【実施例】
【0097】
本発明を以下の実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
実施例1 富Muse細胞画分及びMuse細胞由来胚様体様細胞塊の調製並びに特性分析
材料及び方法
本実施例において、以下の細胞を用いた。
【0098】
間葉系細胞として、2株のヒト皮膚線維芽細胞画分及び4株のヒトMSC(bone marrow stromal cell)画分を用いた。ヒト線維芽細胞画分は、(1)H-fibroblast-1(正常ヒト線維芽細胞(NHDF)、Lonza社より入手)及び(2)H-fibroblast-2(成人ヒト皮膚線維芽(HDFA)、ScienCell社より入手)を用いた。ヒトMSC画分としては、H-MSC-1、H-MSC-2、H-MSC-3及びH-MSC-4をLonza社及びALLCELLS社より入手して用いた。ヒトMSC画分については、Pittenger, M. F. et al. Science 284, 143-147 (1999);Dezawa, M. et al. J Clin Invest 113, 1701-1710 (2004);Dezawa, M. et al. Science 309, 314-317 (2005)に詳細に記載されている。
【0099】
細胞は10%FBS及び0.1mg/mlカナマイシン含有α-MEM(alpha-minimum essential medium)を用いて、37℃、5%CO
2条件下で培養した。入手したものの最初の培養を第1代とし、その後細胞が95%コンフルエントになったところで、細胞培養液:培地の比を1:2として継代し、4〜10代継代したものを用いた。
【0100】
ヒトES細胞(hESC)は京都大学より入手したkyoto hESC-1(KhES-1)を用いた。
マウスES細胞(TT2細胞)及びヒトES細胞(KhES-1)はC57BL/6マウスの12.5日胚より確立したマウス由来フィーダー細胞存在下で維持した。
【0101】
以下の方法で実験を行った。
1.間葉系細胞のストレス刺激
ストレス刺激として低栄養条件での培養、低血清濃度での培養、低酸素濃度での培養、繰返しトリプシン処理、長時間トリプシン処理を行うため以下の培養条件を採用した。
(1)無血清培地(STEMPRO MSC SFM(Invitrogen社)を用いた2日間の培養(無血清)
(2)Hanks' Balanced Salt Solution (HBSS)バッファー(Invitrogen社)を用いた2日間の培養(HBSS)
(3)10%FBS含有α-MEMを用いての低酸素濃度(1%)での2日間の培養(10%FBS+LowO
2)
(4)トリプシン中(0.25%トリプシン-HBSS)での1時間インキュベーション3回の処理(トータル3時間のトリプシン処理)(Try 3× 1hr)
(5)トリプシン中での8時間インキュベーション(LTT 8hr)
(6)トリプシン中での16時間インキュベーション(LTT 16hr)
陰性対照として、ヒト末梢血単核細胞画分を用いた。
【0102】
上記(4)、(5)及び(6)の条件の場合、100,000個〜500,000個の細胞を5mlトリプシン溶液中に浮遊させて培養を行った。上記の(1)〜(3)のストレス刺激の場合、刺激後、細胞を5分間のトリプシン処理により集め、(4)〜(6)のストレス刺激の場合、細胞を直接チューブに集めた。
【0103】
ストレス刺激後に生じる大量の死細胞はボルテックス処理することにより破壊した。すなわち、最大500,000個の細胞を含む5mlの培地を15mlのファルコンチューブに移し、ボルテックスミキサー(IKA Works社)を用いて1800〜2200rpm/minで3分間ボルテックス処理を行った。その後、2000rpmで15分間遠心分離を行い、上清を除去した。生細胞の回収率は約70〜80%であった。
【0104】
2.MC培養
本実施例においては、細胞をメチルセルロース含有培地中で浮遊培養した。メチルセルロース含有培地中での培養をMC培養と呼ぶ。MC培養については、Nakahata, T. et al., Blood 60, 352-361 (1982)に記載されている。
【0105】
細胞が容器底に付着するのを防ぐために、培養ディッシュをPoly-HEMA(Poly(2-hydroxyethyl methacrylate)でコートした。すなわち、600mgのpoly-HEMA(SIGMA社)を95%エタノール40mlに37℃で攪拌して溶解し、ディッシュに添加し(96ウェル培養ディッシュの場合40μl/ウェル、12ウェルディッシュの場合200μl/ウェル)、一晩乾燥させた。
【0106】
MC(MethoCult H4100)(StemCell technologies社より入手)を20%FBS含有α-MEMに最終濃度2%で懸濁した。ゲル状のMC培地中の細胞濃度は細胞同士の凝集を抑える十分な細胞間距離を確保できる8000細胞/mlとした。細胞とMC培地を穏やかなピペッティングにより十分混合し、poly-HEMAコートした培養ディッシュに移した。乾燥を防ぐために、10%FBS含有α-MEMを3日毎に最初のMC培養の容積の1/10量、ゆっくりと添加した。
【0107】
細胞塊(細胞塊は、本発明の多能性幹細胞Muse細胞由来の細胞塊であるためMuse細胞由来胚様体様細胞塊と呼ぶ)のクローニングは7日目に行った。0.01MのPBSを培地に添加し、2000rpmで20分間遠心し、上清を捨てた。この処理を3回繰返し、細胞を洗浄した。回収した細胞ペレットを10μlの0.01M含有トリパンブルー溶液に懸濁し、スライドガラスに載せ位相差顕微鏡を用いて写真を撮った。直径25μmより大きい、ヒトES細胞と外観が似ているトリパンブルー陰性細胞塊のみをMuse細胞由来胚様体様細胞塊として数えた。Muse細胞由来胚様体様細胞塊の形成率は細胞塊の数/すべての生細胞数(すべてのトリパンブルー陰性細胞)により算出した。細胞計数の際、細胞塊はその大きさにかかわらず1細胞として数えた。これは、Muse細胞由来胚様体様細胞塊中に含まれる細胞の数の正確な計測は困難だからである。
【0108】
ヒトES細胞においては、細胞を注意深くフィーダー細胞が含まれないように単離し、上記の方法でMC培養を行った。培養3日目に位相差顕微鏡観察像を得た。
【0109】
3.単一細胞浮遊培養
96ウェルディッシュを上記の方法でpoly-HEMAでコートし、10%FBS含有α-MEMを用いて限界希釈法にて、単一細胞をそれぞれのウェルに播き、位相差顕微鏡にてウェル中の実際の細胞数を計数し、細胞が入っていないウェル、あるいは複数入っているウェルは計測から除外した。培養10日目に胚様体(EB)(Muse細胞由来胚様体様細胞塊)形成を計数した。それぞれの細胞株に対して3回の実験を行い、一回の実験では最低250ウェル以上の観察を行った。
【0110】
4.アルカリフォスファターゼ染色
H-fibroblast画分及びH-MSC画分由来のMuse細胞由来胚様体様細胞塊を集め生理食塩水で数回洗浄し、Leukocyte Alkaline Phosphatase kit(sigma社)を用いて染色した。
【0111】
5.Muse細胞由来胚様体様細胞塊のin vitroでの分化
MC培養又は単一細胞浮遊培養の7〜10日後、H-fibroblast画分及びH-MSC画分由来の胚様体様細胞塊をガラスマイクロピペットにより採取し、ゼラチンコート培養ディッシュ又はカバーガラス上に移しさらに7日間培養すると細胞塊から細胞が広がる。かかる細胞における分化の有無を免疫組織化学分析及びRT-PCR分析に供した。
【0112】
6.免疫組織化学
細胞を0.01M PBS中4%パラホルムアルデヒドで固定し、H-fibroblast画分及びH-MSC画分由来の富Muse細胞画分又はMuse細胞由来胚様体様細胞塊を遠心分離により集め、OCTコンパウンド中に埋め込み8μmの凍結切片を作製した。細胞塊は、ゼラチンコートスライドガラス上で固定し、免疫組織化学分析に供した。
【0113】
1次抗体として、Nanog (1:500, Chemicon社)、Oct3/4 (1:800,大阪大学 Dr. H. Hamadaより入手)、Sox2 (1:1000, Abcam社)、PAR4(1:100, Santa Cruz社)、SSEA-3(1:20, DSHB社)、平滑筋アクチン(1:100, Lab Vision社)、neurofilament M (1:200, Chemicon社)、α-フェトプロテイン(1:100, DAKO社)、マウスNumblike (1:500, カリフォルニア大学サンフランシスコ校のDr. Yuh-Nung Janより入手)及びtype 1コラーゲン(1:20, Southern Biotech社)に対する抗体を用いた。2次抗体として、Alexa 488又は568とコンジュゲートした抗ウサギIgG、抗マウスIgG又は抗マウスIgM抗体(Molecular Probes社)を用いて、免疫組織化学分析を行った。
【0114】
7.核型の決定
H-fibroblast画分及びH-MSC画分由来のMuse細胞由来胚様体様細胞塊(Muse細胞由来胚様体様細胞塊から単一細胞を取り再度Muse細胞由来胚様体様細胞塊を形成させることを1〜3回繰り返したもの)からの増殖細胞(clonally expanded cells)の核型をquinacrine-Hoechst染色により決定した。
【0115】
8.免疫不全マウス精巣への細胞の注入
無処理細胞画分、並びにH-fibroblast画分及びH-MSC画分由来の富Muse細胞画分及びMuse細胞由来胚様体様細胞塊を用いた。富Muse細胞画分の場合、長時間トリプシン処理後血清を添加し、0.01M PBSで3回洗浄した。Muse細胞由来胚様体様細胞塊もMC培養から採取後に同PBSで3回洗浄した。1×10
5個の細胞をPBSに浮遊し、NOGマウス(登録商標)(NOD/Shi-scid, IL-2RγKO Jic、8週齢、財団法人 実験動物中央研究所より入手)の精巣にガラスマイクロチューブを用いて注入した。Muse細胞由来胚様体様細胞塊を用いた場合、レーザ共焦点顕微鏡の3Dグラフィック分析手法を用いて、50個のMuse細胞由来胚様体様細胞塊を取り、Muse細胞由来胚様体様細胞塊のトータル体積を測定し核の数で除することにより、それぞれの構成細胞の平均体積を測定した。測定の結果、1.5×10
5細胞/μlであることが算定され、この算定にしたがって上記数の細胞を集め、NOGマウス精巣に注入した。マウスは注入6ヵ月後に実験に供した。
【0116】
対照試験として、1×10
6のマウスES細胞(陽性対照)及びマイトマイシンC処理MEF(マウス胚性フィーダー細胞)(陰性対照)をSCIDマウス精巣に注入し、注入後8週後に実験に供した。
【0117】
9.光学顕微鏡により細胞の高解像度分析
H-fibroblast画分及びH-MSC画分由来の富Muse細胞画分及びMuse細胞由来胚様体様細胞塊について、安定な高解像度光学顕微鏡を用いてヒトMSC、線維芽細胞及び神経細胞などの細胞タイプの観察を行った。
【0118】
10.電子顕微鏡による極薄切片観察
Muse細胞由来胚様体様細胞塊、H-fibroblast画分及びH-MSC画分由来のSSEA-3陽性細胞及びSSEA-3陰性細胞、並びにヒトES細胞の細胞塊を遠心分離により集め、100mMリン酸バッファー(pH7.2)中2.5%グルタルアルデヒドで30分間固定し、1%寒天中に包埋し、1mm
3に切り、PBSで洗浄後、100mMリン酸バッファー(pH7.2)中2%OsO
4で4℃で10分間染色した。サンプルを蒸留水で洗浄後、5滴の2%酢酸ウラニルで4℃で20分間染色した。蒸留水で洗浄後、染色サンプルを50%、70%又は90%エタノールを用いて4℃で10分間脱水し、次いで100%エタノールを3回交換することにより完全に脱水した。得られたサンプルを酸化プロピレンで5分間置換し、酸化プロピレン中50%エポキシレジン中に60分間包埋した。これを純粋なエポキシレジンに包埋し、60℃オーバーナイトで硬化させた。超薄切片は70〜80nmの厚さで作製し、CCDカメラ付きの100kV 電子顕微鏡で観察した。
【0119】
11.Muse細胞由来胚様体様細胞塊の増殖速度
H-fibroblast画分及びH-MSC画分由来のMuse細胞由来胚様体様細胞塊について細胞群の倍化時間を測定するために、それぞれのMuse細胞由来胚様体様細胞塊をひとつずつ96ウェルプレートに移し、15分間のトリプシン処理を行った後にガラスマイクロピペットを用いてピペッティングを行った。細胞の数を計測し、所定の時間後ごとに少なくとも20〜30個のMuse細胞由来胚様体様細胞塊について分析した。
【0120】
12.RT-PCR
無処理細胞画分(24ウェルスケール中の約10,000細胞)及びH-fibroblast画分及びH-MSC画分(24ウェルスケール中の約10,000細胞)由来のin vitroで単一Muse細胞由来胚様体様細胞塊から分化した細胞(1〜3サイクル)を用いた。トータルRNAを、NucleoSpin RNA XS(Macherey-Nagel社)を用いて抽出、精製し、第1鎖cDNAをSuperScript VILO cDNA Synthesis Kit (Invitrogen)を用いて調製した。PCR反応は適切なプライマーを設計し、Ex Taq DNA polymerase (タカラバイオ社)を用いて行った。用いたプライマーは以下のとおりであった。
陽性対照としては、α-フェトプロテインプライマーについてはヒト胎児肝臓(Clonetech社)を用い、それ以外はヒト完全胚(Clonetech社)を用いた。
【0121】
13.定量的PCR(Q-PCR)
無処理細胞画分、H-fibroblast-1、H-fibroblast-2、H-MSC-1及びH-MSC-2由来の富Muse細胞画分及びMuse細胞由来胚様体様細胞塊からのトータルRNAをRneasy Mini Kit(Qiagen GmbH社)により集め、cDNAをRT
2 First Strand Kit(SA Biosciences社)を用いて合成した。プライマーはSA Biosciences社より特注し、7300 real time PCRシステム(Applied Biosystems社)を用いて定量的PCRを行った。得られたデータはΔΔC
T方法(Livak KJ et al., Methods 25: 402-408, 2001)により解析した。
【0122】
14.DNAマイクロアレイ分析
無処理細胞画分、H-fibroblast-1、H-fibroblast-2、H-MSC-1及びH-MSC-2由来の富Muse細胞画分及びMuse細胞由来胚様体様細胞塊、並びに4名の健常者由来ヒト末梢血単核細胞画分混合物を用いた。totalRNAをRneasy Mini Kit(Qiagen GmbH社)により集め、DNAマイクロアレイにより分析した(タカラバイオ社)。アレイシグナルは、Affimetrix Expression Console V1.1ソフトウェア)により処理しノーマライズした。Pathway Studio 6.0(Ariadne genomics社)を用いて発現変動が認められた遺伝子を遺伝子オントロジーの機能的カテゴリーに割り当てた。階層的クラスタリングは、MeV4による群平均クラスタリングの手法を用いて、遺伝子の発現変動に基づいてユークリッド距離を用いて行った(Saeed AI et al., Biotechniques 34(2):374-378, 2003)。
【0123】
15.テロメラーゼ活性の検出
H-fibroblast画分及びH-MSC画分由来の富Muse細胞画分、Muse細胞由来胚様体様細胞塊及びHela細胞を用いた。テロメラーゼ活性は、TRAPEZE XL telomerase detection kit(Millipore社)とEx Taqポリメラーゼ(タカラバイオ社)を用いて検出した。蛍光強度はマイクロプレートリーダー(TECAN社)を用いて測定した。
【0124】
16.Bisulfite(亜硫酸水素塩)シーケンス
無処理細胞画分、H-fibroblast画分及びH-MSC画分由来の富Muse細胞画分及びMuse細胞由来胚様体様細胞塊由来の1μgのゲノムDNAをCpGenome DNA modification kit(chemicon社)で処理した。DNAをQIAquick column(Qiagen社)で精製した。ヒトOct3/4及びNanog遺伝子のプロモータ領域をPCRにより増幅し、PCR産物をpCR2.1-TOPO中にサブクローニングしそれぞれのサンプルについて10クローンまでをM13ユニバーサルプライマーを用いて配列決定し、プロモータ領域のメチル化の状態を調べた。PCR増幅には、Shimazaki T et al., EMBO J, 12:4489-4498, 1993に記載のプライマーを用いた。
【0125】
17.ヒト骨髄穿刺液からのMuse細胞由来胚様体様細胞塊形成
3人の健常人からのヒト骨髄穿刺液(ALLCELLS社より入手)から単核細胞画分をLymphoprep Tube(Axis-Shield PoC AS社)を用いて集め、8時間の長時間トリプシン処理を行った後にMC培養を行った。またトリプシン処理をせずに直接そのままでMC培養にも持って行った。7日目に細胞数を測定した。
【0126】
18.MACSソーティング
3人の健常人からのヒト骨髄穿刺液(ALLCELLS社より入手)由来の単核細胞画分を抗CD105抗体とマイクロビーズのコンジュゲートと反応させ、MSカラム(Miltenyi Biotech社)を用いてソーティングした。CD105陽性細胞をフラクション1(間葉系細胞群)として集め、さらにCD105陰性細胞を抗CD34抗体及び抗CD117抗体の混合物とマイクロビーズのコンジュゲートとインキュベートし、再度ソーティングし、CD34陽性・CD117陽性細胞(フラクション2;造血幹細胞群にあたる)及びCD105陰性・CD34陰性・CD117陰性細胞(フラクション3)を得た(
図4)。集めたサンプルを8時間の長時間トリプシン処理を行った後にMuse細胞由来胚様体様細胞塊の形成を測定した。
【0127】
19.免疫組織化学
マウス精巣を0.02MPBS中4%パラホルムアルデヒドを用いて固定した。切片は凍結切片として10μmの厚さで作製した。サンプルを0.02MPBSで洗浄し、20%BlockAce(雪印社)含有バッファーを用いてブロッキングした後に免疫組織化学分析用の1次抗体とインキュベートした。用いた1次抗体は、抗平滑筋アクチン抗体(1:200、Lab Vision社)、抗MAP-2抗体(1:200、Biogenesis社)及び抗α-フェトプロテイン抗体(1:10、DAKO社)であった。
【0128】
2次抗体としては、Alexa488又はAlexa568を結合した抗ウサギIgG抗体、Alexa568を結合した抗マウスIgG抗体を用い、DAPI存在下で反応させた。サンプルはニコン共焦点顕微鏡システムC1si(ニコン)を用いて観察した。
【0129】
20.フローサイトメトリー及び細胞ソーティング
細胞をフィコエリトリン標識抗CD11c抗体、抗CD29抗体、抗CD34抗体、抗CD44抗体、抗CD45抗体、抗CD49f抗体、抗CD54抗体、抗CD71抗体、抗CD90抗体、抗CD105抗体、抗CD166抗体、抗CD271抗体又は抗vWF抗体(Beckton Dickinson社)又は抗SSEA-3抗体(Millipore社)とインキュベートした。抗SSEA-3抗体を用いる場合、細胞をさらにFITC結合抗ラットIgM抗体と反応させた。2mM EDTA及び0.5%ウシ血清アルブミンを添加したカルシウム及びマグネシウムを含まない0.02M PBSをFACS抗体希釈液として用いた。FACSCalibur(Becton Dickinson)によりCellQuestソフトウェア又はFACSAriaによりDIAソフトウェアを用いてデータ解析を行った。細胞をFACS抗体希釈液中で抗SSEA-3抗体とインキュベートしFACSAria(Becton Dickinson)により低流速及び4 way purityソーティングモードでソーティングし、細胞のソーティングを行った。
【0130】
21.統計解析
データは、平均±SEMで表す。データは、Bonferroni法による一対比較によりANOVAを用いて比較した。
【0131】
結果
A.H-fibroblast画分及びH-MSC画分のストレス刺激
H-fibroblast画分とH-MSC画分のストレス刺激の結果の一例を表1に示す。
【0132】
ストレス刺激とボルテックス処理後、トリパンブルー染色により生細胞数を計測し、生存率を計算した。生細胞を回収し、7日間のMC培養に供した。条件(2)の場合、大量の死細胞が存在し、生細胞回収効率が低かったため、Muse細胞由来胚様体様細胞塊はうまく計測できなかった。表1には「ND(not determined)」で示した。
【0133】
6つの条件中で、H-fibroblast画分の16時間トリプシン処理及びH-MSC画分の8時間のトリプシン処理が最も効率的な刺激であった。2株のH-fibroblast画分及び4株のH-MSC画分を用いて繰返しこの実験を行ったところ、同様の傾向が認められた。陰性対照(ヒト末梢血単核細胞画分)においては、Muse細胞由来胚様体様細胞塊は認められなかった。代表的な観察値を表1に示す。
【0134】
【表1】
ND (not determined): 大量の死細胞が存在し、生細胞回収効率が低かったため、Muse細胞由来胚様体様細胞塊を計測できなかった
【0135】
Muse細胞由来胚様体様細胞塊形成効率から判断すると、16時間(H-fibroblast画分)及び8時間(H-MSC画分)のトリプシン処理が6つの条件の中で最も効率的であると考えられた。16時間又は8時間トリプシン処理、1800〜2000rpm/minでの3分間のボルテックス及び2000rpm15分間の遠心分離の一連の操作をMuse細胞の濃縮のための長時間トリプシン処理(LTT)と名付けた。ボルテックス処理後の細胞の回収率は約70〜80%であった(
図5)。
【0136】
B.Muse細胞由来胚様体様細胞塊の判定基準
本実施例において、Muse細胞由来胚様体様細胞塊の判定基準を設けた。H-fibroblast画分及びH-MSC画分由来の富Muse細胞画分中の単一細胞の平均直径は10〜13μmであった(
図6a)。これらの細胞をMC培養すると、細胞は分裂を開始した。分裂するとそれぞれの細胞のサイズは小さくなり、8〜10μmの細胞から構成される多細胞塊が徐々に形成された(
図7e及び7f)。それぞれの細胞のサイズと外観は、MC培養したヒトES細胞に類似していた(
図6b及び6c)。7日目に、ほとんどの多細胞塊は25μmより大きくなり、直径100〜150μmになった。該細胞塊はES細胞と類似した外観を有していた。Φ25μmのフィルターを用いることにより、25μmより大きい塊を回収した(
図6b)。H-fibroblast画分及びH-MSC画分の100個のMuse細胞由来胚様体様細胞塊までの免疫細胞化学によりほとんどのMuse細胞由来胚様体様細胞塊は多能性マーカーNanog、Oct3/4、Sox2、PAR4及びSSEA-3が陽性であることがわかり、アルカリフォスファターゼ染色でも陽性であった(
図6e-g)。25μmより小さい細胞塊の場合、マーカーは検出される場合とされない場合があり、また多能性マーカーの局在はこれらのマーカーに典型的なパターンを示さない場合もあった。さらに、細胞の外観はむしろ富Muse細胞画分に類似している場合があった。
上記結果より、直径25μを超える多細胞塊を、Muse細胞由来胚様体様細胞塊とした。
【0137】
C.ヒト間葉系細胞画分から形成される細胞塊の分析
生体がストレスに曝されたり、傷害を受けると休眠状態の組織幹細胞が活性化されることが知られている。本実施例において、H-MSC画分及びH-fibroblast画分に種々の方法でストレスをかけ(無血清処理、Hank's Balanced Salt Solution(HBSS)による処理、低酸素処理、トータル3時間、8時間若しくは16時間のトリプシン処理等)、生存した細胞を集め、その後メチルセルロース(MC)含有培地中で浮遊培養(MC培養という)を行い、さらに8000細胞/mLの密度で7日間MC培養を行った(
図7-1d)。その結果、最大で約直径150μmまでの種々の大きさの細胞塊の生成が認められた(
図7-1e及びf)。
図7-1cはH-fibroblast-1画分のMC培養の0日目の状態を、
図7-1dは7日目の状態を示す。16時間のトリプシン処理を行ったH-fibroblast画分及び8時間のトリプシン処理を行ったH-MSC画分において、最も多くの細胞塊の形成が認められた。
図7-1e及びfにH-fibroblast-1画分から形成された細胞塊(Muse細胞由来胚様体様細胞塊)の状態を示す。
図7-1eはMC培養7日目の状態であり、
図7-1fは単一細胞の浮遊培養10日目の状態である。細胞塊をサイズごとにフィルターを用いて分画し、免疫細胞化学分析を行った。直径25μmを超える細胞塊中に、Nanog、Oct3/4、SSEA-3、PAR-4及びSox2の多能性幹細胞マーカーが陽性であり(
図7-2g-l)、さらにアルカリフォスファターゼ染色で陽性の細胞(
図7-3m-o)が検出された。これらの細胞について電子顕微鏡を用いて観察したところ、H-fibroblast画分及びH-MSC画分から形成した細胞塊において、ES細胞と同様の核/細胞質比、細胞内器官の減少、核中の1つ若しくは2つの巨大な核小体の存在という特徴が認められた(
図7-4p-r)。
【0138】
生体のH-MSC画分及びH-fibroblast画分から、多能性マーカー陽性及びアルカリフォスファターゼ染色陽性を示す細胞塊を浮遊培養で形成し得る細胞を見出した。本発明者らは、これらの細胞をMuse細胞(multilineage differentiating stress enduring cells)と名付けた。16時間のトリプシン処理を行ったH-fibroblast画分及び8時間のトリプシン処理を行ったH-MSC画分から形成した細胞集団を「富Muse細胞画分(Muse-enriched population)」と呼び、該集団から得た単一細胞を浮遊培養したところ、富Muse細胞画分の9〜10%において、細胞塊の形成(Muse細胞由来細胞塊:Muse細胞由来胚様体様細胞塊)が認められた。このことは、富Muse細胞画分には約9〜10%のMuse細胞が含まれることを示している。
【0139】
単離したMuse細胞の増殖について調べたところ、培養開始後1〜2日目で細胞分裂が観察され、細胞は10日目頃までは約1.3日の分裂周期で増殖した(
図8-2)。しかし、11〜12日目には増殖速度は低下し、14日目に直径150μmの大きさの細胞塊が形成された時点で増殖が停止した。Muse細胞由来胚様体様細胞塊を5分のトリプシン処理でばらばらにし単一細胞とし、単一浮遊培養を行ったところ、細胞は生存したが、増殖速度は分裂周期が5〜7日と非常に低いままであり、細胞によっては細胞増殖の停止も観察された(
図8-1の(1))。このことは、これらの細胞塊の増殖が制限され、一旦速度が低下すると、浮遊培養において、増殖速度は再上昇しにくいことを示す。しかしながら、単一のMuse細胞由来胚様体様細胞塊を接着培養に移すと、増殖を再開した。5〜7日後、比較的小規模の増殖細胞群(3000〜5000細胞)を5分のトリプシン処理でばらばらにし、MC培養すると、約40%の効率で細胞塊の形成が認められた(
図8-1の(2))。細胞群のスケールをさらに上げて約5〜10×10
4に達したところで、トリプシンで長時間処理すると、再びMuse細胞(2nd cycle)を生成し、約10%の率でMuse細胞由来胚様体様細胞塊を形成した(
図8-1)。トリプシンでの長時間処理-浮遊培養-接着培養を5回繰り返したところ、それぞれの世代において、同様の特性及びMuse細胞由来胚様体様細胞塊形成率を示した。5cycle目のMuse細胞由来胚様体様細胞塊においても、多能性マーカー及びアルカリフォスファターゼは陽性であった。
【0140】
これらの現象が変異などを起こした異常な細胞によるものでないことを確認するために核型検査を行った。Muse細胞由来胚様体様細胞塊由来の細胞(clonally expanded cells)においては多くは正常な核型を有し、染色体の異常は認められなかった(
図8-3)。このことにより正常な細胞による現象であることを示す。
【0141】
上記の結果は、Muse細胞が自己複製(セルフリニューアル)能を有し、クローン増殖することを示している。Muse細胞は、Muse細胞-Muse細胞由来胚様体様細胞塊-クローン増殖の一連のサイクルにより増殖する。従って、間葉系細胞集団から大量のMuse細胞を得ることが可能であると予測される。
【0142】
D.Muse細胞由来胚様体様細胞塊の3胚葉細胞への分化
分化能を確かめるため、単一のMuse細胞由来胚様体様細胞塊をゼラチンでコートしたディッシュに移し分化させた。7日目にα平滑筋アクチン(中胚葉マーカー)、デスミン(中胚葉マーカー)、神経フィラメント-M(外胚葉マーカー)、αフェトプロテイン(内胚葉マーカー)及びサイトケラチン7(内胚葉マーカー)が検出された(
図9-1a-c)。RT-PCRにより、1から3サイクルの培養を行ったMuse細胞由来胚様体様細胞塊(第1から3cycle)はαフェトプロテイン及びGATA6(内胚葉マーカー)、微小管結合タンパク質2:MAP-2(中胚葉マーカー)及びNkx2.5(中胚葉マーカー)を発現していることが確認されたが、無処理のH-fibroblast又はMSC群はゼラチンコートしたディッシュ上での培養でも分化が認められなかった(
図9-2)。
【0143】
さらに、富Muse細胞画分、Muse細胞由来胚様体様細胞塊及びES細胞を免疫不全マウスの精巣に注入し、テラトーマ(奇形腫)を形成するか否かを確かめた(
図9-3e)。組織学検査の結果、ES細胞ではすべてのマウスにおいて8週以内にテラトーマの形成が認められた。しかしながら、富Muse細胞画分では13頭中10頭で、Muse細胞由来胚様体様細胞塊では11頭中10頭で、
図9-3eに示すように、移植されたヒト細胞の残存と、種々の細胞種への分化が認められた。テラトーマは少なくとも6ヶ月まで富Muse細胞画分及びMuse細胞由来胚様体様細胞塊の移植群において形成が全く認められなかった。移植したヒト細胞は抗ヒトミトコンドリア抗体によって標識されるが、それらの細胞は同時に外胚葉マーカー(神経フィラメント)、内胚葉マーカー(α-フェトプロテイン)及び中胚葉マーカー(平滑筋アクチン)を発現することが確認された(
図9-3f-i)。
【0144】
これらのデータは、H-fibroblast画分、H-MSC画分由来Muse細胞及びMuse細胞由来胚様体様細胞塊はin vitroでも in vivoでも3胚様に分化し得ることを示している。
【0145】
E.定量的PCR
多能性及び分化状態に関連したマーカーの発現を
図10に示す。Nanogの発現は、富Muse細胞画分及び細胞クラスターにおいては、無処理細胞に比べそれほど高くなかった。多能性幹細胞の幾つかにおいては、Nanogはそれほど発現しない(Chou YF et al., Cell 135, 449-461 (2008); Bui HT et al., Development. 135(23):3935-3945 (2008))。Nanogと同様に、Q-PCRでのOct-4はマウスES細胞に比較するとリプログラミング体細胞において低い(Bui HT et al., Development. 135(23):3935-3945 (2008))。従って、Nanog及び他の多能性(pluripotency)マーカーの発現量はpluripotencyにとってそれほど重要ではない。
【0146】
F.富Muse細胞画分及びMuse細胞由来胚様体様細胞塊の遺伝子発現
定量PCRにより多能性及び非分化状態に関連するいくつかのマーカーが富Muse細胞画分及びMuse細胞由来胚様体様細胞塊でアップレギュレートされていることが示された。富Muse細胞画分は上記のように9〜10%のMuse細胞を含んでいるに過ぎないが、Rex1(ZFP42)、Sox2、KLF-4、c-Myc、DPPA2(developmental pluripotency associated 2)、ERAS、GRB7(Growth factor receptor-bound protein 7)、SPAG9(Sperm associated antigen)、TDGF1(teratocarucinoma-derived growth factor1が、無処理細胞画分に比べて高度に又は適度にアップレギュレートされていた。Muse細胞由来胚様体様細胞塊においては、DAZL(azoospermia-like)、DDX4(VASA)、DPPA4(developmental pluripotency associated 4)、Stella、Hoxb1、PRDM1及びSPRY2(sprouty homolog2)が無処理細胞に比べてアップレギュレートされていた(
図10a)。
【0147】
H-fibroblast画分及びH-MSC画分由来の、無処理細胞画分、富Muse細胞画分及びMuse細胞由来胚様体様細胞塊の全体的な遺伝子発現を、ヒト末梢血単核細胞画分をコントロールとして比較したところ、無処理細胞画分、富Muse細胞画分及びMuse細胞由来胚様体様細胞塊の間で幾つかの遺伝子において発現パターンの変化が認められた(
図10a)。
【0148】
富Muse細胞画分及びMuse細胞由来胚様体様細胞塊におけるテロメラーゼ活性は低かった。このことは、テロメラーゼ活性がMuse細胞の増殖活性にそれほど関与していないことを示している(
図10b)。
【0149】
G.DNAマイクロアレイによる全体的遺伝子発現
108プローブのピアソン相関分析を、ヒト末梢血単核細胞(陰性対照)、無処理細胞画分、H-fibroblast画分及びH-MSC画分由来の富Muse細胞画分及びMuse細胞由来胚様体様細胞塊について行った(
図11)。
また、DNAマイクロアレイにより、発現しているオドラント受容体及びケモカイン受容体をピックアップした。
【0150】
H.生体におけるMuse細胞の存在
上記に示した検討は、安定な培養細胞を用いて行った。細胞を成体から取り出して培養した場合、生体内とは異なる特性を持ち得るので、Muse細胞やMuse細胞由来胚様体様細胞塊がアーティファクトな産物である可能性は否定できない。そこで、ヒト生体すなわちヒト骨髄細胞から培養を経ないで直接Muse細胞由来胚様体様細胞塊を得ることを試みた。ヒト骨髄穿刺液から単核細胞画分を単離し、直接MC培養に供するか(naive hBM-MC)、あるいは8時間のトリプシン処理を行った後にMC培養に供した(8hr-hBM-MC、トリプシン処理後の単核細胞画分の生存率は約3.5%であった)。7日後、Muse細胞由来胚様体様細胞塊の形成が無処理のnaive hBM-MCでは約0.004%の効率で認められ、8hr-hBM-MCでは約0.3%すなわち約75倍の効率であった(
図12a)。これらのMuse細胞由来胚様体様細胞塊はアルカリフォスファターゼ染色陽性であった(
図12b)。無処理のnaive hBM-MC及び8hr-hBM-MC由来の単一Muse細胞由来胚様体様細胞塊からクローン増殖した細胞のRT-PCRにより、α-フェトプロテイン、GATA6、MAP-2及びNkx2.5の発現が認められた(
図13)。これらの結果は、ヒト骨髄中にin vivoにおいてもMuse細胞が存在し、8時間のトリプシン処理で富化しMuse細胞由来胚様体様細胞塊を形成させることができることを示している。さらに、骨髄の多くのタイプの細胞中で、Muse細胞がCD105陽性間葉系細胞画分に属していることが確認された。
【0151】
上記のように、ヒト骨髄穿刺液から直接単離した単核細胞画分中の無処理hBM-MCの形成効率は0.004%と著しく低かった。培養中の細胞においては、細胞集団の構成が変化し得るため、安定的な培養を行っている細胞は、骨髄から単離した無処理単核球とは異なるMuse細胞由来胚様体様細胞塊形成傾向を示すと考えられる。これを確認するため、次いで、ヒト骨髄穿刺液を培養し、初代MSCを回収しMC培養を行ったところ、約0.2%のMuse細胞由来胚様体様細胞塊形成が認められた。これらの初代MSCをさらに2回又は5回継代培養したところ、Muse細胞由来胚様体様細胞塊形成効率は無処理細胞画分に対して約0.5%〜1.0%それぞれ上昇した。無処理のH-fibroblast画分及びヒトMSC画分の約1.2%がMuse細胞由来胚様体様細胞塊を形成する。これらの結果は、Muse細胞のようなストレス耐性を有する細胞は継代培養等のin vitro培養環境で残り、このため安定な継代培養細胞画分が骨髄穿刺液から直接単離した単核細胞画分よりもより高いMuse細胞由来胚様体様細胞塊形成効率を示したことを示唆する。
【0152】
骨髄はMSC、造血系細胞、内皮細胞を含む多種の単核細胞を含む。どの画分がMuse細胞を含むかを調べるために、ヒト骨髄穿刺液から単離した単核細胞画分を、CD34、CD117(いずれも造血幹細胞マーカー)及びCD105(間葉系細胞のマーカー)に対する抗体を用いて直接MACSソーティングに供し、各々の画分を8時間トリプシン処理し、7日間MC培養を行った。CD34陽性、CD117陽性画分にはMuse細胞由来胚様体様細胞塊はほとんど検出されなかったが、CD34陰性、CD117陰性、CD105陽性画分にはCD34陰性、CD117陰性、CD105陰性画分の50倍のクラスターの形成が認められた。この結果は、Muse細胞は主にCD105陽性間葉系細胞画分中に存在することを示唆している。
【0153】
I.MACSソーティング
骨髄単核細胞画分からのそれぞれのフラクションの収率は、フラクション1(CD105陽性フラクション)で1.8%、フラクション2(CD34陽性・CD117陽性フラクション)で8.5%、フラクション3(CD34陰性・CD117陰性・CD105陰性フラクション)で89.7%であった。フラクション1、2及び3の細胞塊形成率は、それぞれ0.5%、0%及び0.01%であった。従って、フラクション1の細胞塊形成率はフラクション3の約50倍であった。
【0154】
J.FACSソーティング
一例として、SSEA-3をマーカーとしてFACSソーティングを行った。
H-fibroblast及びHMSCの両方について、SSEA-3陽性細胞及びSSEA-3陰性細胞をFACSソーティングにより分離し、単一細胞懸濁培養に供した。SSEA-3陽性細胞の約50〜60%がMuse細胞由来胚様体様細胞塊を形成した。一方、SSEA-3陰性細胞ではMuse細胞由来胚様体様細胞塊を形成しなかった。
【0155】
K.Muse細胞の特徴
FACS分析により、無処理H-fibroblast画分及びH-MSC画分は間葉系細胞に発現するCD44、CD49f、CD54、CD90、CD105陽性の画分を含むことがわかった。しかし、CD11c、CD34、CD45、CD71、CD166、CD271及びフォンビルブランド(vWF)因子は陰性であった。富Muse細胞画分においては、CD44及びCD54が陰性となったSSEA-3陽性画分は約0.7〜1.9%であった(
図14)。
【0156】
SSEA-3は多能性のマーカーの1つであるので、無処理のH-fibroblast画分及びH-MSC画分中のMuse細胞由来胚様体様細胞塊形成率(約1.2%)及び富Muse細胞画分での形成率(9〜10%)は、それぞれのSSEA-3の陽性率(無処理細胞画分は約0.7〜0.9%、富Muse細胞画分では7〜8.3%)に似ていた。SSEA-3の陽性率は、Muse細胞のある状態を示している可能性がある。免疫組織化学によると、無処理のH-fibroblast画分及びH-MSC画分中のSSEA-3陽性細胞の数は1%未満であった。そこで、H-fibroblast画分及びH-MSC画分由来の富Muse細胞画分からSSEA-3陽性細胞をソーティングし、単一浮遊培養を行った。その結果、SSEA-3陽性細胞の50〜60%がMuse細胞由来胚様体様細胞塊を形成した。これは富Muse細胞画分のMuse細胞由来胚様体様細胞塊形成の約6〜7倍、無処理細胞画分のMuse細胞由来胚様体様細胞塊形成の約60倍である。一方SSEA-3陰性の細胞画分からはMuse細胞由来胚様体様細胞塊の形成は認められなかった。FACSによるソーティングにより得られたSSEA-3陽性細胞画分由来の単一細胞塊からクローン増殖により得られた細胞(3,000〜5,000細胞)のSSEA-3陽性率は約45%であった(
図15-1a)。このことは、Muse細胞由来胚様体様細胞塊の形成過程において、非対称性分裂が関与しており、単一Muse細胞由来胚様体様細胞塊のクローン増殖においても同様であることを示唆している。実際、非対称性分裂に関与していることが知られているNumblikeは、2つの細胞への分裂の過程で1つの細胞中にのみ存在する(
図15-2b)。これらの結果は、非対称性細胞分裂がMuse細胞の増殖に関与していることを示唆する。
【0157】
電子顕微鏡観察により、H-fibroblast画分及び長時間トリプシン処理後にソーティングしたH-MSC画分由来SSEA-3陰性細胞において核の変形と細胞質中の小胞が観察され、細胞が障害を受けていることが示された。しかし、SSEA-3陰性細胞と陽性細胞の間で明らかな形態的な差は認められなかった(
図15-3c及びd)。
【0158】
SSEA-3陽性細胞の重要性は、移植実験においても示された。SSEA-3陰性細胞画分を移植した場合、SSEA-3陽性細胞画分を移植した場合に比べて、組織マーカーの発現はほとんどの細胞で認められなかった。
【0159】
富Muse細胞画分において、ほとんどのSSEA-3陽性細胞はOct3/4及びSox2を共発現しており、細胞質中に検出された(
図15-4e及びg)。しかし、核中で発現している細胞は極めて少なかった(
図15-4f)。この結果は、SSEA-3がMuse細胞の良いマーカーとなり得ることを示している。一方、Muse細胞由来胚様体様細胞塊の細胞においては、Oct3/4及びSox2は核中に主に局在していた(
図7-2h及びl)。この2つのマーカーの細胞内局在の差異は細胞状態の差異を反映している可能性がある。
【0160】
Muse細胞が長時間のトリプシン処理により人工的に誘導された可能性も否定できない。多くのMuse細胞が骨髄中のCD105陽性細胞画分に存在する。さらに、SSEA-3陽性細胞は、Muse細胞の特性を示す。そこで、ヒト成体骨髄穿刺液からSSEA-3及びCD105の二重陽性(double positive)細胞として、Muse細胞を直接得ることを試みた。二重陽性細胞は、骨髄由来単核球中に0.025%〜0.05%存在し、それを長時間のトリプシン処理なしに、直接単一細胞浮遊培養に供した。7日後、11.4±1.2%の細胞(単核球の0.003〜0.005%に相当する)が、Muse細胞由来胚様体様細胞塊を形成し、アルカリフォスファターゼ陽性であった。次いで、単一Muse細胞由来胚様体様細胞塊を接着培養により3,000細胞まで増殖させ、単一浮遊培養に供した。これらの細胞中、33.5±3.1%の細胞が第2世代のMuse細胞由来胚様体様細胞塊を形成した。また、単一Muse細胞由来胚様体様細胞塊からゼラチンでコートした培養ディッシュで増殖させた細胞についてRT-PCRを行ったところ、α-フェトプロテイン、GATA6、MAP-2及びNkx2.5の発現が認められた。これは、ヒト成体骨髄中にMuse細胞の特性を有する細胞が存在することを示唆する。
【0161】
上記のように、ストレス刺激により非幹細胞を除去することにより幹細胞を富化することができた。Muse細胞を長時間トリプシン処理とその後のSSEA-3陽性細胞のソーティングにより効率的に集めることができた。Muse細胞は、多能性マーカーを発現しアルカリフォスファターゼ染色陽性であり、外胚葉、中胚葉及び内胚葉系細胞に分化し得るMuse細胞由来胚様体様細胞塊を形成した。また、増殖速度の測定において腫瘍形成性増殖に関する特徴を有しておらず、テロメラーゼ活性も有していなかった。このことは、Muse細胞は爆発的増殖を防ぐための多重のセキュリティーシステムを有していることを示している。Muse細胞の非腫瘍形成性特性はMuse細胞をマウス精巣に注入する実験においても認められた。この特性は生体機能のバランスを維持する上で都合がよく、この特性がなければ、異常増殖や異形成により生体は破壊され、腫瘍形成やテラトーマ形成をもたらす。
【0162】
Muse細胞の多能性は接着培養系では顕在化せず、浮遊培養で観察された。
通常、Muse細胞は不活性休眠状態にあり生体が、危機的状態に陥ったり、あるいは重篤な傷害を被り、又は飢餓若しくは虚血状態等のストレス過多状態が維持されるとある種のシグナルが伝達されて活性化すると考えられる。その後、Muse細胞は組織再生に貢献し、細胞間相互作用や組織化に貢献する。
【0163】
実施例2 SSEA-3を利用して単離したMuse細胞の特性分析
実施例1の検討において、FACSにより得たSSEA-3陽性細胞画分が多能性幹細胞の特性を有していること、すなわちMuse細胞であることが判明したが(上記J、K等)、さらに、単離したSSEA-3陽性細胞を用いて、in vitroでの分化能及びin vivoでの分化能を検討し、さらにMuse由来iPS細胞の確立を行った。
【0164】
1.損傷組織への移植によるin vivoでの分化能の検討
GFP(緑色蛍光タンパク質)-レンチウイルスで標識したSSEA-3陽性Muse細胞を単離し、脊髄(圧迫損傷)、肝臓(CCl
4を腹腔内注射、劇症肝炎モデル)又は腓腹筋(cardiotoxin注射)に損傷を与えた免疫不全マウス(NOGマウス)に静脈注射により移植した。ヒト皮膚細胞由来のMuse細胞をGFP(緑色蛍光タンパク質)-レンチウイルスで標識し(Hayase
M et al., J Cereb Blood Flow Metab. 29(8): 1409-20, 2009)、Muse細胞由来胚様体様細胞塊が標識細胞由来であることをGFPにより確認した。脊髄損傷はNOGマウスに対してレベルTh9で行い(Farooque M et al., Acta Neuropathol., 100; 13-22, 2000)、NOGマウスの腓腹筋にcardiotoxinを投与し筋肉変性を誘発し、四塩化炭素をNOGマウスに腹腔内投与し、肝臓変性を誘発した。筋肉及び肝臓については2日後、脊髄については7日後に1×10
5のMuse細胞を静脈注射により移植した(各6頭のマウスを使用)。コントロールとして、GFP標識MEC集団を静脈注射したマウスを用いた。移植の3又は4週間後に、マウスをパラホルムアルデヒドで固定し、免疫組織化学及び共焦点レーザ顕微鏡観察に供した。
【0165】
脊髄損傷の4週間後、GFP及びヒトゴルジ複合体陽性細胞がニューロフィラメントを形成していた。(
図16-1N及びO)。また、4週間後、再生している肝臓において、GFP及びヒトゴルジ複合体陽性細胞がヒトアルブミンを発現していた(
図16-1P)。RT-PCRの結果によりMuse細胞を移植したNOGマウス肝臓においてヒトアルブミンの形成が示された(
図16-2)。GFP陽性細胞を再生している筋肉に注射した場合、3週間でヒトジストロフィンを発現した(
図16-3)。一方、SSEA-3陰性ヒト皮膚線維芽細胞画分を移植した場合、細胞のインテグレートは顕著に少なく、組織マーカーが陽性の細胞はほとんど認められなかった。これらの結果は、Muse細胞が損傷組織に統合され、それぞれ、in vivoで外胚葉、中胚葉及び内胚葉に分化し得ることを示す。
【0166】
2.単一Muse細胞由来のMuse細胞由来胚様体様細胞塊からの増殖細胞の分化
Muse細胞の分化調節に誘導システムが有効かどうかを検討した。単一SSEA-3陽性Muse細胞由来のMuse細胞由来胚様体様細胞塊を接着培養に供し、増殖させた。単一Muse細胞由来の増殖細胞を回収し、4つの群に分け、それぞれの群に対して、神経、骨細胞、脂肪細胞及び幹細胞への分化誘導を行った(n=5)。
【0167】
神経誘導のためには、細胞をpoly-HEMAでコートしたディッシュを用いて1×10
5/mlの密度でB-27 supplementを含むNEUROBASAI培地(Gibco社)中で7日間培養し、sphere(球状の細胞塊)を形成させた。分化させるためにsphereをポリ-L-リシンでコートしたガラス上に移し、25ng/ml FGF及び25ng/ml BDNFを含む2% FBS中で10日間培養した。
【0168】
骨細胞誘導のためには、細胞を4.2×10
3細胞/cm
2の密度でHuman Mesenchymal Stem Cell Functional Identification Kit (R&D Systems)の骨細胞誘導培地を用いて14日間培養した。
【0169】
脂肪細胞誘導のためには、細胞を2.1×10
4細胞/cm
2の密度でHuman Mesenchymal Stem Cell Functional Identification Kit (R&D Systems)の脂肪細胞誘導培地を用いて14日間培養した。
【0170】
肝臓細胞誘導のためには、細胞を2.0×10
4細胞/cm
2の密度でDMEM(10%FBS、10nMデキサメタゾン及び100ng/ml HGFを含む10×ITS(GIBOCO社)、50ng/ml FGF4を含む)を用いてコラーゲンコートしたディッシュ上で14日間培養した。
【0171】
神経誘導によりsphereが形成され、sphereは神経幹細胞マーカーであるネスチン、Musashi及びNeuroD陽性であることが確認された(
図17-1A〜D)。これらのsphereを分化培地中で培養するとMAP-2又はGFAP陽性細胞に分化した(
図17-1E、MAP-2、GFAPいずれも89±5.7%の陽性率)。細胞を骨細胞誘導したとき、オステオカルシン陽性細胞(97±3.5%)及びアルカリフォスファターゼが認められた(
図17-1F及びG)。脂肪細胞分化については、オイルレッドで染色される脂肪滴を有する細胞が形成された(90±4.9%)(
図17-1H〜I)。肝細胞誘導にヒトαフェトプロテイン陽性細胞(
図17-1J、87±7.6%)並びにヒトアルブミンとヒトαフェトプロテイン陽性細胞(
図17-2)の形成がRT-PCRにより認められた。これらの結果は、Muse細胞の3胚葉への分化が、非常に高い効率で誘導により調節できることを示している。
【0172】
3.ヒト成人皮膚からのSSEA-3陽性細胞の採取
培養細胞を培養したり、Muse細胞由来胚様体様細胞塊を形成させることなく、ヒト成人皮膚から直接Muse細胞を単離することを試みた。
【0173】
ヒト健常人(n=3)からの皮膚(BIOPREDIC Internationalより入手)の上皮及び脂肪組織を除き真皮を得、真皮を10% FBSを含むα-MEM中コラゲナーゼ/ジスパーゼと共に37℃で36時間インキュベートした。濾過により消化された皮膚細胞を回収し、1500rpmで20分間遠心分離し、α-MEMで洗浄し、0.25%トリプシン-HBSSで5分間インキュベートした。細胞をさらにFACSバッファーで洗浄し、SSEA-3とインキュベートし、FACSを用いてSSEA-3陽性細胞をソーティングした。約7cm
2の皮膚組織から1.3±0.3×10
4の単一細胞を回収することができた。SSEA-3陽性細胞は、回収した単一細胞の1.7±0.2%であった。
【0174】
SSEA-3陽性細胞の21.0±1.7%が、限界希釈による単一細胞浮遊培養で7日でMuse細胞由来胚様体様細胞塊を形成した。Muse細胞由来胚様体様細胞塊はALP陽性であり、単一のMuse細胞由来胚様体様細胞塊からゼラチンでコートしたディッシュを用いて増殖させた細胞について、RT-PCRで確認したところ、MAP-2、Brachyury、Nkx2.5、GATA6及びα-フェトプロテインを発現していた。この結果は、Muse細胞と同じ性質を有する細胞が上述の成人ヒト骨髄液と同様に、成人ヒト皮膚にも存在することを示している。
【0175】
ヒト成人皮膚は、SKP(皮膚由来前駆細胞)、NCSC(神経堤幹細胞)、メラノブラスト(MB)、血管周囲細胞(PC)、内皮前駆細胞(EP)、脂肪由来幹細胞(ADSC)等の種々のタイプの幹細胞や前駆細胞を含んでいる。Muse細胞がこれらの幹細胞等と同じである可能性を排除するために、Muse細胞におけるSnai1(SKPのマーカー)、Slug(SKPのマーカー)、Sox10(NCSCのマーカー)、CD271(NCSCのマーカー)、Tyrp1(MBのマーカー)、Dct(MBのマーカー)、CD117(c-Kit)(MBのマーカー)、CD146(PC及びADSCのマーカー)、NG2(PCのマーカー)、CD34(EP及びADSCのマーカー)及びフォンビルブランド因子(EPのマーカー)の発現を分析した。これらのマーカーのいずれもSSEA-3陽性細胞において、FACS分析又はRT-PCRで認められなかった(
図18-1及び
図18-2)。この結果は、Muse細胞はヒト成人皮膚に存在することが公知である幹細胞や前駆細胞と異なる細胞であることを示している。
【0176】
さらに、フェライト粒子を用いてMuse細胞の貪食能を調べたところ、Muse細胞はフェライト粒子を容易に取り込み、高い貪食能を有していた(
図18-3)。
【0177】
4.Muse由来iPS細胞(Muse-iPSC)の確立
iPS細胞は、Oct3/4遺伝子、Sox2遺伝子、Klf4遺伝子、c-Myc遺伝子、Nanog遺伝子、Lin28遺伝子等を導入し作製されている。Muse細胞は、多能性(pluripotency)マーカーを発現し、外胚葉、内胚葉及び中胚葉系細胞に分化し得るという点で、iPS細胞と類似した特性を有している。そこで、Muse細胞がiPS細胞のよい材料となり得るかを検討した。
【0178】
方法は以下のとおりであった。
H-fibroblast画分由来のSSEA-3陽性細胞及び陰性細胞に、Takahashi et al., Cell, 131, 861-872(2007)の記載に従って、レトロウイルスベクターを用いて、Nanog、Oct3/4、KLF4及びc-Mycの4つの因子を導入し、培養した。以下に、方法の詳細を示す。
【0179】
プラスミドの確立
pMXsレトロウイルスベクター(Cell Biolabs)にヒトOct3/4、Sox2、Klf4、c-Mycのopen reading frameを組み込んだ。
【0180】
レトロウイルスの感染及びiPS細胞の確立
PLAT-A細胞を100mm dishに5×10
6細胞の密度でまき、一晩培養した。次の日に、Fugene HDを用いてトランスフェクションをを行った。トランスフェクションから24時間後、新しい培地に交換した。3日後に上清を回収し、0.45μmのフィルターに通し、4μg/mlのポリブレンを加えた。60mm dishに1×10
5細胞の密度でまいたNHDF(皮膚線維芽細胞)にウイルス溶液を感染させた。24時間後、ウイルスの入っていない新しい培地に交換した。ウイルス感染から4日後にトリプシンにより剥がした細胞を、MEF(フィーダー細胞)の上に3×10
4細胞の密度でまいた。翌日、培地を4ng/ml bFGFを加えたPrimate ES mediumに交換した。その後2日に1回培地交換を行い、30日後、コロニーをピックアップし、24ウェルプレートにまいた。
【0181】
PCR分析
RNeasy mini kit(QIAGEN)によりRNAを精製した。500ngのRNAをSuperScriptIIを用いて逆転写した。内因性のOct、Sox2、Klf4、Myc、NanogのプライマーとPCRの条件等はakahashi et al., Cell, 131, 861-872(2007)に記載の通りで行った。
【0182】
in vitroにおけるiPS細胞の分化
コラゲナーゼによりiPS細胞を採取した。細胞の塊をPoly-HEMAでコーティングしたdishに、20% Knockout serum replacement(Invitrogen)、2mM L-Glutamine、1×10
-4M nonessential amino acid、1×10
-4M 2-mercaptoethanol(Nacalai)、0.5%Penicillin/Streptomycinを含むDMEM/F12培地にて培養した。培地は2日に一回交換した。7日後、EBをゼラチンコートしたdishにまき、同じ培地で一週間培養した。
【0183】
テラトーマの形成
60mm dishのiPS細胞をRock inhibitorにより処理し、Accutase(登録商標)により採取しチューブに集めて遠心後、PBSに浮遊させた。これをNOG mouse(登録商標)(財団法人 実験動物中央研究所)の精巣に注射した。12週後に4%パラホルムアルデヒドにより固定した。パラフィン切片はHE(Hematoxylin & Eosin)染色を行った。
【0184】
以下の結果が得られた。
H-fibroblast画分由来のSSEA-3陽性細胞及び陰性細胞に、Takahashi et al., Cell, 131, 861-872(2007)の記載に従って、レトロウイルスベクターを用いて、Nanog、Oct3/4、KLF4及びc-Mycの4つの因子を導入し、5日後にMEF上に再度まきなおし、培養した。colony pickupを行う直前、すなわちMEF上での培養30日目においては、SSEA-3陰性細胞中で形成されたコロニーは非ES細胞様コロニーであり、ES細胞のマーカーであるTra-1-80陽性のコロニーはまったく見られなかった。一方、多くのSSEA-3陽性細胞においては陰性の細胞群の約7倍ほどの数のコロニーを形成し、それらはTra-1-80は陽性であった。注目すべきは、SSEA-3陰性細胞(コロニーやコロニーを形成していない細胞すべてを回収)では、RT-PCRで測定したところ、MEF上30日目のcolony pick up直前でもNonog、Sox2などの多能性に密接に関連した重要な遺伝子は陰性であった。一方、SSEA-3陽性細胞において、内因性のOct3/4、KLF4及びRex1がアップレギュレーションされており、さらにNanog、Sox2が発現していた。予測されていたとおり、SSEA-3陽性細胞をcolony pickupし、新たなMEF(フィーダー細胞)上に移した場合、無処理H-fibroblast画分細胞を用いた場合よりも30倍ほど高い効率でiPSを作製することができた。これらのiPS細胞において、免疫細胞化学、RT-PCR及びQ-PCRにより、Tra-1-60、Tra-a-80、Rex1、UTF-1、テロメラーゼ逆転写酵素(TERT)及びヒトES細胞において発現している因子がアップレギュレーションしており、あるいは新たに発現していた(
図19、21)。また、得られたMuse細胞由来iPS細胞において、Nanog、Oct3/4、Sox2及びTRA-1-81が発現していた(
図19)。RT-PCRにより、Muse細胞由来iPS細胞ではNanog、Oct3/4及びSox2が発現しているが、SSEA-3陰性細胞由来コロニーでは発現していないことがわかった(
図21)。
【0185】
SSEA-3陽性細胞とSSEA-3陰性細胞画分とで、Oct3/4遺伝子、Sox2遺伝子、Klf4遺伝子およびc-Myc遺伝子の導入効率はほとんど同じであった。導入した細胞をマウスフィーダー細胞上でディッシュ当たり1×10
5の密度で培養した。両方の各群でコロニーを形成したが、SSEA-3陰性細胞画分から形成されたコロニー数は、SSEA-3陽性細胞画分の7分の1程度であった。さらに、SSEA-3陽性細胞画分と異なり、SSEA-3陰性細胞画分では、ヒト多能性幹細胞マーカーであるTRA-1-81陽性コロニーは、コロニーを採取する直前の培養30日後でも認められなかった(
図22-1)。RT-PCRにより、内因性Sox2及びNanogはSSEA-3陽性細胞由来画分のみで発現しており、SSEA-3陰性細胞画分では発現していなかった(
図22-2)。
【0186】
さらに、SSEA-3陽性及び陰性細胞画分をそれぞれ継代し、iPS細胞株を確立した。3継代後、ヒトES細胞様の形態(平らなコロニー)を示したそれぞれのコロニー(
図22-3C及びC1)についてRT-PCRを行い、内因性oct3/4、Sox2及びNanogを発現しているコロニーをiPSコロニーとしてカウントした。その結果、iPS細胞は、SSEA-3陽性細胞由来コロニーのみから形成され、効率は0.03%であった。SSEA-3陰性細胞由来コロニーからは形成されなかった(
図22-3D及びD1)。
【0187】
さらに、Muse細胞から確立したiPS細胞は、外胚葉、内胚葉及び中胚葉系細胞に分化し、マウス精巣にてテラトーマを形成した(
図23-1〜23-3)。
【0188】
Muse細胞の増殖活性は、増殖速度及びテロメラーゼ活性の観点からそれほど高くない。このことは、Muse細胞は、マウス精巣中で3胚葉性の細胞に分化するが、テラトーマは形成しないことと対応している。もし、Muse細胞が皮膚や骨髄等のヒト成人組織において維持されている場合、その増殖は厳密に調節されているはずであり、そうでなければ、Muse細胞は生体のすべての部分で腫瘍を形成してしまうであろうことを考えても妥当である。さらに、ある条件下で培養した杯盤葉上層(epiblast)幹細胞がマウス精巣中でテラトーマを形成しないことが示されていることを考慮すると(Chou et al., Cell, 135, 449-461(2008))、多能性細胞が常にテラトーマを形成するとは言えない。Muse細胞は、最初から多能性マーカーの発現や分化能等において多能性細胞の特性を示すので、Muse細胞は単独でiPS細胞になり、増殖活性が上昇し、マウス精巣中でテラトーマを形成するようになることが予測される。iPSの誘導メカニズムは解明されていないが、間葉系細胞中のMuse細胞における腫瘍性増殖性の獲得の可能性がある。
【0189】
無処理ヒト皮膚線維芽細胞画分から約0.001%の効率でiPS細胞が確立できたが、これはK. Takahashi et al., Cell 131, 861 (2007)の報告と一致する。従って、SSEA-3陽性細胞からのiPS細胞作製効率は、無処理線維芽細胞に対して30倍高かった。このことは、iPS細胞の形成に主にMuse細胞が寄与していることを示唆している。
【0190】
免疫組織化学及びRT-PCRにより、Muse由来iPS細胞から得た胚様体は、in vitroで外胚葉(ニューロフィラメント及びMAP-2)、中胚葉(SMA、Brachyury及びNkx2.5)、及び内胚葉細胞(α-フェトプロテイン及びGATA-6)に分化することがわかった。さらに、免疫不全マウス精巣にMuse由来iPS細胞を投与したところ、テラトーマの形成が観察された。一方、Muse細胞由来胚様体様細胞塊を精巣に注射した場合、6ヶ月後においてもテラトーマの形成は認められず、MEFを注射したコントロールと比べて大きさもそれほど大きくならなかった。しかし、ヒトミトコンドリア並びにSMA、α-フェトプロテイン及びニューロフィラメントが陽性の細胞が同定された。この結果は、Muse由来iPS細胞と異なり、元々のMuse細胞はテラトーマを形成しないが、免疫不全マウス中で外胚葉、中胚葉及び内胚葉に分化し得ることを示す。
【0191】
Muse細胞由来胚様体様細胞塊とMuse由来iPS細胞について定量PCR(Q-PCR)を行った。結果を
図25及び26に示す。細胞周期調節に関連した遺伝子の発現パターンは、大きく異なっていた。細胞周期進行に関連した遺伝子のほとんどは、Muse細胞由来胚様体様細胞塊ではダウンレギュレートされていたが、Muse由来iPS細胞ではアップレギュレートされていた。一方、Muse細胞由来胚様体様細胞塊とMuse由来iPS細胞において、多能性及び未分化状態に関与した遺伝子の発現は同様の傾向を示した。ただし、Muse細胞由来胚様体様細胞塊におけるNanog、Oct3/4及びSox2の発現レベルはMuse由来iPS細胞よりはるかに低かった。Nanog遺伝子及びOct3/4遺伝子のプロモータ領域のシトシン・グアニンジヌクレオチド(CpG)はMuse由来iPS細胞でMuse細胞由来胚様体様細胞塊に比べてメチル化の程度は小さかった。なお、Nanog遺伝子のプロモータ領域のCpGのメチル化はSSEA-3陰性無処理細胞画分に比べて、Muse細胞由来胚様体様細胞塊で低かった(
図24)。この結果は、Muse細胞とMuse由来iPS細胞の間の多能性マーカーの発現レベルの差を説明する。
【0192】
本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。