(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0011】
まず、ZnO系半導体層等の成長に用いられる結晶製造装置について説明する。以下に説明する実験及び実施例では、結晶製造方法として分子線エピタキシー(molecular beam epitaxy; MBE)を用いる。ここでZnO系半導体は、少なくともZnとOを含む。
【0012】
図1は、MBE装置を示す概略的な断面図である。真空チャンバ71内に、Znソースガン72、Oソースガン73、Mgソースガン74、Cuソースガン75、及びGaソースガン76が備えられている。
【0013】
Znソースガン72、Mgソースガン74、Cuソースガン75、及びGaソースガン76は、それぞれZn(7N)、Mg(6N)、Cu(9N)、及びGa(7N)の固体ソースを収容するクヌーセンセルを含み、セルを加熱することにより、Znビーム、Mgビーム、Cuビーム、及びGaビームを出射する。
【0014】
Oソースガン73は、たとえば13.56MHzのラジオ周波数を用いる無電極放電管を含み、無電極放電管内でO
2ガス(6N)をプラズマ化して、Oラジカルビームを出射する。放電管材料として、アルミナまたは高純度石英を使用することができる。
【0015】
基板ヒータを備えるステージ77が基板78を保持する。ソースガン72〜76は、それぞれセルシャッタを含む。各セルシャッタの開閉により、基板78上に各ビームが照射される状態と照射されない状態とを切り替え可能である。基板78上に所望のタイミングで所望のビームを照射し、所望の組成のZnO系化合物半導体層を成長させることができる。
【0016】
ZnOにMgを添加することにより、バンドギャップを広げることができる。しかしZnOはウルツ鉱構造(六方晶)であり、MgOは岩塩構造(立方晶)であることから、Mg組成が高すぎると相分離を起こす。MgZnOのMg組成をxと明示するMg
xZn
1−xOにおいて、Mg組成xは、ウルツ鉱構造を保つため0.6以下とするのが好ましい。なお、Mg
xZn
1−xOという表記は、x=0の場合としてMgの添加されないZnOを含む。
【0017】
ZnO系半導体のn型導電性は、不純物のドープを行わなくても得られる。Ga等の不純物をドープし、n型導電性を高めることができる。ZnO系半導体のp型導電性は、p型不純物のドープにより得られる。
【0018】
真空チャンバ71内に、水晶振動子を用いた膜厚計79が備えられている。膜厚計79で測定される付着速度から、各ビームのフラックス強度が求められる。
【0019】
真空チャンバ71に、反射高速電子回折(reflection high energy electron diffraction; RHEED)用のガン80、及び、RHEED像を映すスクリーン81が取り付けられている。RHEED像から、基板78上に形成された結晶層の表面平坦性や成長モードを評価することができる。
【0020】
結晶が2次元成長し表面が平坦なエピタキシャル成長(単結晶成長)である場合、RHEED像はストリークパターンを示し、結晶が3次元成長し表面が平坦でないエピタキシャル成長(単結晶成長)の場合、RHEED像はスポットパターンを示す。多結晶成長の場合は、RHEED像がリングパターンとなる。
【0021】
次に、Mg
xZn
1−xO(0≦x≦0.6)結晶成長におけるVI/IIフラックス比について説明する。Znビームのフラックス強度をJ
Zn、Mgビームのフラックス強度をJ
Mg、Oラジカルビームのフラックス強度をJ
Oと表す。金属材料であるZnあるいはMgのビームは、原子、または複数個の原子を含むクラスターのZnあるいはMgを含む。原子とクラスターのいずれも結晶成長に有効である。ガス材料であるOのビームは、原子ラジカルや中性分子を含むが、ここでは結晶成長に有効な原子ラジカルのフラックス強度を考える。
【0022】
結晶へのZnの付着しやすさを示す付着係数をk
Zn、Mgの付着しやすさを示す付着係数をk
Mg、Oの付着しやすさを示す付着係数をk
Oと表す。Znの付着係数k
Znとフラックス強度J
Znの積k
ZnJ
Zn、Mgの付着係数k
Mgとフラックス強度J
Mgの積k
MgJ
Mg、及び、Oの付着係数k
Oとフラックス強度J
Oの積k
OJ
Oは、それぞれ基板の単位面積に単位時間当たりに付着するZn原子、Mg原子、及びO原子の個数に対応する。
【0023】
k
ZnJ
Znとk
MgJ
Mgの和に対するk
OJ
Oの比であるk
OJ
O/(k
ZnJ
Zn+k
MgJ
Mg)を、VI/IIフラックス比と定義する。VI/IIフラックス比が1より小さい場合をII族リッチ条件(Mgを含まない場合はZnリッチ条件)、VI/IIフラックス比が1に等しい場合をストイキオメトリ条件、VI/IIフラックス比が1より大きい場合をVI族リッチ条件(Oリッチ条件)と呼ぶ。
【0024】
なお、Zn面(+c面)での結晶成長においては、基板表面温度850℃以下であれば、付着係数k
Zn、k
Mg及びk
Oを1とみなすことができ、VI/IIフラックス比をJ
O/(J
Zn+J
Mg)と表すことが可能である。
【0025】
VI/IIフラックス比は、たとえばZnOの成長においては、以下の手順で算出することができる。
【0026】
Znフラックスは、水晶振動子を用いた膜厚モニタにより、室温でのZnの蒸着速度F
Zn(nm/s)として測定される。ZnフラックスはF
Zn(nm/s)からJ
Zn(atoms/cm
2s)に換算される。
【0027】
一方、Oラジカルフラックスは、以下のように求められる。Oラジカルビーム照射条件一定(たとえばRFパワー300W、O
2流量2sccm)のもとで、Znフラックスを変化させてZnOを成長させ、ZnO成長速度のZnフラックス依存性を実験的に求める。その結果を、ZnO成長速度G
ZnOの近似式 G
ZnO=[(k
ZnJ
Zn)
−1+(k
OJ
O)
−1]
−1を用いてフィッティングすることにより、その条件におけるOラジカルフラックスJ
Oが算出される。こうして得られたZnフラックスJ
Zn及びOラジカルフラックスJ
Oから、VI/IIフラックス比を算出することができる。
【0028】
本願発明者らは、層上にCuが供給されたGaドープZnO単結晶層(交互積層構造)がアニールによりp型化することを発見し、先の出願(特願2012−166837号)において、たとえばCuとGaが共ドープされたp型ZnO系半導体層の製造方法を提案した。先の出願に係るp型ZnO系半導体層は、高い平坦性と良好な結晶性を備え、アクセプタとして有効に機能する1価のCu
+を多く含む。本願においては、先の出願に係るp型ZnO系半導体層及びその製造方法を比較例として扱う。
【0029】
まず比較例について説明する。説明においては、アニール前の試料をアニール前試料、アニール開始後の試料をアニール後試料と記載する。
【0030】
図2Aは、比較例のアニール前試料の概略的な断面図である。比較例のアニール前試料の作製方法は、たとえば以下の通りである。
【0031】
n型導電性を有するZn面ZnO(0001)基板(以下、本明細書においてZnO基板)51に900℃で30分間のサーマルクリーニングを施した後、基板51温度を300℃まで下げる。その温度(成長温度300℃)で、ZnフラックスF
Znを0.14nm/s(J
Zn=9.2×10
14atoms/cm
2s)、Oラジカルビーム照射条件をRFパワー300W、O
2流量2.0sccm(J
O=8.1×10
14atoms/cm
2s)とし、ZnO基板51上に厚さ30nmのZnOバッファ層52を成長させる。ZnOバッファ層52の結晶性及び表面平坦性の改善のため、900℃で10分間のアニールを行う。
【0032】
ZnOバッファ層52上に、成長温度を900℃、ZnフラックスF
Znを0.14nm/s(J
Zn=9.2×10
14atoms/cm
2s)、Oラジカルビーム照射条件をRFパワー300W、O
2流量2.0sccm(J
O=8.1×10
14atoms/cm
2s)として、厚さ100nmのアンドープZnO層53を成長させる。アンドープZnO層53はn型ZnO層である。アンドープZnO層53上に、Zn、O及びGaと、Cuとを別々のタイミングで供給し、交互積層構造54を形成する。交互積層構造54の形成温度は300℃である。
【0033】
図2Bは、交互積層構造54を形成する際のZnセル、Oセル、Gaセル、及びCuセルのシャッタシーケンスを示すタイムチャートである。
【0034】
交互積層構造54の形成に当たっては、Znセルシャッタ、Oセルシャッタ、及びGaセルシャッタを開き、Cuセルシャッタを閉じるGaドープZnO単結晶層成長工程と、Znセルシャッタ、Oセルシャッタ、及びGaセルシャッタを閉じ、Cuセルシャッタを開くCu付着工程(Cu層形成工程)とを交互に繰り返す。GaドープZnO単結晶層を成長させる工程と、GaドープZnO単結晶層上にCuを付着させる工程とを別々に設け、Oセルシャッタの開期間とCuセルシャッタの開期間とを重複させないため、OラジカルとCuとは同時に供給されない。
【0035】
GaドープZnO単結晶層成長工程においては、OセルシャッタとGaセルシャッタの開閉は同時に行い、Oセルシャッタ及びGaセルシャッタの開期間の前後に、Znセルシャッタの開期間を延長する。すなわちZnセルシャッタの開期間は、Oセルシャッタ及びGaセルシャッタの開期間を含む。
【0036】
本願発明者らは、Zn、O及びCuを同時に供給し、MBE法でCuドープZnO膜を成長させた場合、3次元成長が生じ、表面の粗い多結晶膜が得られ、Cuが膜厚方向に均一にドープされないという実験結果を得、この結果につき、Zn、O及びCuを同時に供給したことによって、活性なOラジカルとCuの反応が促進され、CuがZnサイトを置換する以上に、CuOが別の結晶相として形成される結果、ZnOの成長阻害が起こり多結晶化が生じたと考えた(たとえば、特願2012−41096号参照)。
【0037】
比較例においては、特願2012−41096号記載の発明と同様に、このような実験結果及び考察に基づいて、OラジカルとCuを同時に供給しないことに加え、Cu付着工程の前後で、GaドープZnO単結晶層表面をZnで覆うことにより(Oの露出を抑制することにより)、OラジカルとCuの直接の反応を抑制する。
【0038】
比較例のアニール前試料の作製においては、Oセルシャッタ及びGaセルシャッタの1回当たりの開期間を16秒とし、Oセルシャッタ及びGaセルシャッタの開期間の前後にZnセルシャッタの開期間を1秒ずつ延長した。Znセルシャッタの1回当たりの開期間は18秒である。Znセルシャッタ、Oセルシャッタ、及びGaセルシャッタがすべて開状態となる16秒間が、1回当たりのGaドープZnO単結晶層成長期間となる。Cuセルシャッタの1回当たりの開期間は80秒とした。
【0039】
GaドープZnO単結晶層成長工程とCu付着工程を交互に30回ずつ繰り返し、厚さ75nmの交互積層構造54を得た。GaドープZnO単結晶層成長工程でのZnフラックスF
Znは0.15nm/s(J
Zn=9.9×10
14atoms/cm
2s)、Oラジカルビーム照射条件はRFパワー300W、O
2流量2.0sccm(J
O=8.1×10
14atoms/cm
2s)、Gaのセル温度T
Gaは530℃とした。VI/IIフラックス比は0.82(Znリッチ条件)である。Cu付着工程でのCuのセル温度T
Cuは890℃とした。
【0040】
図2Cは、交互積層構造54の概略的な断面図である。交互積層構造54は、GaドープZnO単結晶層54aとCu層54bが交互に積層された積層構造を有する。この積層構造は、層上にCuが供給されたGaドープZnO単結晶層54aが30層、厚さ方向に積層されたものと考えることが可能である。
【0041】
GaドープZnO単結晶層54aの厚さは2.5nm程度、Cu層54bの厚さ(Cuの付着厚さ)は1原子層以下、たとえば約1/7原子層である。この場合、GaドープZnO単結晶層54a表面のCu被覆率は14%程度となる。
【0042】
図2Dに、GaドープZnO単結晶層54a及びCu層54bの概略的な断面図を示す。たとえば約1/7原子層の厚さをもつCu層54bは、本図に示すように、GaドープZnO単結晶層54a表面の一部に付着するCuで形成される。
【0043】
図3Aは、比較例のアニール前試料の交互積層構造54について、CV特性と不純物濃度のデプスプロファイルを示すグラフである。上欄にCV特性を示すグラフを記載し、下欄にデプスプロファイルを示すグラフを記載した。測定は、電解液をショットキー電極に用いたECV法により行った。グラフは並列モデルで解析した結果を示す。CV特性を示すグラフの横軸は、電圧を単位「V」で表し、縦軸は、「1/C
2」を単位「cm
4/F
2」で表す。両軸ともリニアスケールを用いている。また、デプスプロファイルを示すグラフの横軸は、試料の深さ(厚さ)方向の位置を単位「nm」で表す。縦軸は、不純物濃度を単位「cm
−3」で表す。横軸はリニアスケール、縦軸は対数スケールを用いている。
【0044】
上欄のCV特性を示すグラフを参照すると、右上がりの曲線(電圧が増加すると1/C
2が増加する関係)が得られている。これは層上にCuが供給されたGaドープZnO単結晶層54a(交互積層構造54)がn型導電性を備えることを示す。なお、傾きが抵抗値と対応する。
【0045】
下欄のデプスプロファイルを示すグラフを参照すると、比較例のアニール前試料の交互積層構造54の不純物濃度(ドナー濃度)N
dは1.0×10
21cm
−3〜5.0×10
21cm
−3であることがわかる。
【0046】
なお、2次イオン質量分析法(secondary ion mass spectrometry; SIMS)により、交互積層構造54におけるCuの絶対濃度[Cu]及びGaの絶対濃度[Ga]を測定したところ、[Cu]=7.16×10
20cm
−3、[Ga]=4.08×10
20cm
−3であった。[Ga]に対する[Cu]の比である[Cu]/[Ga]の値は1.75である。
【0047】
次に、比較例にアニール処理を施した。流量1L/minの酸素雰囲気中で600℃、10分間のアニールを行った。
【0048】
図3Bは、アニール後試料の交互積層構造54形成位置におけるCV特性と不純物濃度のデプスプロファイルを示すグラフである。上欄にCV特性を示すグラフ、下欄にデプスプロファイルを示すグラフを記載した。グラフの両軸の意味するところは、
図3Aに示すグラフのそれらに等しい。
【0049】
上欄に示すCV特性のグラフにおいて、右下がりの曲線(電圧が増加すると1/C
2が減少する関係)が得られている。これは交互積層構造54の形成位置がp型導電性を備えることを表す。
【0050】
デプスプロファイルを示す下欄のグラフを参照すると、比較例のアニール後試料における交互積層構造54形成位置の不純物濃度(アクセプタ濃度)N
aは1.0×10
18cm
−3〜2.0×10
18cm
−3であることがわかる。
【0051】
このように比較例の交互積層構造(GaドープZnO単結晶層)は、アズグロウンでn型であり、アニールによりp型化する。アニール処理を行うことでCu層のCuがGaドープZnO単結晶層内に均一に拡散し、Cuの拡散(アクセプタとして機能するCu
+の発生)に伴って交互積層構造(GaドープZnO単結晶層)は高抵抗化(ドナー濃度N
dが減少)し、更に、CuとGaが共ドープされたp型ZnO単結晶層となる(p型化する)と考えられる。
【0052】
次に、本願に係る実験について説明する。本願発明者らは、鋭意研究の結果、層上にGaが供給されたCuドープZnO単結晶層(交互積層構造)がアニールによりp型化することを発見した。以下、サンプル1及びサンプル2に沿って説明を行う。
【0053】
図4Aは、サンプル1のアニール前試料の概略的な断面図である。サンプル1のアニール前試料は、以下のように作製した。
【0054】
ZnO基板41上に、ZnOバッファ層42、アンドープZnO層43をこの順に形成した。ZnOバッファ層42及びアンドープZnO層43の形成方法は、比較例におけるZnOバッファ層52及びアンドープZnO層53のそれと等しい。
【0055】
アンドープZnO層43上に、Zn、O及びCuと、Gaとを別々のタイミングで供給し、交互積層構造44を形成した。交互積層構造44の形成温度は250℃とした。
【0056】
図4Bは、交互積層構造44を形成する際のZnセル、Oセル、Cuセル、及びGaセルのシャッタシーケンスを示すタイムチャートである。
【0057】
交互積層構造44の形成に当たっては、Znセルシャッタ、Oセルシャッタ、及びCuセルシャッタを開き、Gaセルシャッタを閉じるCuドープZnO単結晶層成長工程と、Znセルシャッタ、Oセルシャッタ、及びCuセルシャッタを閉じ、Gaセルシャッタを開くGa付着工程(Ga層形成工程)とを交互に繰り返す。
【0058】
CuドープZnO単結晶層成長工程においては、OセルシャッタとCuセルシャッタの開閉は同時に行い、Oセルシャッタ及びCuセルシャッタの開期間の前後に、Znセルシャッタの開期間を延長する。すなわちZnセルシャッタの開期間は、Oセルシャッタ及びCuセルシャッタの開期間を含む。
【0059】
サンプル1のアニール前試料の作製においては、Oセルシャッタ及びCuセルシャッタの1回当たりの開期間を8秒とし、Oセルシャッタ及びCuセルシャッタの開期間の前後にZnセルシャッタの開期間を1秒ずつ延長した。Znセルシャッタの1回当たりの開期間は10秒である。Znセルシャッタ、Oセルシャッタ、及びCuセルシャッタがすべて開状態となる8秒間が、1回当たりのCuドープZnO単結晶層成長期間となる。Gaセルシャッタの1回当たりの開期間は8秒とした。
【0060】
CuドープZnO単結晶層成長工程とGa付着工程を交互に60回ずつ繰り返し、厚さ133nmの交互積層構造44を得た。CuドープZnO単結晶層成長工程でのZnフラックスF
Znは0.17nm/s(J
Zn=1.1×10
15atoms/cm
2s)、Oラジカルビーム照射条件はRFパワー300W、O
2流量2.0sccm(J
O=8.1×10
14atoms/cm
2s)、Cuのセル温度T
Cuは990℃とした。VI/IIフラックス比は0.74(Znリッチ条件)である。Ga付着工程でのGaのセル温度T
Gaは540℃とした。
【0061】
図4Cは、交互積層構造44の概略的な断面図である。交互積層構造44は、CuドープZnO単結晶層44aとGa層44bが交互に積層された積層構造を有する。この積層構造は、層上にGaが供給されたCuドープZnO単結晶層44aが60層、厚さ方向に積層されたものと考えることが可能である。
【0062】
CuドープZnO単結晶層44aの厚さは2.2nm程度、Ga層44bの厚さ(Cuの付着厚さ)は1原子層以下、たとえば約1/16原子層である。この場合、CuドープZnO単結晶層44a表面のGa被覆率は6%程度となる。
【0063】
図4Dに、CuドープZnO単結晶層44a及びGa層44bの概略的な断面図を示す。たとえば約1/16原子層の厚さをもつGa層44bは、CuドープZnO単結晶層44a表面の一部に付着するGaで形成される。以後、図面の簡略化のため、このようなGaの付着態様も含め、交互積層構造を
図4Cの層構造で表す。
【0064】
図5Aは、サンプル1のアニール前試料の交互積層構造44について、CV特性、不純物濃度のデプスプロファイル、及び、[Cu]、[Ga]のデプスプロファイルを示すグラフである。上欄にCV特性を示すグラフ、中欄に不純物濃度のデプスプロファイルを示すグラフ、下欄にSIMSによる[Cu]及び[Ga]のデプスプロファイルを示すグラフを記載した。上欄、中欄のグラフの両軸の意味するところは、それぞれ
図3Aの上欄、下欄に示すグラフのそれらに等しい。下欄のグラフの横軸は、試料の深さ方向の位置を、単位「nm」で表し、縦軸は、Cu濃度[Cu]及びGa濃度[Ga]を、単位「cm
−3」で表す。横軸はリニアスケール、縦軸は対数スケールを用いている。
【0065】
上欄のグラフを参照すると、右上がりの曲線(電圧が増加すると1/C
2が増加する関係)が得られており、層上にGaが供給されたCuドープZnO単結晶層44a(交互積層構造44)がn型導電性を備えることがわかる。
【0066】
中欄のグラフを参照すると、交互積層構造44の不純物濃度(ドナー濃度)N
dは1.0×10
21cm
−3〜5.0×10
21cm
−3であることがわかる。
【0067】
下欄のグラフを参照すると、交互積層構造44におけるCu濃度[Cu]は5.02×10
20cm
−3、Ga濃度[Ga]は3.67×10
20cm
−3であることがわかる。[Cu]/[Ga]の値は1.37である。
【0068】
次に、サンプル1にアニール処理を施した。流量1L/minの酸素雰囲気中で560℃、26分間のアニールを行った。
【0069】
図5Bは、上欄から順に、サンプル1のアニール後試料の交互積層構造44形成位置における、CV特性、不純物濃度のデプスプロファイル、及び、SIMSによる[Cu]、[Ga]のデプスプロファイルを示すグラフである。各欄のグラフの両軸の意味するところは、
図5Aに示すグラフのそれらに等しい。
【0070】
上欄のグラフにおいて、右下がりの曲線(電圧が増加すると1/C
2が減少する関係)が得られており、交互積層構造44の形成位置がp型導電性を備えることがわかる。
【0071】
中欄のグラフを参照すると、サンプル1のアニール後試料における交互積層構造44形成位置(p型層形成位置)の不純物濃度(アクセプタ濃度)N
aは5.0×10
17cm
−3〜4.0×10
18cm
−3であることがわかる。
【0072】
下欄のグラフを参照すると、交互積層構造44形成位置(p型層形成位置)におけるCu濃度[Cu]は4.68×10
20cm
−3、Ga濃度[Ga]は4.13×10
20cm
−3、ともにp型層の厚さ方向の全体にわたり、ほぼ一定であることがわかる。本明細書において、濃度に関し「ほぼ一定」とは、濃度の平均値(たとえば本図の[Cu]の場合、4.68×10
20cm
−3)の50%〜150%の範囲をいう。Cu及びGaは均一に拡散している。[Cu]/[Ga]の値は1.13である。なお、[Cu]及び[Ga]は、たとえば表面吸着物の影響により、p型層表面近傍で正確に測定されない場合がある。
【0073】
図6は、p型層の[11−20]方向、及び、[1−100]方向から見たRHEED像である。RHEED像はストリークパターンを示している。表面が平坦で良好な結晶性を有する単結晶層が形成されていることがわかる。
【0074】
300℃以下、たとえば250℃という低温かつZnリッチ(II族リッチ)条件で交互積層構造44を成長することにより、CuO結晶相の形成が抑制され、また、CuドープZnO層44aとGa層44bを交互に成長することにより、Ga表面上のZnのマイグレーションが促進され、交互積層構造44(CuドープZnO層44a)の単結晶成長が得られたものと考えられる。
【0075】
次に、サンプル2について説明する。サンプル2のアニール前試料の作製においては、CuドープZnO単結晶層成長工程とGa付着工程を交互に60回ずつ繰り返し、厚さ100nmの交互積層構造を得た。CuドープZnO単結晶層成長工程でのZnフラックスF
Znを0.15nm/s(J
Zn=9.9×10
14atoms/cm
2s)として、VI/IIフラックス比を0.82(Znリッチ条件)とした点、Cuのセル温度T
Cuを970℃、Ga付着工程でのGaのセル温度T
Gaを550℃とした点以外は、サンプル1のアニール前試料と等しい成長条件で層形成を行った。
【0076】
図7Aは、上欄から順に、サンプル2のアニール前試料の交互積層構造について、CV特性、不純物濃度のデプスプロファイル、及び、SIMSによる[Cu]、[Ga]のデプスプロファイルを示すグラフである。各欄のグラフの両軸の意味するところは、
図5Aに示すグラフのそれらに等しい。
【0077】
上欄のグラフを参照すると、右上がりの曲線(電圧が増加すると1/C
2が増加する関係)が得られており、層上にGaが供給されたCuドープZnO単結晶層(交互積層構造)がn型導電性を備えることがわかる。
【0078】
中欄のグラフを参照すると、交互積層構造の不純物濃度(ドナー濃度)N
dは1.0×10
21cm
−3〜3.0×10
21cm
−3であることがわかる。
【0079】
下欄のグラフを参照すると、交互積層構造におけるCu濃度[Cu]は3.95×10
20cm
−3、Ga濃度[Ga]は4.97×10
20cm
−3であることがわかる。[Cu]/[Ga]の値は0.79である。
【0080】
サンプル2には、流量1L/minの酸素雰囲気中で630℃、10分間のアニール処理を施した。
【0081】
図7Bは、上欄から順に、サンプル2のアニール後試料の交互積層構造形成位置における、CV特性、不純物濃度のデプスプロファイル、及び、SIMSによる[Cu]、[Ga]のデプスプロファイルを示すグラフである。各欄のグラフの両軸の意味するところは、
図5Bに示すグラフのそれらに等しい。
【0082】
上欄のグラフにおいて、右下がりの曲線(電圧が増加すると1/C
2が減少する関係)が得られており、交互積層構造の形成位置がp型導電性を備えることがわかる。
【0083】
中欄のグラフを参照すると、サンプル2のアニール後試料における交互積層構造形成位置(p型層形成位置)の不純物濃度(アクセプタ濃度)N
aは1.0×10
18cm
−3〜6.5×10
18cm
−3であることがわかる。
【0084】
下欄のグラフを参照すると、交互積層構造形成位置(p型層形成位置)におけるCu濃度[Cu]は2.98×10
20cm
−3、Ga濃度[Ga]は5.41×10
20cm
−3、表面吸着物の影響が著しい表面近傍を除けば、ともにp型層の厚さ方向の全体にわたり、ほぼ一定であることがわかる。Cu及びGaは均一に拡散している。[Cu]/[Ga]の値は0.55である。
【0085】
サンプル1及びサンプル2の結果より、本願実験の交互積層構造(CuドープZnO単結晶層)は、アズグロウンでn型であり、アニールによりp型化することがわかる。アズグロウンでは、CuドープZnO単結晶層のCuはアクセプタとして機能していない。アニール処理を行うことで、Ga層のGaがCuドープZnO単結晶層内に均一に拡散するとともに、アクセプタとして機能するCu
+が発生し、CuとGaが共ドープされたp型ZnO単結晶層となる(p型化する)と考えられる。なお交互積層構造は、アニールにより高抵抗化を経てp型化される。
【0086】
p型化のためのアニール条件(温度、時間、雰囲気等)は、交互積層構造やCuドープZnO単結晶層の厚さ、交互積層構造におけるCu濃度[Cu]、Ga濃度[Ga]、[Cu]/[Ga]等によって異なるであろう。
【0087】
比較例の[Cu]/[Ga](1.75)に示されるように、先の出願に係る発明においては、アニール前試料の交互積層構造における[Cu]/[Ga]は1より大きい値であった。これに対し、本願実験においては、アニール前試料の[Cu]/[Ga]は1.37(サンプル1)及び0.79(サンプル2)である。本願実験に係るp型ZnO系半導体層の製造方法においては、アニール前試料の交互積層構造における[Cu]/[Ga]が1以下であってもp型層が形成される。
【0088】
また、アニール前試料の交互積層構造におけるドナー濃度N
d及びアニール後試料の交互積層構造対応位置におけるアクセプタ濃度N
aがほぼ等しい、比較例とサンプル1を対照すると、比較例のアニール温度が600℃であるのに対し、サンプル1では560℃のアニールでp型化が実現される。本願実験に係る方法によれば、先の出願に係る発明に比べ、より低い温度のアニールでp型層を形成することができる。したがって、たとえば高温アニールによる酸素空孔等ドナー性点欠陥の形成、p型層からの外部拡散に伴うp型層中のCu濃度やGa濃度の低下、CuやGaの下地層(n型層)への拡散に伴うpn界面急峻性の悪化等の不具合発生の可能性をより低減することができ、一例として、先願に係る発明より、急峻なpn界面を有するZnO系半導体素子を製造することができる。
【0089】
更に、実験においては、たとえば
図5B及び
図7Bに示すように、層の厚さ方向の全体にわたり、Cu濃度[Cu]及びGa濃度[Ga]がほぼ一定のp型層が得られた。p型層におけるCu濃度[Cu]は、4.68×10
20cm
−3(サンプル1)、及び、2.98×10
20cm
−3(サンプル2)であった。
【0090】
この結果から、たとえば層上にGaが供給されたCuドープn型ZnO単結晶層をアニールする方法によって、Cuを、高濃度といえる1.0×10
19cm
−3以上の濃度となるように、少なくとも1.0×10
21cm
−3未満の濃度までは、厚さ方向に均一にドープすることができると考えられる。
【0091】
本願発明者らは研究により、ZnO系半導体層において、Cuの不純物濃度(アクセプタ濃度)は、Cuの絶対濃度[Cu]より約2桁小さいという知見を得ている。この知見を加味すると、層上にGaが供給されたCuドープn型ZnO単結晶層をアニールする方法によって、アクセプタ濃度が1.0×10
17cm
−3以上、1.0×10
19cm
−3未満のp型層が得られるということができる。
【0092】
p型層は、アクセプタ濃度が1.0×10
17cm
−3以上であれば実用的ということが可能である。したがって実験で得られたp型層は、実用的なp型導電性を有するp型ZnO系半導体単結晶層である。
【0093】
層上にGaが供給されたCuドープZnO単結晶層をアニールする方法によれば、Cuが高濃度に、かつ、層の厚さ方向の全体にわたって均一にドープされ、実用的なp型導電性を有するCu、Ga共ドープZnO単結晶層を製造することができる。Cu、Ga共ドープZnO単結晶層においては、Gaも層の厚さ方向の全体にわたって均一にドープされる。Cu、Ga共ドープZnO単結晶層は、低い温度のアニールで製造可能である。
【0094】
本願発明者らは、p型化した交互積層構造を更にアニールすると、再びn型導電性をもちうることを発見した。したがってアニール処理は、たとえば交互積層構造が高抵抗化を経てp型化した後、再びn型層となる前に終了すればよい。
【0095】
本願に係る実験より、CuドープZnO単結晶層成長工程とGa付着工程とを交互に繰り返し形成した交互積層構造にアニール処理を施すことで、CuとGaが共ドープされたp型ZnO層が得られることがわかった。続いて、Cu、Ga共ドープZnO層をp型半導体層に用い、ZnO系半導体発光素子を製造する第1実施例について説明する。
【0096】
図8A及び
図8Bは、実施例によるZnO系半導体発光素子の製造方法の概略を示すフローチャートである。なお、実施例においては半導体発光素子について説明するが、本発明は、発光素子に限らず広く半導体素子について適用することができる。
【0097】
図8Aに示すように、実施例によるZnO系半導体発光素子の製造方法は、基板上方にn型ZnO系半導体層を形成する工程(ステップS101)と、ステップS101で形成したn型ZnO系半導体層上方に、p型ZnO系半導体層を形成する工程(ステップS102)を含む。
【0098】
また、
図8Bに示すように、ステップS102のp型ZnO系半導体層形成工程は、ステップS102a、ステップS102b、ステップS102c、及びステップS102dの4工程を含む。
【0099】
p型ZnO系半導体層形成工程(ステップS102)においては、まずZn、O、必要に応じてMg、及びCuを供給して、Cuがドープされたn型Mg
xZn
1−xO(0≦x≦0.6)単結晶膜を形成する(ステップS102a)。次に、ステップS102aで形成された、Cuドープn型Mg
xZn
1−xO(0≦x≦0.6)単結晶膜上にGaを供給する(ステップS102b)。ステップS102aとステップS102bを交互に繰り返して積層構造を形成する(ステップS102c)。そしてステップS102cで形成された積層構造をアニールして、CuとGaが共ドープされたp型Mg
xZn
1−xO(0≦x≦0.6)層を形成する(ステップS102d)。
【0100】
なお、実施例によるn型ZnO系半導体積層構造は、ステップS102a〜ステップS102cの工程により作製される。
【0101】
図9A及び
図9Bを参照し、ホモ構造のZnO系半導体発光素子を製造する第1実施例について説明する。
図9Aは、第1実施例による製造方法で製造されるZnO系半導体発光素子の概略的な断面図である。
【0102】
ZnO基板1上に、成長温度300℃で、ZnフラックスF
Znを0.15nm/s(J
Zn=9.9×10
14atoms/cm
2s)とし、Oラジカルビーム照射条件をRFパワー300W、O
2流量2.0sccm(J
O=8.1×10
14atoms/cm
2s)として、厚さ30nmのZnOバッファ層2を成長させた。ZnOバッファ層2の結晶性及び表面平坦性の改善のため、900℃で10分間のアニールを行った。
【0103】
ZnOバッファ層2上に、成長温度900℃で、Zn、O及びGaを同時に供給し、厚さ150nmのn型ZnO層3を成長させた(たとえば
図8AのステップS101)。ZnフラックスF
Znは0.15nm/s(J
Zn=9.9×10
14atoms/cm
2s)、Oラジカルビーム照射条件はRFパワー250W、O
2流量1.0sccm(J
O=4.0×10
14atoms/cm
2s)、Gaのセル温度は460℃とした。n型ZnO層3のGa濃度は、たとえば1.5×10
18cm
−3である。
【0104】
n型ZnO層3上に、成長温度900℃、ZnフラックスF
Znを0.03nm/s(J
Zn=2.0×10
14atoms/cm
2s)、Oラジカルビーム照射条件をRFパワー300W、O
2流量2.0sccm(J
O=8.1×10
14atoms/cm
2s)として、厚さ15nmのアンドープZnO活性層4を成長させた。
【0105】
続いて、アンドープZnO活性層4上に、Cu、Ga共ドープp型ZnO層5を形成した(
図8AのステップS102)。
【0106】
まず、基板温度を250℃とし、サンプル2のアニール前試料作製時と等しいシャッタシーケンス(
図4B参照)で、Zn、O及びCuと、Gaとを別々のタイミングで供給し、交互積層構造を形成した。具体的には、Zn、O及びCuを供給してCuドープZnO単結晶膜を成長させる工程(
図8BのステップS102a)と、CuドープZnO単結晶膜上にGaを供給する工程(
図8BのステップS102b)を交互に60回ずつ繰り返し、厚さ100nmの交互積層構造を形成した(
図8BのステップS102c)。1回当たりのCuドープZnO単結晶膜成長期間、及び、1回当たりのGa供給期間は8秒である。CuドープZnO単結晶膜成長工程でのZnフラックスF
Znは0.15nm/s(J
Zn=9.9×10
14atoms/cm
2s)、Oラジカルビーム照射条件はRFパワー300W、O
2流量2.0sccm(J
O=8.1×10
14atoms/cm
2s)とし、Cuのセル温度T
Cuは970℃とした。VI/IIフラックス比は0.82である。また、Ga供給工程でのGaのセル温度T
Gaは550℃とした。
【0107】
図9Bは、交互積層構造5Aの概略的な断面図である。交互積層構造5Aは、CuドープZnO単結晶膜5aとGa層5bが交互に積層された積層構造を有する。CuドープZnO単結晶膜5aの厚さは1.7nm程度、Ga層5bの厚さは1原子層以下、たとえば約1/15原子層(CuドープZnO単結晶膜5a表面のGa被覆率が7%程度)である。交互積層構造5Aはn型導電性を示し、ドナー濃度N
dは、たとえば1.0×10
21cm
−3である。
【0108】
次に、交互積層構造をアニールして、CuとGaが共ドープされたp型ZnO単結晶層を形成した(
図8BのステップS102d)。たとえば流量1L/minの酸素雰囲気中で630℃、10分間のアニールを実施することにより、n型導電性を示す交互積層構造5Aを、p型導電性をもつZnO層(Cu、Ga共ドープp型ZnO層5)とすることができる。
【0109】
その後、ZnO基板1の裏面にn側電極6nを形成した。Cu、Ga共ドープp型ZnO層5上にはp側電極6pを形成し、p側電極6p上にボンディング電極7を形成した。n側電極6nは、厚さ10nmのTi層上に厚さ500nmのAu層を積層して形成することができる。p側電極6pは、サイズ300μm□で厚さ1nmのNi層上に、厚さ10nmのAu層を積層して形成し、ボンディング電極7は、サイズ100μm□で厚さ500nmのAu層で形成した。このようにして、第1実施例による方法でZnO系半導体発光素子が作製された。
【0110】
第1実施例による製造方法で製造されるZnO系半導体発光素子のCu、Ga共ドープp型ZnO層5は、[Cu]/[Ga]が1以下、たとえば0.79の交互積層構造5Aをアニールすることで得られる、CuとGaが共ドープされたp型ZnO系半導体単結晶層である。Cu濃度[Cu]は1.0×10
19cm
−3以上、1.0×10
21cm
−3未満、たとえば2.98×10
20cm
−3であり、層の厚さ方向にほぼ一定である。Ga濃度[Ga]は、たとえば5.41×10
20cm
−3であり、層の厚さ方向にほぼ一定である。第1実施例のCu、Ga共ドープp型ZnO層5においては、[Cu]/[Ga]は0.55である。
【0111】
第1実施例による製造方法によれば、たとえばCuが高濃度に、かつ、CuとGaが厚さ方向の全体にわたって均一にドープされ、実用的なp型導電性を有するCu、Ga共ドープp型ZnO層5を製造することができる。また、低い温度のアニールで製造可能である。第1実施例による製造方法で製造されるZnO系半導体発光素子は、たとえば急峻なpn界面を有する。
【0112】
実験及び第1実施例では、Cu、Ga共ドープp型ZnO層を形成した(たとえば
図8BのステップS102a〜ステップS102dのMg
xZn
1−xO表記においてx=0)が、Cuドープn型Mg
xZn
1−xO(0<x≦0.6)単結晶膜成長工程とGa付着工程とを交互に繰り返して形成した交互積層構造をアニールすることにより、p型導電性を示すCu、Ga共ドープMg
xZn
1−xO(0<x≦0.6)単結晶層を得ることができる(たとえば
図8BのステップS102a〜ステップS102dのMg
xZn
1−xO表記においてx≠0)。
【0113】
図10は、Cu、Ga共ドープp型Mg
xZn
1−xO(0<x≦0.6)単結晶層形成時、交互積層構造を作製する際のZnセル、Mgセル、Oセル、Cuセル、及びGaセルのシャッタシーケンスの一例を示すタイムチャートである。
【0114】
交互積層構造の作製においては、Znセルシャッタ、Mgセルシャッタ、Oセルシャッタ、及びCuセルシャッタを開き、Gaセルシャッタを閉じるCuドープMg
xZn
1−xO(0<x≦0.6)単結晶膜成長工程と、Znセルシャッタ、Mgセルシャッタ、Oセルシャッタ、及びCuセルシャッタを閉じ、Gaセルシャッタを開くGa付着工程とを交互に繰り返す。
【0115】
本図に示す例では、CuドープMg
xZn
1−xO単結晶膜成長工程におけるZnセルシャッタの開期間が、Mgセルシャッタ、Oセルシャッタ、及びCuセルシャッタの開期間を含むように設定されている。具体的には、Mgセルシャッタ、Oセルシャッタ、及びCuセルシャッタの開閉は同時に行われ、Mgセルシャッタ、Oセルシャッタ、及びCuセルシャッタの開期間の前後に、Znセルシャッタの開期間が延長される。
【0116】
たとえば、Mgセルシャッタ、Oセルシャッタ、及びCuセルシャッタの1回当たりの開期間は8秒である。Mgセルシャッタ、Oセルシャッタ、及びCuセルシャッタの開期間の前後にZnセルシャッタの開期間を1秒ずつ延長し、Znセルシャッタの1回当たりの開期間を10秒とする。Znセルシャッタ、Mgセルシャッタ、Oセルシャッタ、及びCuセルシャッタがすべて開状態となる8秒間が、1回当たりのCuドープMg
xZn
1−xO単結晶膜成長期間である。Gaセルシャッタの1回当たりの開期間は8秒である。
【0117】
次に、Cu、Ga共ドープp型Mg
xZn
1−xO(0<x≦0.6)単結晶層を備える、ダブルへテロ構造のZnO系半導体発光素子を製造する第2実施例及び第3実施例について説明する。
【0118】
図11Aは、第2実施例による製造方法で製造されるZnO系半導体発光素子の概略的な断面図である。
【0119】
ZnO基板11上にZn及びOを同時に供給し、たとえば厚さ30nmのZnOバッファ層12を成長させた。一例として、成長温度を300℃、ZnフラックスF
Znを0.15nm/s、Oラジカルビーム照射条件をRFパワー300W、O
2流量2.0sccmとすることができる。ZnOバッファ層12の結晶性及び表面平坦性の改善のため、900℃で10分間のアニールを行った。
【0120】
ZnOバッファ層12上にZn、O及びGaを同時に供給し、たとえば成長温度900℃で、厚さ150nmのn型ZnO層13を成長させた。ZnフラックスF
Znを0.15nm/s、Oラジカルビーム照射条件をRFパワー250W、O
2流量1.0sccm、Gaセル温度を460℃とした。n型ZnO層13のGa濃度は、たとえば1.5×10
18cm
−3となる。
【0121】
n型ZnO層13上にZn、Mg及びOを同時に供給し、たとえば厚さ30nmのn型MgZnO層14を成長させた。成長温度を900℃、ZnフラックスF
Znを0.1nm/s、MgフラックスF
Mgを0.025nm/s、Oラジカルビーム照射条件をRFパワー300W、O
2流量2sccmとすることができる。n型MgZnO層14のMg組成は、たとえば0.3である。
【0122】
n型MgZnO層14上にZn及びOを同時に供給し、たとえば成長温度900℃で、厚さ10nmのZnO活性層15を成長させた。ZnフラックスF
Znを0.1nm/s、Oラジカルビーム照射条件をRFパワー300W、O
2流量2.0sccmとした。
【0123】
なお、
図11Bに示すように、活性層15として、単層のZnO層ではなく、MgZnO障壁層15bとZnO井戸層15wが交互に積層された量子井戸構造を採用することができる。
【0124】
基板温度をたとえば250℃まで下げ、Cuドープn型MgZnO単結晶膜成長工程とGa付着工程とを交互に繰り返し、活性層15上に交互積層構造を形成した。交互積層構造形成に当たってのZnセル、Mgセル、Oセル、Cuセル、及びGaセルのシャッタシーケンスは、たとえば
図10に示すそれと同様である。
【0125】
たとえば、1回当たりのCuドープMgZnO単結晶膜成長工程での成長期間を8秒とし、1回当たりのGa付着工程におけるGa供給期間を8秒とした。CuドープMgZnO単結晶膜成長工程でのZnフラックスF
Znは0.15nm/s、MgフラックスF
Mgは0.04nm/s、Oラジカルビーム照射条件は、RFパワー300W、O
2流量2.0sccm、Cuのセル温度T
Cuは990℃である。VI/IIフラックス比は0.70となる。Ga供給工程でのGaのセル温度T
Gaは540℃とした。CuドープMgZnO単結晶膜成長工程とGa付着工程を交互に60回ずつ繰り返し、厚さ120nmの交互積層構造を得た。
【0126】
図11Cは、交互積層構造16Aの概略的な断面図である。交互積層構造16Aは、CuドープMgZnO単結晶膜16aとGa層16bが交互に積層された積層構造を有する。CuドープMgZnO単結晶膜16aの厚さは2.0nm程度、Ga層16bの厚さは1原子層以下、たとえば約1/16原子層(CuドープMgZnO単結晶膜16a表面のGa被覆率が6%程度)である。交互積層構造16Aはn型導電性を示し、ドナー濃度N
dは、たとえば1.5×10
20cm
−3である。
【0127】
次に、交互積層構造16Aをアニールし、活性層15上にCuとGaが共ドープされたp型MgZnO層16を形成した。たとえば流量1L/minの酸素雰囲気中で610℃、10分間のアニールを実施することにより、n型導電性を示す交互積層構造16Aを、p型導電性をもつ単結晶層(Cu、Ga共ドープp型MgZnO層16)とすることができる。なお、Cu、Ga共ドープp型MgZnO層16のMg組成は、たとえば0.3である。
【0128】
その後、ZnO基板11の裏面にn側電極17nを形成し、Cu、Ga共ドープp型MgZnO層16上にp側電極17pを形成する。また、p側電極17p上にボンディング電極18を形成する。たとえばn側電極17nは、厚さ10nmのTi層上に厚さ500nmのAu層を積層して形成し、p側電極17pは、大きさ300μm□で厚さ1nmのNi層上に、厚さ10nmのAu層を積層して形成することができる。ボンディング電極18は、大きさ100μm□で厚さ500nmのAu層で形成する。このようにして、第2実施例による方法でZnO系半導体発光素子が作製される。
【0129】
第2実施例においてはZnO基板11を用いたが、MgZnO基板、GaN基板、SiC基板、Ga
2O
3基板等の導電性基板を使用することが可能である。
【0130】
第2実施例によるZnO系半導体発光素子のCu、Ga共ドープp型MgZnO層16は、[Cu]/[Ga]が0.5以上、たとえば1.40の交互積層構造16Aをアニールすることで得られる、CuとGaが共ドープされたp型ZnO系半導体単結晶層である。Cu濃度[Cu]は1.0×10
19cm
−3以上、1.0×10
21cm
−3未満、たとえば5.0×10
20cm
−3であり、層の厚さ方向にほぼ一定である。Ga濃度[Ga]は、たとえば4.0×10
20cm
−3であり、層の厚さ方向にほぼ一定である。第2実施例のCu、Ga共ドープp型MgZnO層16においては、[Cu]/[Ga]は1.25である。
【0131】
第2実施例による製造方法によれば、たとえばCuが高濃度に、かつ、CuとGaが厚さ方向の全体にわたって均一にドープされ、実用的なp型導電性を有するCu、Ga共ドープp型MgZnO層16を製造することができる。また、低い温度のアニールで製造可能である。第2実施例による製造方法で製造されるZnO系半導体発光素子は、たとえば急峻なpn界面を有する。
【0132】
図12は、第3実施例による製造方法で製造されるZnO系半導体発光素子の概略的な断面図である。第1及び第2実施例においては導電性基板上に結晶成長し、層形成を行ったが、第3実施例では絶縁性基板上に結晶成長する。
【0133】
絶縁性基板であるc面サファイア基板21上にMg及びOを同時に供給し、たとえば厚さ10nmのMgOバッファ層22を成長させる。一例として、成長温度を650℃、MgフラックスF
Mgを0.05nm/s、Oラジカルビーム照射条件をRFパワー300W、O
2流量2sccmとすることができる。MgOバッファ層22は、その上のZnO系半導体がZn面を表面として成長するように制御する極性制御層として機能する。
【0134】
MgOバッファ層22上に、たとえば成長温度300℃、ZnフラックスF
Znを0.15nm/s、Oラジカルビーム照射条件をRFパワー300W、O
2流量2.0sccmとして、Zn及びOを同時に供給し、厚さ30nmのZnOバッファ層23を成長させる。ZnOバッファ層23はZn面で成長する。ZnOバッファ層23の結晶性及び表面平坦性の改善のため、900℃で30分間のアニールを行う。
【0135】
ZnOバッファ層23上にZn、O及びGaを同時に供給し、たとえば厚さ1.5μmのn型ZnO層24を成長させる。一例として成長温度を900℃、ZnフラックスF
Znを0.05nm/s、Oラジカルビーム照射条件をRFパワー300W、O
2流量2sccm、Gaのセル温度を480℃とする。
【0136】
n型ZnO層24上に、Zn、Mg及びOを同時に供給し、たとえば厚さ30nmのn型MgZnO層25を成長させる。成長温度を900℃、ZnフラックスF
Znを0.1nm/s、MgフラックスF
Mgを0.025nm/s、Oラジカルビーム照射条件をRFパワー300W、O
2流量2sccmとすることができる。n型MgZnO層25のMg組成は、たとえば0.3である。
【0137】
n型MgZnO層25上に、たとえば厚さ10nmのZnO活性層26を成長させる。成長条件は、第2実施例における活性層15の場合と等しくすることができる。単層のZnO層のかわりに、量子井戸構造を採用してもよい。
【0138】
活性層26上にCu、Ga共ドープp型MgZnO層27を形成する。形成方法は、たとえば第2実施例におけるCu、Ga共ドープp型MgZnO層16のそれと等しい。
【0139】
第3実施例のc面サファイア基板21は絶縁性基板であるため、基板21裏面側にn側電極を取ることができない。そこでCu、Ga共ドープp型MgZnO層27の上面から、n型ZnO層24が露出するまでエッチングを行い、露出したn型ZnO層24上にn側電極28nを形成する。また、Cu、Ga共ドープp型MgZnO層27上にp側電極28pを形成し、p側電極28p上にボンディング電極29を形成する。
【0140】
n側電極28nは、厚さ10nmのTi層上に厚さ500nmのAu層を積層して形成し、p側電極28pは、厚さ0.5nmのNi層上に厚さ10nmのAu層を積層して形成することができる。ボンディング電極29は、厚さ500nmのAu層で形成する。このようにして、第3実施例による方法でZnO系半導体発光素子が作製される。
【0141】
第3実施例によるZnO系半導体発光素子のCu、Ga共ドープp型MgZnO層27は、第2実施例のCu、Ga共ドープp型MgZnO層16と同様の性質を有するp型ZnO系半導体単結晶層である。
【0142】
以上、実験及び実施例に沿って本発明を説明したが、本発明はこれらに制限されない。
【0143】
たとえば実施例による製造方法においては、酸素源としてOラジカルを用いたが、オゾンやH
2O、アルコールなどの極性酸化剤等、酸化力の強い他のガスを使用することができる。
【0144】
また、実施例による製造方法においては、アニールを酸素雰囲気中で行ったが、大気中等で行ってもよい。
【0145】
更に、実験及び実施例では、Cuドープn型Mg
xZn
1−xO(0≦x≦0.6)単結晶膜とGa層が交互に積層された構造をアニールし、p型導電性を示すCu、Ga共ドープMg
xZn
1−xO(0≦x≦0.6)単結晶層を形成(p型化)した。Cu(IB族元素)とGa(IIIB族元素)を含む交互積層構造がアニールされることで、CuがVIB族元素であるOと1価(Cu
+)の状態で結合しやすくなり、アクセプタとして機能する1価のCu
+が2価のCu
2+より生じやすくなる結果、交互積層構造がp型化すると考えられる。したがって、Cuにかえて、またはCuとともに、Cuと同様に複数の価数を形成しうるIB族元素であるAgを用いることができる。また、Gaに限らず、Gaと同じくIIIB族元素であるB、Al及びInを使用することができる。使用されるIIIB族元素は、B、Ga、Al及びInからなる群より選択される一以上のIIIB族元素であればよい。
【0146】
その他、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
【0147】
なお、特願2012−41096号で本願発明者らが提案した、(α)Mg
xZn
1−xO(0≦x≦0.6)単結晶膜を形成する工程と、(β)Mg
xZn
1−xO(0≦x≦0.6)単結晶膜上にCuを供給する工程を交互に繰り返す、Cuドープp型Mg
xZn
1−xO(0≦x≦0.6)層の製造方法においては、以下の(1)〜(3)等の知見が得られている。
【0148】
(1)結晶性の悪化を防止するために、1回の工程(α)当たり、厚さ10nm以下のMg
xZn
1−xO(0≦x≦0.6)単結晶膜を形成することが望ましい。
【0149】
(2)高い平坦性、良好な結晶性を得るために、工程(α)においては、ストイキオメトリ条件(VI/IIフラックス比が1)またはII族リッチ条件(VI/IIフラックス比が1未満)でMg
xZn
1−xO(0≦x≦0.6)単結晶膜を形成することが望ましく、VI/IIフラックス比が0.5以上で1より小さいという条件のもとで形成することが一層望ましい。
【0150】
(3)良好な結晶成長を実現するために、工程(α)において、成長温度(基板温度)を200℃程度以上350℃以下としてMg
xZn
1−xO(0≦x≦0.6)単結晶膜を成長させることが望ましい。
【0151】
本願において、たとえば(a)(i)Zn、(ii)O、(iii)必要に応じてMg、(iv)Cuまたは/及びAgであるIB族元素を供給して、前記IB族元素がドープされたMg
xZn
1−xO(0≦x≦0.6)単結晶膜を形成する工程と、(b)前記Mg
xZn
1−xO(0≦x≦0.6)単結晶膜上に、B、Ga、Al、及びInからなる群より選択される一以上のIIIB族元素を供給する工程と、(c)前記工程(a)と前記工程(b)を交互に繰り返して積層構造を形成する工程と、(d)前記積層構造をアニールして、前記IB族元素と前記IIIB族元素が共ドープされたp型Mg
xZn
1−xO(0≦x≦0.6)層を形成する工程を用いてp型ZnO系半導体層を製造する場合にも、上記(1)〜(3)に示す条件で工程(a)を実施することにより、平坦性が高く、良好な結晶性を有するp型Mg
xZn
1−xO(0≦x≦0.6)層を得ることが可能である。
【0152】
図13は、第1実施例〜第3実施例の工程(a)((i)Zn、(ii)O、(iii)必要に応じてMg、(iv)Cuまたは/及びAgであるIB族元素を供給して、前記IB族元素がドープされたMg
xZn
1−xO(0≦x≦0.6)単結晶膜を形成する工程)における成膜条件をまとめた表である。
【0153】
本表に示されるように、第1実施例〜第3実施例のすべてにおいて、上記(1)〜(3)に示す条件は満たされている。このため実施例による製造方法で製造されたp型Mg
xZn
1−xO(0≦x≦0.6)層は、高い平坦性と良好な結晶性を備えるp型ZnO系半導体層である。
【0154】
なお、本願発明者らが原子間力顕微鏡(atomic force microscope; AFM)の像等により表面観察を行った結果、p型Mg
xZn
1−xO(0≦x≦0.6)層の表面は、交互積層構造の表面より平坦であることがわかった。アニール処理を行うことにより、平坦性の向上されたp型Mg
xZn
1−xO層が製造される。