップリンク(破線)および/またはダウンリンク(点線)接続を確立することによって無線アクセスを提供できる、いずれの構成要素であってもよい。UE104およびUE105は、携帯電話、スマートフォン、タブレット、センサ、その他等、通信コントローラ102と無線接続を確立できる、いずれの構成要素であってもよい。バックホールネットワーク108は、通信コントローラ102とリモートエンド(図示せず)との間でデータ交換することを許可する、いずれの構成要素または構成要素の集合であってもよい。いくつかの実施形態において、ネットワーク100は、リレー、フェムトセル、その他等、様々な他の無線デバイスを含んでもよい。
【0015】
図2は、線形畳み込み変調の方法のためのフローチャートを図示している。入力データバーストDは、出力信号s(t)を生成するために、線形畳み込みOFDM/OQAM変調器130によって線形的に畳み込まれる。一例のデータバーストは、
【0017】
によって与えられ、ここで、列は周波数に対応し、行は時間に対応する。データバーストDでは、2M個のサブキャリア、および時間内にN個のシンボルが存在する。
【0018】
図3は、出力信号s(t)を図示しており、説明の目的のために拡大された曲線142によって示される。曲線142は、LT/2毎の長さで、テール144を有する。曲線142の合計時間は、
【0020】
によって与えられる。しかしながら、曲線142の時間を
【0025】
対時間のさらに実際的なグラフを図示しており、曲線262によって示される。曲線262は、オーバヘッド264を含む。
【0026】
線形畳み込み変調において、OQAMシンボルのシーケンスは、実直交(real-orthogonal)パルス型のセットを通して変調される。パルス型は、時間および周波数内で、対称的な実数値プロトタイプフィルタp(t)をシフトすることによって取得される。連続時間OFDM/OQAM信号に対して、変調器出力は、
【0028】
として書かれてもよい。実数値配列点は、d
k,nによって与えられる。実数値配列点は、例えば、パルス振幅変調(PAM)シンボル、または直交振幅変調(QAM)シンボルの実数部あるいは虚数部であってもよい。サブキャリアの数は、2Mであり、サブキャリアの間隔は1/Tであり、2つの連続したOQAMシンボル間の時間間隔は、T/2である。実直交性は、
【0033】
OFDM/OQAM送信の離散時間公式は、
【0035】
のサンプリング周期で、連続時間信号をサンプリングすることによって実現される。つまり、
【0038】
図5は、OFDM/OQAM変調を実装するために使用され得るOFDM/OQAM変調器多相構造110を図示している。入力データポイントは、d
k,nであり、ここで、kはサブキャリアを表し、nは時間内のシンボルを表す。乗算器ブロック112で、入力にj
n+kを掛ける。次に、IFFTブロック114は、2MポイントIFFTであり、IFFTを実行する。IFFTブロック114の後、線形畳み込みフィルタ116は、転送機能G
k(z
2)を使用して、線形畳み込みを実行する。展開ブロック118は、係数Mによって、線形畳み込みフィルタ116の出力を展開する。展開ブロック118の出力は、次いでタイム・シフト・ブロック120によってタイムシフトされ、出力信号s(n)を生成するために加算器122によって加算される。
【0039】
図6は、OFDM/OQAM復調器多相構造150を図示している。受信信号s(n)は、時間シフトブロック152によって時間シフトされる。時間シフトされた信号は、次いでデシメータブロック154によってデシメート(decimate)される。フィルタブロック156は、フィルタG
k(z
2)を使用して、デシメートされた出力にフィルタをかける。フィルタブロック156は、その入力信号に線形畳み込みをそれぞれ適用する、フィルタのバンクであってもよい。次に、2MポイントIFFTは、IFFTブロック158によって、フィルタされた信号上に実行される。次いで乗算ブロック160において、IFFTブロック158の出力に、(-j)
n+kを掛ける。最後に、実数部分は、出力
【0041】
を生成するために、実数展開ブロック162によって展開される。
【0042】
OFDM/OQAM信号は、OQAMシンボルの無限シーケンスとして表されるが、実際には、シーケンスの長さは有限である。実際、遅延の考慮は、長すぎない送信バーストを推奨している。他方では、プロトタイプフィルタの長さは、適度なスペクトルのサイドローブ能力を有すると同時に、許容できる近似値で実直交性条件を満たすために、少なくとも4Tであってもよい。従って、OQAMシンボルの長さNのバーストに対して、
【0044】
の時間内でのオーバヘッド比率であってもよい。
図4は、25%のオーバヘッドとともにN=28のOQAMシンボルのバーストを備えたOFDM/OQAM信号を示す。
【0045】
時間シフトに従った各多相フィルタの線形畳み込みに起因する、テールの集合は、変調された信号s(n)の全体のオーバヘッドを結果として生じる。重み付き巡回畳み込みの追加は、ICI/ISIを増加せずに、OFDM/OQAM信号のオーバヘッドを除去し得る。多相フィルタで従来の巡回畳み込みを使用することは、OQAM信号バーストの長さが奇数である場合、OFDM/OQAM信号の実直交性を無効化する。従って、従来の巡回畳み込みは、特に時間領域信号の端の周囲で変調された信号上で、ICI/ISIの原因となる。
【0046】
OFDM/OQAM変調器は、係数Mのアップサンプリングおよび係数j
n+kによる乗算に起因する、線形時間変系である。実際、もしs(n)が入力信号
【0048】
のための変調器の出力である場合、入力信号のための変調器の出力
【0054】
であると示すことができる。d(n)が、実数OQAM信号の長さNのバーストであると仮定すする。つまり、
【0056】
であり、変調器は、d(n)の重み付きモジュロN巡回バージョンを供給される。すなわち、
【0058】
であり、ここで、α
iは実数値の重みであり、乗算器の出力は、
【0060】
によって与えられる。重み付け係数α
iは、s
c(t)が、Nが偶数のときはNT/2の周期で、およびNが奇数のときは2NTの周期で、周期的であるように取得されてもよい。Nが奇数のとき、重み付き係数が実数となるように制約されるので、s
c(t)は、周期NT/2で周期的にすることができない。しかしながら、α
iは、s
c(t)が間隔2NT内で構造化されるように、選択されてもよい。
【0061】
図7は、OFDM/OQAMに適用され得る、重み付けされた巡回的に畳み込まれたフィルタリングを図示している。入力データバーストDは、係数α
iを乗算され、・・・α
-1Dα
0Dα
1α
2D・・・を生成するためにシフトされる。α
i係数は、x(t)が周期的であるか、または構造化されるように選択される、実数の係数である。理論上は、無数のα
i係数が存在する。しかし、実際は、有限個のα
i係数が使用される。乗算され、シフトされた波形は、次いで線形畳み込みOFDM/OQAM変調器170によって、線形的に畳み込まれる。従って、生成される出力は、
【0065】
である。この出力x(t)は、送信のために準備される。
【0066】
図8は、x(t)の生成例を図示している。送信は、T
Nの長さで周期的である。4つのシフトされた曲線、曲線182、曲線184、曲線186、および曲線188は、共に追加される。曲線182は、係数α
-1j
-Nによって生成され、曲線184は、係数α
0によって生成され、曲線186は、係数α
-1j
Nによって生成され、および曲線188は、係数α
2j
2Nによって生成される。周期的な部分T
Nだけが送信されたとき、オリジナルの信号は、この周期に基づいて再構成されてもよい。
【0067】
Nが偶数のとき、周期T
Nを有する周期的なx(t)が、実現されてもよい。N mod 4=0のとき、α
i=1であり、N mod 4=2のとき、α
i=(-1)
iである。どちらの場合においても、波形は、
【0074】
図9は、波形の構造例190を図示しており、波形は周期TN/2で周期的であり、およびNは偶数である。
【0075】
図10は、Nが偶数のときの、変調のための実装210を図示している。オリジナルの波形は、
図9におけるように、シフトされ、4回加算される。結果の波形は、次いで切り出される。プロトタイプフィルタの長さがLTの場合、大きいNについて、例えば、
【0077】
について、2回の反復が実行される。小さいNについて、例えば、
【0079】
について、2回以上の反復が実行されてもよい。
【0080】
Nが偶数のとき、増倍係数は、波形が特殊な構造を有することができるように選択されることができる。構造は、4Τ
Νの周期を有する。しかしながら、構造のために、全体の波形は、NT/2の時間間隔から回復されてもよい。N mod 4=1のとき、α
i=1、N mod 4=3のとき、α
i=(-1)
iである。
図11は、波形の構造200を図示しており、ここで、
【0082】
であり、2ΝΤの周期を備えた周期的な信号である。
【0084】
を示すことができる。この構造から、オリジナルの波形は間隔T
Nから回復されてもよい。一例において、上記の最初の式の証明は、以下のとおりである。
【0091】
図12は、Nが奇数のときの変調のための実装220を図示している。波形は、シフトされ、1、j、-1、および-jを掛けられる。部分NT/2は、送信のために保たれる。
【0092】
時間領域における鋭い信号の端のために、重み付けられた巡回的に畳み込まれたOFDM/OQAMは、線形的に畳み込まれたOFDM/OQAMと比較して、劣化したスペクトルサイドローブ性能を有する。重み付き時間領域窓関数は、信号の端でスムーズに遷移させるために使用されてもよい。時間窓関数が、重み付けされた巡回的に畳み込まれたOFDM/OQAM信号の始まりと末尾に対して、2つの平滑な遷移窓を付加することによって実行されるため、信号のひずみの原因とならない。
図13は、重み付き時間領域窓関数を説明するグラフ300を図示している。
【0093】
Nが偶数のとき、信号302の始まりから長さ0.5Τ
Wの部分は、その末尾304に付加される。同様に、信号306から、末尾からの長さ0.5Τ
Wの部分が、その始まり308に付加される。これは、その端上の信号の連続性を保証する。その後、長さΤ
Wの適切なローリング-オフウィンドウ(例えば二乗余弦窓)が、信号の始まりと末尾で、付加された部分に対して適用される。
【0094】
Nが奇数のとき、信号302から、始まりから長さ0.5Τ
Wの部分は、最初にjが掛けられ、次いで、その末尾304に付加される。同様に、信号306から、末尾からの長さ0.5Τ
Wの部分が、最初に-jを掛けられて、その始まり308に付加される。次いで、窓関数が信号に適用される。
【0095】
図14は、OFDM/OQAM変調を実行する方法の流れ
図230を図示している。最初に、ステップ232において、線形畳み込み変調が実行される。例えば、線形畳み込み変調は、
図5においてOFDM/OQAM変調器多相構造110によって図示されるように、実行されてもよい。
【0096】
次に、ステップ234において、線形畳み込み変調された出力上に、切り出しとシフトが実行される。波形のシフトと加算を通して、周期的または構造化された波形が生成される。その波形は、次いで、送信のためにより小さい部分に切り出されてもよい。オリジナルの波形は、切り出し前の波形の周期性または構造により、切り出された波形から回復されてもよい。もし、プロトタイプフィルタ持続期間がLTならば、s(t)は、持続期間
【0098】
を有する。次いで、以下のとおりである。
【0100】
オーバヘッド削除信号は、s(t)から取得される。Nが偶数のとき、
【0109】
最後に、ステップ236において、切り出された波形が送信される。一例において、波形は、通信コントローラによってUEに送信されてもよい。他の例において、波形は、UEから通信コントローラに送信されてもよい。
【0110】
図15は、切り出しとシフトを実行する方法の流れ
図240を図示している。初めに、ステップ242において、波形に係数α
iを掛ける。
【0111】
次に、ステップ244において、波形は、iだけシフトされ、オリジナルの波形に加算される。
【0112】
次に、ステップ246において、デバイスは、さらに反復するか否かを決定する。さらに反復するとき、波形に再度加算とシフトをするために、ステップ242に進む。それ以上反復をしないとき、ステップ248に進み、波形が切り出される。切り出された波形は、オリジナルの波形が回復されるために十分な情報を含んでいる。
【0113】
ステップ249において、重み付き時間領域窓関数が実行されてもよい。重み付き時間領域窓関数は、送信時間が滑らかにゼロにあるようにする。多少の時間が追加され、重み付き時間領域窓関数が使用される。しかしながら、追加された時間は、比較的少ない時間量である。
【0114】
図16は、OFDM/OQAM復調の方法の流れ
図250を図示しており、巡回的に畳み込まれたフィルタリングが使用されている。初めに、ステップ252において、巡回的に畳み込まれたフィルタリングを使用して変調されたメッセージが受信される。一例において、UEが、通信コントローラからメッセージを受信する。他の例では、通信コントローラが、UEからメッセージを受信する。
【0115】
次に、ステップ254において、重み付き付加は、波形に適用される。Nが偶数のとき、オリジナル信号は、受信器を巡回するモジュロNT/2(modulo NT/2 circularizing the receiver)によって再構築されることができる。信号の持続期間は、
【0117】
である。Nが偶数のとき、i
max回に対して、
【0119】
である。Nが奇数のとき、i
max回に対して、
【0121】
である。また、重み付き時間領域窓関数は、削除されてもよい。
【0122】
線形畳み込み復調は、ステップ256において実行される。これは、例えば
図6で図示したOFDM/OQAM復調器多相構造150を用いて実行されてもよい。
【0124】
は、復調器を介して、結果として生じた信号をパスすることによって取得されることができる。理想的な、ノイズが無いチャネルにおいて、OFDM/OQAMの実直交性のために、
【0127】
図17は、曲線292によって示される、重み付けされた巡回的に畳み込まれたOFDM/OQAMを使用した、信号対時間のオーバヘッド削除版のグラフを図示している。
【0128】
他の例において、OFDM/OQAM変調器および復調器の多相フィルタは、モジュロN重み付き巡回畳み込みフィルタで置き換えられる。時間シフトは、モジュロN M重み付き巡回時間シフトで置き換えられる。
【0129】
図18は、OFDM/OQAMの巡回的に畳み込まれた変調のために使用されてもよい、OFDM/OQAM変調器多相構造330を図示している。入力d
k,n、ここで、kはサブキャリアを表し、nは時間内のシンボルを表す。入力は、乗算器ブロック112で、j
n+kを掛けられる。次いで、IFFTブロック114は、乗算された値にIFFTを実行する。IFFTブロック114のあと、モジュロNフィルタ332は、転送機能G
k(z
2)で重み付き巡回畳み込みを実行する。モジュロNフィルタの入力はx(n)であり、出力はy(n)である。Nが偶数のとき、
【0133】
である。展開ブロック118は、係数Mによってフィルタされた波形を展開する。出力は、モジュロM N時間シフトブロック334D
MNによって時間シフトされ、アドレス122によって加算される。モジュロM N時間シフトブロック334に対する入力はa(n)であり、出力はb(n)である。Nが偶数のとき、
【0138】
図19は、巡回的に畳み込まれた変調でOFDM/OQAM復調をするために使用される、OFDM/OQAM復調器多相構造340を図示している。受信された信号s(n)は、モジュロN M時間シフトブロック342D
MNによって時間シフトされる。次いで、時間シフトされた信号は、デシメータブロック154によってデシメートされる。フィルタブロック344は、G
k(z
2)を使用して、デシメートされた出力にフィルタをかける。次に、2MポイントIFFTは、IFFTブロック158によって実行される。出力は、次いで、乗算ブロック160において、(-j)
n+kを掛けられる。最後に、実数部分は、実数展開ブロック162によって展開される。
【0139】
図20および21は、デシベル(dB)対ベースバンド周波数MHzのパワースペクトル密度(PSD)のグラフを図示している。2つのOQAMシンボルは、端のシンボルのために重み付けされた巡回的に畳み込まれたOFDM/OQAM変調の実施を評価するための、これらのグラフを生成するために使用される。15kHzのサブキャリア空間で、600個のサブキャリアが使用され、およそ66.67μsの持続期間ΤのOQAMシンボルと等しい。使用されたプロトタイプフィルタは、β=1のロールオフ係数を備えた長さ4Τの平方根二乗余弦フィルタである。時間領域窓関数のために、Τ
W=Τ/2の窓関数長が
図20のグラフ310に使用され、一方Τ
W=Τ/4の窓関数が
図21のグラフ320に使用される。両グラフは、切り捨ての有無にかかわらず、時間領域窓関数をかけられた線形的に畳み込まれたOFDM/OQAM信号のPSDと、線形的に畳み込まれたOFDM/OQAM信号のPSDを比較する。打ち切りのため、信号の中心からの長さの部分
【0141】
は、保たれ、残りは打ち切られる。Τ
W窓関数は、打ち切られた信号に適用される。この窓関数は、信号の歪みを犠牲にして、打ち切りされた信号のスペクトルサイドローブ性能を向上させる。
【0142】
図20は、T
W=T/2の窓関数の長さに対するグラフ310を図示している。曲線312(破線で表示される)は、打ち切りをするPSDを示し、曲線314(離れた破線で表示される)は、線形畳み込みをするPSDを示し、曲線316(実線で表示される)は、窓関数をかけた重み付き巡回畳み込みをするPSDを示し、および曲線318(離れた実線で表示される)は、打ち切りおよび窓関数をかけたPSDを示す。復調されたOQAMの配列点のエラーベクトル振幅(EVM)は、これらの4曲線のために演算される。線形畳み込みのためのEVMは、-69.47dBであり、窓関数をかけた巡回畳み込みのためのEVMは、-43.83dBであり、打ち切りのためのEVMは、-30.77であり、ならびに窓関数付きの打ち切りのためのEVMは、-21.46dBである。
【0143】
図21は、T
W=T/4の窓関数の長さに対するグラフ320を図示している。曲線322(破線で表示される)は、打ち切りのためのPSDを示し、曲線324(離れた破線で表示される)は、線形畳み込みのためのPSDを示し、曲線326(実線で表示される)は、窓関数をかけた重み付き巡回畳み込みをするPSDのための曲線を示し、および曲線328(離れた実線で表示される)は、打ち切りおよび窓関数をかけたPSDを示す。復調されたOQAMの配列点のEVMは、これらの曲線のために演算される。線形畳み込みのためのEVMは、-69.47dBであり、窓関数をかけた巡回畳み込みのためのEVMは、-43.83dBであり、打ち切りのためのEVMは、-20.16dBであり、ならびに窓関数付きの打ち切りのためのEVMは、-17.11dBである。
【0144】
両方のグラフについて、窓関数をかけられ、重み付きで巡回的に畳み込まれた信号のPSDは、線形的に畳み込まれたものと非常に近く、メインローブへの近接性において優れている。線形的に畳み込まれた信号の劣化したサイドローブの性能、および窓関数をかけた打ち切りと比較して、その劣化した性能は、サイドローブを生じさせるプロトタイプフィルタの打ち切りに起因する。プロトタイプフィルタの長さを増加すると、サイドローブ性能を向上することができる。
【0145】
重み付けされた巡回的に畳み込まれたOFDM/OQAM変調の能力に関する一つの潜在的懸念は、高い可動性(mobility)のUEに関する。高い可動性のUEは、送信バーストにわたる時変送信チャネルを有するのに十分な可動性のUEである。送信チャネルの変更のため、受信器における重み付け付加(例えば、
図16のステップ254)のあと、チャネルの不連続性は、高可動性UEの送信バーストの端に現れることがある。例えば、
図22は、高可動性UEの時変送信チャネル400を介して送信された、重み付けされた巡回的に畳み込まれたOFDM/OQAM変調された送信バースト402を図示している。受信器では、送信バースト402(矢印404で示される)の重みを付加した後、時変送信チャネル400のため、送信バースト402の端で、不連続点406が現れる。不連続点406は、送信ブロックの端でOQAMシンボル上のISI/ICIを導くことがある。低いSNR体制において、加法性白色ガウス雑音(AWGN)は、ISI/ICIよりも優性であることがあるため、端の位置でのOQAMシンボル上のISI/ICIは、高い信号対雑音比(SNR)通信体制における高い可動性のUEに対して特に問題となることがある。
【0146】
高い可動性のUEのための送信ブロック端でのISI/ICIは、ガードシンボルのような送信ブロック端でシンボルを受信することによって、解決されてもよい。つまり、高い可動性のUEのための送信ブロックの両端で、OQAMシンボル上で何も送信されなくてもよい。
図23は、高い可動性のUEのためのガードシンボルの実装を図示している。高い可動性のUEのための送信ブロック408は、時間-周波数領域における、複数のOQAMシンボル410を含んでもよい。送信ブロック408の端(例えば、OQAMシンボル410’)でのOQAMシンボルは、ガードシンボル410’としてリザーブされ、シンボル410’上では何も送信されない。次いで、それらの端の位置上のISI/ICIは、無効となってもよい。ガードシンボルが、高可動性のUEのためにリザーブだけされてもよく、これはネットワーク内で一般的にUEの少ない割合であるため、ネットワーク全体のスペクトル効率の損失が非常に小さいか、または無視することができる。さらに、ガードシンボルは、ネットワーク内の高可動性ではない他のUEに対して透過的で、影響を与えないことがある。様々な代替実施形態において、ガードシンボルの実装は、高SNR通信体制での高い可動性のUEに対しての適用のみが、されてもよい。
【0147】
提案したオーバヘッド除去技術は、打ち切りアプローチよりも性能が優れている。提案技術と線形的に畳み込まれたOFDM/OQAM信号との間のEVM差分は、プロトタイプフィルタの非理想性に起因する。実際、プロトタイプフィルタは、平方根二乗余弦フィルタの切断されたバージョンであるため、ほぼ直交している。従って、線形的に畳み込まれた信号であっても、残留ISI/ICIが存在する。提案されたオーバヘッド除去操作は、無限長バーストの中心から、信号の一部を保持しているため、線形的に畳み込まれた信号の端OQAMシンボルよりも多くの残留ISI/ICIを、常に経験する。この残留干渉は、より多く直交させるために、プロトタイプフィルタ長を増加することによって軽減する事ができる。
【0148】
図24は、ここで開示されるデバイスと方法を実装するために使用されてもよい、処理システム270のブロック図を図示している。特定のデバイスが、示された構成要素の全てを使用するか、または、構成要素のサブセットのみを使用するか、および、統合のレベルは、デバイスによって異なってもよい。さらに、デバイスは、複数の処理ユニット、プロセッサ、メモリ、送信器、受信器などといった、構成要素の複数のインスタンスを含んでもよい。処理システムは、マイクロフォン、マウス、タッチスクリーン、キーパッド、キーボード、および同様のもの等、1つまたは複数の入力デバイスを備えた処理装置を含んでもよい。また、処理システム270は、スピーカ、プリンタ、ディスプレイ、および同様のものといった、1つまたは複数の出力デバイスを備えてもよい。処理ユニットは、中央処理装置(CPU)274、メモリ276、大容量記憶装置278、ビデオアダプタ280、およびバスに接続されたI/Oインタフェース288を含んでもよい。
【0149】
バスは、メモリバスまたはメモリコントローラ、周辺機器バス、ビデオバス、あるいは同様のものを含む、いくつかのバスアーキテクチャのうち、1つまたは複数のいずれのタイプであってもよい。CPU274は、電子データプロセッサのいずれのタイプを含んでもよい。メモリ276は、静的ランダムアクセス記憶装置(SRAM)、動的ランダムアクセスメモリ(DRAM)、シンクロナスDRAM(SDRAM)、読み出し専用メモリ(ROM)、それらの組合せ、あるいは同様のもの等、システムメモリのいずれのタイプを含んでもよい。一実施形態において、メモリは、ブートアップで使用するためのROM、プログラムのためのDRAM、およびプログラムを実行する間に使用するためのデータストレージを含んでもよい。
【0150】
大容量記憶装置278は、データ、プログラム、および他の情報を保存し、バスを介してデータ、プログラム、および他の情報にアクセス可能になるように構成された記憶装置の、いずれのタイプを含んでいてもよい。大容量記憶装置278は、例えば、半導体素子、ハードディスクドライブ、磁気ディスクドライブ、光ディスクドライブ、あるいは同様のもののうち、1つまたは複数を含んでもよい。
【0151】
ビデオアダプタ280およびI/Oインタフェース288は、外付け入力および出力デバイスと処理ユニットを連結するインタフェースを提供する。図示したように、入力および出力デバイスの例は、ビデオアダプタに連結されたディスプレイおよびI/Oインタフェースに連結されたマウス/キーボード/プリンタを含む。他のデバイスは、処理ユニットに接続されてもよく、追加して、もしくはより少ないインタフェースカードが使用されてもよい。例えば、シリアル・インタフェース・カード(図示せず)が、プリンタにシリアルインタフェースを提供するために使用されてもよい。
【0152】
処理ユニットは、イーサネット(登録商標)ケーブルまたは同種のもの等の、有線リンク、および/またはアクセスノードまたは異なるネットワークへの無線リンクを含んでもよい、1つまたは複数のネットワークインタフェース284も含む。ネットワークインタフェース284は、ネットワークを介して処理ユニットとリモートユニットが通信することを許可する。例えば、ネットワークインタフェースは、1つまたは複数の送信器/送信アンテナおよび1つまたは複数の受信器/受信アンテナを介して無線通信を提供してもよい。一実施形態において、処理ユニットは、データ処理のために、および他の処理ユニット、インターネット、リモート記憶設備、または同様のもの等の、リモートデバイスの通信のためにローカル・エリア・ネットワークまたはワイド・エリア・ネットワークと連結される。
【0153】
いくつかの実施形態が本開示において与えられているが、開示されるシステムおよび方法は、本開示の趣旨または範囲を逸脱することなく、他の多くの特定の形態で実施されることも可能であるものと理解され得る。本発明の例は、例示的であり、限定的ではないものと考えられるべきであり、意図は、本明細書で与えられる詳細に限定されない。例えば、様々な要素または構成要素は、組み合わされること、または別のシステムに組み込まれることが可能であり、あるいはいくつかの特徴が、省略されること、または実施されないことが可能である。
【0154】
加えて、技術、システム、サブシステムおよび方法は、個別に、あるいは分けて、様々な実施形態において説明および図示したが、現在の開示の範囲からを逸脱せずに、他のシステム、モジュール、技術、または方法と統合されてもよい。結合されている、または直接的に結合されている、または互いに通信するものとして示される、あるいは説明される他のアイテムが、電気的に、機械的に、またはその他の様態であれ、何らかのインタフェース、デバイス、または中間構成要素を介して間接的に結合される、または通信することも可能である。本発明の趣旨および範囲から逸脱することなく、当業者によって導出される変形、バリエーション、または置き換えの例が、本発明の保護の範囲に含まれる。