(58)【調査した分野】(Int.Cl.,DB名)
前記誘電体層に1または複数の開口部を形成するステップが、前記パターン形成されたレジスト上の前記誘電体層の1または複数の部分を選択的にレーザ照射することを含む、請求項1に記載の方法。
前記誘電体層に1または複数の開口部を形成するステップが、前記誘電体層および前記パターン形成されたレジストを熱処理して、前記パターン形成されたレジストの体積を増大させることを含み、前記パターン形成されたレジストの体積の増大により、前記誘電体層において前記パターン形成されたレジストの部分を露出させる亀裂を形成する、請求項1に記載の方法。
前記パターン形成されたレジストを除去するステップが、前記パターン形成されたレジストの前記露出された部分を介して、前記パターン形成されたレジストをレジスト除去剤に露出させることを含む、請求項1に記載の方法。
前記パターン形成された導電性格子上に金属のめっきを設けるステップを更に含み、前記パターン形成された導電性格子にギャップを伴うことなく接触する前記デバイス層の前記別の部分上の前記誘電体層が、前記金属のめっきおよび前記デバイス層の間の接触を防いでいる、請求項1に記載の方法。
前記パターン形成されたレジストおよび前記パターン形成されたレジスト上の前記誘電体層を除去するステップが、前記デバイス層の前記第1の部分を露出させ、前記方法が、前記デバイス層の前記露出された第1の部分上に導電性材料を設けるステップを更に含み、前記導電性材料が、パターン形成された導電性格子および前記誘電体層の間のギャップを伴うことなく、前記パターン形成された導電性格子を形成する、請求項1に記載の方法。
【背景技術】
【0002】
関連出願の情報
本願は、参照によって全体が本明細書に組み込まれている、2010年9月3日出願の米国特許仮出願第61/379,810号明細書の利益を主張するものである。
【0003】
本願はまた、2009年4月21日出願の「High-Efficiency Solar Cell Structures and Methods of Manufacture」という名称の、本発明の譲受人に譲渡され、既に出願された米国特許仮出願(譲渡後の出願番号は第61/171,194号明細書)、および2010年4月21日出願の「High-Efficiency Solar Cell Structures and Methods of Manufacture」という名称の、本発明の譲受人に譲渡された国際特許出願(譲渡後の出願番号はPCT/US10/31869)に関する。これらの出願はそれぞれ、やはり参照によって全体が本明細書に組み込まれる。本発明のすべての態様は、前述の出願の開示と組み合わせて用いることができる。
【0004】
太陽電池は、本質的に無限量の太陽エネルギーを使用可能な電気出力に変換することによって、社会に対して広範にわたる利益をもたらしている。その使用が増えるにつれて、大量生産および効率など、ある特定の経済的要素が重要になる。
【0005】
太陽放射は、通常は前面と呼ばれる太陽電池の一方の表面を優先的に照射すると考えられる。入射する光子から電気エネルギーへの高いエネルギー変換効率を実現するためには、シリコン基板内で光子を効率的に吸収することが重要である。これは、前面に対する適切な表面のテクスチャ化(texturing)および反射防止コーティング、ならびに基板自体を除くすべての層内における低い寄生吸収によって実現することができる。さらに、セルの裏面に反射層を設け、内部での光の閉じ込めを改善することが重要になる場合がある。太陽電池の高効率のために重要な他のパラメータは、金属電極によって前方の表面を遮蔽することである。一般的に、最適化された金属格子では、遮蔽と金属構造の電気抵抗の間で損失の折り合いをつけることが求められる。太陽電池の効率の最適化には、フィンガがきわめて細く、そうしたフィンガ間の距離が短い格子が必要であり、格子は高い電気伝導率を有するべきである。この構造を形成する実際的な方法が、本発明の主題である。
【0006】
太陽電池の生産では、例えば前方の表面に電極を印刷するために、スクリーン印刷技術を用いることができる。シリコン窒化物の反射防止コーティングの上に銀ペーストを印刷し、高温プロセスでコーティングを通して焼成することができる。これは簡潔なプロセスであるが、印刷されるペーストにいくつかの非金属成分が使用されるため、この手法のある固有の特性によって、50μm(通常は約100μm)超の比較的広いライン幅、および金属格子のかなり低いライン導電性を伴う。さらに、焼成プロセスによって、金属ペーストの成分が反射防止層を通して基板の中に浸透し、基板では再結合が増加する。これは、空間電荷領域の望ましくない浸透によってpn接合が激しく損傷を受ける可能性がある場合の前方の接合デバイス、ならびに前方の表面の再結合が増加し、後方の接合エミッタの収集効率を著しく低下させる場合の後方の接合デバイスの両方のケースにあてはまる。
【図面の簡単な説明】
【0012】
本発明とみなされる対象物は、本明細書の最後の部分の特許請求の範囲において詳しく示され、明確に特許請求される。本発明の前述のおよび他の目的、特徴ならびに利点は、添付図面と共に取り上げる以下の詳細な説明から明らかになる。
【0013】
【
図1A】本発明の様々な態様による、製造中の例示的な太陽電池の部分断面図である。
【
図1B】本発明の様々な態様による、製造中の例示的な太陽電池の部分断面図である。
【
図2A】本発明の様々な態様による、製造中の例示的な太陽電池の部分断面図である。
【
図2B】本発明の様々な態様による、製造中の例示的な太陽電池の部分断面図である。
【
図2C】本発明の様々な態様による、製造中の例示的な太陽電池の部分断面図である。
【
図2D】本発明の様々な態様による、製造中の例示的な太陽電池の部分断面図である。
【
図3A】本発明の様々な態様による、製造中の例示的な太陽電池の部分断面図である。
【
図3B】本発明の様々な態様による、製造中の例示的な太陽電池の部分断面図である。
【
図3C】本発明の様々な態様による、製造中の例示的な太陽電池の部分断面図である。
【
図3D】本発明の様々な態様による、製造中の例示的な太陽電池の部分断面図である。
【
図4A】本発明の様々な態様による、製造中の例示的な太陽電池の部分断面図である。
【
図4B】本発明の様々な態様による、製造中の例示的な太陽電池の部分断面図である。
【
図4C】本発明の様々な態様による、製造中の例示的な太陽電池の部分断面図である。
【
図4D】本発明の様々な態様による、製造中の例示的な太陽電池の部分断面図である。
【
図4E.1】本発明の様々な態様による、製造中の例示的な太陽電池の部分断面図である。
【
図4F.1】本発明の様々な態様による、製造中の例示的な太陽電池の部分断面図である。
【
図4F.2】本発明の様々な態様による、製造中の例示的な太陽電池の部分断面図である。
【
図4G.1】本発明の様々な態様による、製造中の例示的な太陽電池の部分断面図である。
【
図4G.2】本発明の様々な態様による、製造中の例示的な太陽電池の部分断面図である。
【
図4H】本発明の様々な態様による、製造中の例示的な太陽電池の部分断面図である。
【
図4I】本発明の様々な態様による、製造中の例示的な太陽電池の部分断面図である。
【
図4J】本発明の様々な態様による、製造中の例示的な太陽電池の部分断面図である。
【
図5A】本発明の様々な態様による、製造中の例示的な太陽電池の裏面の部分断面図である。
【
図5B】本発明の様々な態様による、製造中の例示的な太陽電池の裏面の部分断面図である。
【
図5C】本発明の様々な態様による、製造中の例示的な太陽電池の裏面の部分断面図である。
【
図5D】本発明の様々な態様による、製造中の例示的な太陽電池の裏面の部分断面図である。
【
図5E】本発明の様々な態様による、製造中の例示的な太陽電池の裏面の部分断面図である。
【
図6】本発明による、電気的コンタクトを必要とする多機能層を有する太陽電池の部分断面図である。
【発明を実施するための形態】
【0014】
本発明は、多くの太陽電池の構造に適用することができる。以下の説明は、本発明の例示的な実施形態を示すものである(説明では、同様の要素を指すのに類似の参照番号を用いる)。本発明は、記載されるこれらの実施形態に限定されない。
【0015】
本発明の一実施形態に従って、
図1A〜Bに、太陽電池10の前面および/または裏面のメタライゼーション(metallization)のための改善された構造および方法が開示されている。結果として生じるメタライゼーションライン14のライン幅は50μm以下程度とすることができ、前面の金属による全表面被覆率は約7%以下とすることができる。
【0016】
図1Aは、高効率の太陽電池10のための最適化された前方のコンタクト構造を示している。誘電体、例えば反射防止コーティング12が、下にある基板11を、金属コンタクト(例えばラインまたは他の適切な構造)14の下部を除く表面全体にわたって被覆している。高効率の太陽電池では、同様の構造を後方のコンタクトとして用いることもできる。そのような場合、コーティング12は反射層として機能することができる。
【0017】
図1Bに示すように、金属コンタクト14は、電極の所望の厚さまでのめっきを開始するためのシード層として用いることができる。引き続き、薄い金属コンタクト14を必要な厚さまでめっきして(14’)、より高い導電性を得ることができる。ライン導電性の増強のための電気めっきは、約100〜300nm程度の金属層の厚みをもたらし、それを用いて十分な均一性を可能にすることができる。
【0018】
図2A〜Dの部分断面図を参照すると、セル20におけるそうしたコンタクト構造の実現は、基板21の上に感光性レジスト23を堆積させるリフトオフプロセスによって実施することができる。
図2Aに示すように、基板を反射防止コーティング(ARC)22などの誘電体コーティングによって被覆することができる。レジストを部分的にUV光に曝し、現像して、マイクロメートル範囲のはっきりしたレジスト構造を得ることができる。このレジスト構造は、例えば酸によるARC22の選択的エッチングを可能にし、
図2Bに示すような構造を生じさせることができる。この構造化されたレジストおよび基板の上に、薄い金属薄膜24を堆積させることが可能であり、金属薄膜24は異なる材料のスタックとすることができる。金属の堆積は、例えば蒸着またはスパッタリングによって行うことができる。後続のステップ、すなわちリフトオフステップでは、
図2Cに示すように、覆われていない側面26を介してレジスト23をエッチングし、レジスト23を溶解する溶媒または苛性アルカリ溶液にレジストを曝すことができる。結果として、
図2Dに示すように、金属薄膜が基板から取り除かれ、基板の上に細かいコンタクト24’を得ることができる。
【0019】
この例示的な順序(
図2A〜D)は、堆積した金属層が不連続で、溶液がレジスト23を直ちに剥離し、したがって金属層24のレジスト上の部分を剥離し、ラインコンタクト24’を残す、負の側面を有するレジストの1つのケースを図示している。
【0020】
フォトリソグラフィによって画定されるレジストの高いコストおよびプロセスの複雑さを回避するために、本発明に従って、インクジェット印刷またはスクリーン印刷など、構造化されたレジストを堆積させるための比較的安価な技術を用いることができる。しかしながら、(基板31、ARC32およびレジスト33を有するセル30の断面を示す)
図3Aおよび(基板31’、ARC32’およびレジスト33’を有するセル30’の断面を示す)3Cに示すように、垂直な側面または正に傾斜した側面を有する理想的ではない構造が得られることもある。これによって、連続した金属薄膜(それぞれ34、34’)が生じる可能性があり、それぞれ
図3Bおよび3Dに示すように、基板全体にわたって、レジストの剥離を側面36および36’から均一に開始することができない。レジストのエッチングを可能にするために、亀裂など金属薄膜内の欠陥が必要になる場合がある。これによって、リフトオフプロセスに必要な時間が著しく増大することがあり、また苛性アルカリ溶媒を用いたとき、金属薄膜のエッチングを引き起こす恐れもある。
【0021】
他の方法を用いてレジストの段状部分に金属層の割れ目を生成し、溶液がレジストを剥離できるようにすることも可能である。例えば、異なる特性の多層のレジストを用いるプロセスによって、負の勾配の側面を生じさせることが可能であり、したがって、金属層がレジストの段状部分全体を被覆しないようにする。レジストおよび取り除かれる層に亀裂を導入することができる、レジストの熱処理を用いてもよい。超音波技術を用いることもできる。しかし、こうした方法では、側面の金属層が機械的に引き剥がされる可能性がある。特に表面積の5%までの典型的なコンタクトでは金属の95%を取り除く必要があるため、そうした方法は制御が難しく、基板およびメタライゼーション層にさらに応力を生じさせる可能性がある。
【0022】
費用がかかることに加えて、金属被覆率が5%である場合には、面積の95%をレジストで被覆し、次いで取り除かなければならず、その結果、プロセスが欠陥に対して脆弱になる。取り除かれる材料は金属であり、比較的厚く(例えば、後続の電気めっきでの適切な電流分布には数百ナノメートルが必要)、延性がある。
【0023】
本発明によれば、例えば反射防止コーティング(ARC)または反射コーティング(RC)などの光学的コーティングのリフトオフプロセスを用いて、太陽電池のための細かいコンタクト(例えばライン状)パターンのメタライゼーションが提供される。この手法は、金属層を取り除く一般的なリフトオフの前述の制限を克服する。メタライゼーションの割合が5%の場合、面積の残りの95%をレジストで被覆する必要があるため、そうした問題によって消耗品のコストが高くなることがある。フォトリソグラフィ技術は、きわめて複雑かつ高コストのプロセスになる可能性がある。インクジェット印刷またはスクリーン印刷では、50μmより狭い最小のライン幅を得ることがきわめて難しくなる。また、側面は好適なリフトオフが可能になるように成形されない。
【0024】
しかしながら、本発明によれば、メタライゼーションのためのラインの画定は、間隔をあけることによるものではなく、レジストを堆積させることによるものであり、すなわち、約20μm幅のラインを印刷することが可能なインクジェット技術または分配方法を用いることができる。金属のエッチングは、レジストの下の金属層にアンダカット(undercut)を生じさせるように調整することができる。これによって、レジストの縁部でのARC(またはRC)の連続的な堆積が妨げられ、レジストを侵食するための場所が設けられる。剥離用の溶液がレジストに到達する場所をさらに生成するために、レジスト上のARC層のレーザ開口部を用いることもできる。金属のアンダカットがないと、堆積したARCと金属シード層の間に閉じたシールが生じる。これは、めっきされたメタライゼーションラインが、シリコン内に欠陥を生じさせることがある銅など、下にある基板を汚染する恐れがある金属からなる場合にはきわめて有用である。その場合、ARCが基板を保護し、基板内への拡散を防止する。本発明の1つの利点は、5%のコンタクトの被覆率の割合では、(金属のリフトオフの場合の95%とは対照的に)5%のレジスト被覆率しか必要としないことである。また、取り除かれる材料は、通常はずっと厚い(数百ナノメートルの)延性金属ではなく、通常は薄い(例えば50〜100nmの)脆性材料である。本発明の一実施形態では、レジストの除去は、レジストを溶解するのではなく膨張させることによって行われる。レジストの膨張によって、レジスト頂部のARCにさらに亀裂が入り、反応速度が高まる。この手法には、硬化後の固体含有量が高いUV硬化レジストが特に適している場合がある。
【0025】
図4A〜Jの部分断面図を参照すると、本発明の様々な態様に従って、例えばシリコン太陽電池の前方のコンタクト電極に対する方法、および得られる関連する構造が開示されている。
【0026】
図4A〜Jを全体的に参照してこのプロセスを要約すると、下にある基板41(例えば、テクスチャ化されたシリコン)の上に、例えば物理蒸着(PVD)によって薄い薄膜金属44を堆積させることができる。そうした薄い薄膜金属は、例えば約50から200nmの厚さを有するニッケルとすることができる。次いで、薄い金属の表面上に、パターン形成されたレジスト43が形成される。そうしたパターン形成されたレジストは、例えば市販の印刷ヘッド(例えば、FujiFilm−Dimatix SE−128 AA、またはKonica Minolta KM512M)および市販のインクジェットレジスト(例えば、Sun Chemical Inc製、またはMacDermid Inc.製)を用いたインクジェット印刷によって形成することができる。当業者には知られているように、プロセスの要件(解像度、安定性など)すべてを満たすことを可能にするために、インクジェット印刷可能なレジストは名目上、特定の特性(例えば粘性、表面張力、耐酸性、硬化および剥離の型など)を有するように配合すべきである。
【0027】
レジスト43の適切な硬化の後、レジストで被覆されていない薄い薄膜金属が、適切な金属エッチ溶液によってエッチングされる。次いで、構造全体にわたって誘電体薄膜42/42’を堆積させる。そうした誘電体薄膜は、適当な屈折率および厚さを選択することによって反射防止コーティングを形成することができる。次いで、レジスト43およびレジストの上にある誘電体42’が除去される。そうした除去は、例えば超音波攪拌と共に適切な溶媒での浸漬によって、または本明細書に記載の他の技法によって実施することができる。次いで、薄膜金属の上に電気めっきされた金属44’を形成することができる。したがって、本発明によって、シリコン太陽電池の前面で電気めっきした細い金属トレース(幅40μm未満)を誘電体の反射防止コーティングによって囲むこと(そうしたきわめて望ましい構造)が可能になる。
【0028】
より詳細には、
図4Aの断面40を参照すると、基板41の上に金属コンタクトの薄膜44が堆積される。この金属薄膜は、1つまたは複数の異なる金属または金属合金の薄い薄膜の組み合わせとすることができる。本明細書において「基板」という用語は、導電性の接続を必要とする下部の任意の層を意味するのに広義に用いられる。したがって、前述のセルの構造は、付加的な下部の機能層を含むことができる。
図4Bでは、金属層44の上に細いライン43を含むレジストパターンが分配される。次いで、レジスト43によって被覆された部分を除く金属層44全体がエッチングされる。金属エッチングの程度は、大きいまたは小さいアンダカットを生成するように(例えば
図4C)、またはアンダカットを生成しないように(例えば
図4D)制御することができる。
【0029】
図4E.1に示すように、表面および構造の上に誘電体コーティング42を堆積させることができる。金属エッチのアンダカットによって、この堆積を、基板の上の誘電体層42とレジストの上の誘電体42’との間で不連続にすることができる。レジスト除去剤の機構47によって、金属エッチの間に生成されたアンダカットなどの誘電体(42〜42’)の不連続部を介してレジストを侵食することができる。
【0030】
堆積させる誘電体は、例えば塗布ガラス(SOG)コーティング、BCB(ベンゾシクロブテン)などの硬質のポリマーコーティング、またはSU−8フォトエポキシとすることができる。反射防止コーティング(ARC)のより一般的な例には、1.4<n<3(例えば、1.7<n<2.5)の範囲内の屈折率、および20nm<厚さ<110nm(例えば、60nm<厚さ<100nm)の範囲内の厚さを有する反射防止薄膜が含まれる。例には、シリコン窒化物、シリコン炭化物、シリコン酸化物、チタン二酸化物、透過性および導電性のある酸化物が含まれる。反射コーティング(RC)の例には、シリコン酸化物、適切な屈折率を有する他の化合物、ポリマーレジストまたはエポキシが含まれる。誘電体は、例えば適切な堆積温度におけるプラズマ強化化学気相成長(PECVD)によって堆積させることができる。
【0031】
図4F.1〜4F.2に示す本発明の他の態様では、レーザ48が、コンタクト層44に損傷を引き起こすことなく、レジスト43の上に開口部を生成すること、または誘電体42’を部分的に除去することが可能であるため、レーザ照射48または他の同様の技術を用いて、誘電体層42’の中に開口部を局所的に設けることができる。次いで、レジスト除去剤の機構47が、開口部を通してレジストを侵食することができる。
【0032】
図4G.1〜4G.2に示す本発明の他の態様では、誘電体層42’内の開口部を、誘電体薄膜42’内に故意にまたは必然的に形成されたピンホール49から得ることができる。あるいは、ARC層42’内の開口部を、脆性の誘電体薄膜42’に亀裂を生じさせるレジスト43の熱膨張によって形成することができる。いずれの場合も、次いでレジスト除去剤47が、そうしたピンホール、亀裂および/または同様の開口部を通してレジストを侵食することができる。
【0033】
図4Hを参照すると、名目上、レジスト除去剤の化学物質、例えば適切なレジスト溶媒の存在下で、場合によっては超音波攪拌および/またはメガソニック攪拌と組み合わせてレジスト43を溶解することによって、リフトオフプロセス(レジスト43および上にある誘電体コーティング42’の除去)を行うことができる。本発明の一実施形態では、レジストを除去剤の化学物質によって膨張させる。この局所的な膨張によって脆性の誘電体42’に亀裂が生じ、完全なリフトオフプロセスが得られる。
【0034】
図4Iを参照すると、レジストの剥離および誘電体のリフトオフの後、所望の細かい金属ライン44が基板41に接触し、誘電体42によって囲まれている。製造手順の間に金属のアンダカットが実施されない(または最小限の金属のアンダカットが実施される)と、結果として生じる構造は、実質的に同一平面上にある誘電体41によって囲まれた金属格子パターン44を有し、金属44と誘電体42の間にはギャップがないか、または最小限のギャップになる。そうした突き合わせ接合の構造は、従来技術のリフトオフプロセスとは明らかに異なるものである。
【0035】
図4Jを参照すると、(1つまたは複数の)後続のステップにおいて、金属格子パターン44をめっき44’によって厚くし、先に論じた必要なライン導電性を得ることができる。
【0036】
図5A〜Eを参照すると、同様のプロセスを、例えば反射コーティング(RC)の層を必要とする太陽電池の裏面に対して実施することも可能である。
図5Aの断面50を参照すると、前述のプロセス(例えば、インクジェット印刷またはスクリーン印刷)を用いて、基板51の上に細いレジストライン(または分離された領域、例えばドットなど、他の適切なタイプのコンタクト)53が分配される。
【0037】
図5Bに示すように、表面およびレジスト構造の上に、先に論じた組成物(例えば、この例ではRC)の誘電体コーティング52を堆積させることができる。次いで、レジスト除去剤の機構を用いて、誘電体内の不連続部を介してレジストを侵食し、
図5Cの構造が得られる。
【0038】
図5Dに示すように、次いで基板51の上に金属コンタクト薄膜54を堆積させ、より大きい誘電体層部分52の間に基板51に対する細いコンタクトラインを得る。
図5Eを参照すると、(1つまたは複数の)後続のステップにおいて、金属層54をめっき54’によって厚くし、先に論じた必要な導電性を得ることができる。
【0039】
図4A〜Jおよび
図5A〜Eに関して前述したプロセス、および結果として生じる構造は、それらの別個のプロセスステップ(例えばメタライゼーション、エッチングなど)を同時に実施可能な限りにおいて、一緒に実施することができる。さらに、どちらのプロセス(
図4A〜Jまたは5A〜E)も、どの接続/層構造が必要とされるかに応じて、太陽電池の前面または裏面のどちらにも用いることができる。本明細書において「基板」という用語は、導電性の接続を必要とする下部の任意の層を意味するのに広義に用いられる。したがって、前述のセルの構造は、多くのタイプの付加的な下部の機能層を含むことができる。例えばn型の前面、n型のウェハ、p型の裏面、多機能で透過性かつ導電性の高濃度にドープされたシリコン化合物を、先に組み込まれた「High-Efficiency Solar Cell Structures and Methods of Manufacture」という名称の米国特許出願に開示されたものなど、本発明(または反対の極性のもの)と組み合わせて用いることができる。そうしたセルの構造の1つを
図6に示すが、
図6は、n型の前面、n型のウェハ、p型の裏面を有し、コンタクト64aへの導電性の接続を必要とする、多機能で透過性かつ導電性の高濃度にドープされたシリコン化合物の層61aを含む太陽電池60の部分断面図である。層61aは、複数の層の機能を組み合わせて多機能層61aとしているため、他の技術に勝る改善されたものである。この層は、電気的なパッシベーション性(passivating)、透過性、および電極への垂直なキャリアの流れに対する十分な導電性をもつようにすることができ(裏面接合型太陽電池)、ウェハ65との接合部を形成すること、および/または入射する光の反射率を低減すること(例えば、反射防止コーティング)が可能である。セル60の後方では、やはり層61bが、他の技術に勝る改善されたものを提供することができる。層61bは、ウェハ65との接合部を形成すること、900nm超の波長の光子に対する高い反射率をもたらす屈折率を有すること、およびウェハ65から金属電極64bへの垂直なキャリアの流れに対して十分な導電性をもつことが可能である。
【0040】
セル60の例示的な層には、以下のものが含まれる。
【0041】
層61aは、電気的なパッシベーション性、透過性および導電性のある薄膜とすることができ、屈折率が1.4<n<3の範囲内、厚さが20nm<厚さ<110nmの範囲内、n型のウェハでは比抵抗率がρ<1000オームcmの範囲内であり、1e18cm
-3<N
D<5e21cm
-3の高濃度にnドープされる。具体的な例には、以下のものが含まれる。
【0042】
すなわち、n型の非晶質または多結晶質のシリコン炭化物:リンでドープされたシリコン炭化物、窒素でドープされたシリコン炭化物、
【0043】
n型の非晶質または多結晶質のシリコン:リンでドープされた非晶質のシリコン、窒素でドープされた非晶質のシリコン、
【0044】
n型の非晶質または多結晶質のダイヤモンド状炭素:窒素でドープされたダイヤモンド状炭素である。
【0045】
前述の例のいずれも、酸素および水素を含むことができる(nドープされたSiC
xO
yH
z、nドープされたSiN
xO
yH
z)。
【0046】
層61bは、電気的なパッシベーション性、透過性および導電性のある薄膜とすることができ、比抵抗率がρ<1000オームcmの範囲内である。例には以下のものが含まれる。
【0047】
すなわち、p型の非晶質または多結晶質のシリコン炭化物:ホウ素でドープされたシリコン炭化物、アルミニウムでドープされたシリコン炭化物、ガリウムでドープされたシリコン炭化物、
【0048】
p型の非晶質または多結晶質のシリコン:ホウ素でドープされたシリコン、アルミニウムでドープされたシリコン、ガリウムでドープされたシリコン、
【0049】
p型の非晶質または多結晶質のダイヤモンド状炭素:ホウ素でドープされたダイヤモンド状炭素、アルミニウムでドープされたダイヤモンド状炭素である。
【0050】
前述の例のいずれも、酸素および水素を含むことができる(pドープされたSiC
xO
yH
z、pドープされたSiN
xO
yH
z)。
【0051】
層65は、n型またはp型の結晶質シリコンウェハとすることができ、厚さがw<300μmの範囲内であり、ベース抵抗率が、n型のウェハでは0.5オームcm<ρ<20オームcm、p型ウェハでは0.1オームcm<ρ<100オームcmである。
【0052】
層66は、電気的にパッシベーション性のあるインターフェース層とすることができ、厚さ<10nmであり、厚さが小さいため導電性の要件はなく、また厚さが小さいため吸収の制限はない。例には、シリコン酸化物、シリコン窒化物、真性非晶質シリコン、真性多結晶質シリコン、アルミニウム酸化物、アルミニウム窒化物、リン窒化物、チタン窒化物が含まれる。
【0053】
層67は、電気的にパッシベーション性のインターフェース層とすることができ、厚さ<10nmであり、厚さが小さいため導電性の要件はなく、また厚さが小さいため吸収の制限はない。例には、シリコン酸化物、シリコン窒化物、真性非晶質シリコン、真性多結晶質シリコン、アルミニウム酸化物、アルミニウム窒化物、リン窒化物、チタン窒化物が含まれる。
【0054】
本発明によれば、例えば
図4A〜Jおよび5A〜Eに関して先に論じた部分的なリフトオフの原理に従って、誘電体層62がコンタクト(例えば64aおよび64b)と実質的に同一平面上に形成される。
【0055】
本発明のある利点は、別個のパッシベーションが不要である下部の多機能層を使用するときの、「光学的な」層のレジスト層に対する適合性にある。
【0056】
通常、誘電体層(すなわち、前述の42、52、62)は、電気的なパッシベーション機能もたらすが、それにはさらに高い処理温度が必要である。しかしながら、下にある層(例えば41、51、61a、61b)が、それ自体で導電性およびパッシベーション性をもつ多機能層である場合には、層42、52、62による別個のパッシベーションは不要である。したがって、材料42、52、62は、単に光学的なものであり、実質的なパッシベーション性のないものとすることができ、より低い処理温度の使用が可能になり、本明細書で論じるレジスト層とのプロセスの適合性も高まる。
【0057】
本願は、2009年4月21日出願の「High-Efficiency Solar Cell Structures and Methods of Manufacture」という名称の、本発明の譲受人に譲渡され、既に出願された米国特許仮出願(譲渡後の出願番号は第61/171,194号明細書)、および2010年4月21日出願の「High-Efficiency Solar Cell Structures and Methods of Manufacture」という名称の、本発明の譲受人に譲渡された国際特許出願(譲渡後の出願番号はPCT/US10/31869)に関する。これらの出願はそれぞれ、やはり参照によって全体が本明細書に組み込まれる。本発明のすべての態様は、前述の出願の開示の任意のものと組み合わせて用いることができる。
【0058】
本発明は、本明細書において論じる太陽電池の例に加えて、導電性コンタクトを必要とする層を有する任意のタイプの集積半導体回路に及ぶ。
【0059】
要約すれば、本発明のある特定の態様には以下のものが含まれる。
【0060】
すなわち、基板上に金属格子パターンを製造するための方法であって、塗布されパターン形成されたインクもしくはレジスト薄膜が、金属エッチング用のマスクとして、また後で堆積させる誘電体のリフトオフ用の自己整合マスクとして働く方法、
【0061】
基板上に金属格子パターンをパターン形成する方法であって、基板の表面に金属薄膜を堆積させるステップと、金属薄膜の頂部にエッチレジストを堆積させるステップと、金属薄膜をエッチングするステップと、基板表面およびレジストの頂部に誘電体を堆積させるステップと、レジストおよび上にある誘電体を除去するステップとを含む方法、
【0062】
基板の表面上の構造であって、金属格子パターンが誘電体によって囲まれ、金属とまわりの誘電体の間にギャップが存在しない構造、
【0063】
導電性シリコン基板の上の誘電体が、誘電体の完全性を保つレジスト剥離剤に曝されるだけであり、それによって、基板上の誘電体の欠陥を通した望ましくないめっきを最小限に抑える方法、
【0064】
基板の表面上の構造であって、金属格子パターンが誘電体によって囲まれ、金属とまわりの誘電体の間にギャップが存在せず、その結果、誘電体と金属格子パターンの間に浸透できないシールが生じる構造、
【0065】
基板上の誘電体と前方の格子金属との間の浸透できないシールが、汚染金属の基板への移動を妨げる構造、ならびに/または
【0066】
銅など汚染もする高導電性の金属が前方の格子金属スタックに含まれるが、下にあるシリコン基板への移動からは永久的に分離される構造および方法である。
【0067】
前述の態様のいずれにおいても、基板を光起電力デバイスとすることができ;金属格子パターンが、太陽電池の前方および/もしくは後方のコンタクト電極を形成することができ;その後、金属格子パターンを金属で電気めっきして金属格子の電気伝導率を改善することができ;誘電体を光学的な反射防止層とすることができ;かつ/または誘電体を光学的な反射層とすることができる。
【0068】
パターン形成されるレジストは、直接書き込み、in−situで硬化させることができ、後続のパターンマスクの露光および現像は不要である。
【0069】
パターン形成されるレジストを直接書き込む技術は、インクジェット印刷またはスクリーン印刷とすることができる。
【0070】
レーザを用いて、誘電体内に選択的に孔をあけ、それによって、レジスト除去剤の化学物質によるレジストの侵食を容易にすることができる。
【0071】
パターン形成されたレジストおよび上にある誘電体のin−situでの熱処理を用いて、孔、亀裂または他の欠陥を形成し、それにより、レジスト除去剤の化学物質、例えば適切なレジスト溶媒によって、場合によっては超音波攪拌および/またはメガソニック攪拌と組み合わせて、レジストの侵食を容易にすることができる。
【0072】
パターン形成されたレジストは、パターン形成されたレジスト材料に吸収される液体に曝すことによって「膨張させる」ことができ、マスク材料の体積および面積を増大させ、それによって、脆性の誘電体コーティングを通る開口部を壊すように作用する。
【0073】
誘電体コーティングは、マスク材料の体積膨張、ならびに後続のマスキング材料およびマスク材料を内包する誘電体コーティング層の除去によって、予め決められたパターンで取り除くことができる。
【0074】
下部の基板は、多機能層を含めた、導電性の接続を必要とする任意のタイプの層とすることができる。
【0075】
本明細書では、好ましい実施形態について詳しく図示および記述してきたが、関連する技術分野の技術者には、本発明の趣旨から逸脱することなく、様々な修正、追加、置換などを行うことが可能であり、したがって、そうした修正、追加、置換などは、以下の特許請求の範囲に定められる本発明の範囲内と考えられることが明らかになるであろう。