特許第6092979号(P6092979)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ インターデイジタル テクノロジー コーポレーションの特許一覧

特許6092979HSUPA無線通信システムの送信ブロッキングを防ぐ方法と装置
<>
  • 特許6092979-HSUPA無線通信システムの送信ブロッキングを防ぐ方法と装置 図000002
  • 特許6092979-HSUPA無線通信システムの送信ブロッキングを防ぐ方法と装置 図000003
  • 特許6092979-HSUPA無線通信システムの送信ブロッキングを防ぐ方法と装置 図000004
  • 特許6092979-HSUPA無線通信システムの送信ブロッキングを防ぐ方法と装置 図000005
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6092979
(24)【登録日】2017年2月17日
(45)【発行日】2017年3月8日
(54)【発明の名称】HSUPA無線通信システムの送信ブロッキングを防ぐ方法と装置
(51)【国際特許分類】
   H04W 72/12 20090101AFI20170227BHJP
   H04W 72/04 20090101ALI20170227BHJP
【FI】
   H04W72/12 130
   H04W72/04 136
【請求項の数】16
【全頁数】14
(21)【出願番号】特願2015-204863(P2015-204863)
(22)【出願日】2015年10月16日
(62)【分割の表示】特願2014-419(P2014-419)の分割
【原出願日】2007年8月16日
(65)【公開番号】特開2016-27761(P2016-27761A)
(43)【公開日】2016年2月18日
【審査請求日】2015年11月16日
(31)【優先権主張番号】60/839,198
(32)【優先日】2006年8月21日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】596008622
【氏名又は名称】インターデイジタル テクノロジー コーポレーション
(74)【代理人】
【識別番号】110001243
【氏名又は名称】特許業務法人 谷・阿部特許事務所
(72)【発明者】
【氏名】ポール マリニエール
【審査官】 望月 章俊
(56)【参考文献】
【文献】 特表2010−502105(JP,A)
【文献】 国際公開第2006/051867(WO,A1)
【文献】 欧州特許出願公開第1689132(EP,A1)
【文献】 3GPP TS 25.321 V6.9.0,3GPP,2006年 6月
【文献】 Panasonic,Content of E-AGCH,3GPP TSG-RAN WG2#46bis meeting R2-050817,3GPP,2005年 4月 4日
(58)【調査した分野】(Int.Cl.,DB名)
H04W4/00−H04W99/00
H04B7/24−H04B7/26
3GPP TSG RAN WG1−4
SA WG1−4
CT WG1、4
(57)【特許請求の範囲】
【請求項1】
ネットワークデバイスであって、
無線送信/受信ユニット(WTRU)へ、バッファ状態情報を含む周期的なスケジュール情報の前記WTRUによる伝送についての構成情報を送信するように構成された少なくとも1つのプロセッサと、
前記WTRUの媒体アクセス制御(MAC)フローのデータが伝送され得ないときに、アップリンク制御チャネルにおいて送信時間間隔(TTI)内に、スケジュール情報の伝送の代わりに、アップリンクデータチャネルについてのアップリンクグラント必要とされていることのインジケーションを受信するように構成された受信器と、
を備え、
前記TTI内に、前記アップリンクデータチャネルが前記WTRUによって伝送されず、
前記少なくとも1つのプロセッサは、前記受信したインジケーションに応答して、前記WTRUへアップリンクグラントを送信するようにさらに構成されており、
前記受信器は、前記アップリンクグラントに応じて前記アップリンクデータチャネルにおいて前記WTRUから、前記スケジュール情報を受信するようにさらに構成されている、ネットワークデバイス。
【請求項2】
フィードバック情報が、前記アップリンク制御チャネルで、前記アップリンクデータチャネルよりも低い電力レベルで、受信される、請求項1に記載のネットワークデバイス。
【請求項3】
前記WTRUが前記アップリンクデータチャネルでアップリンクデータを送信できないことに応じて、フィードバック情報が前記アップリンク制御チャネルで送信される、請求項1に記載のネットワークデバイス。
【請求項4】
前記ネットワークデバイスは、基地局、ノードB、サービスノードB、HSUPA(high speed uplink packet access)ネットワークデバイス、又は3GPP(Third Generation Partnership Project)ネットワークデバイスのうちの1つである、請求項1に記載のネットワークデバイス。
【請求項5】
前記スケジュール情報はHSUPA(high speed uplink packet access)スケジュール情報である、請求項1に記載のネットワークデバイス。
【請求項6】
前記HSUPAスケジュール情報は周期的に送信される、請求項に記載のネットワークデバイス。
【請求項7】
前記アップリンク制御チャネルはE−DPCCH(enhanced dedicated physical control channel)である、請求項1に記載のネットワークデバイス。
【請求項8】
前記アップリンクデータチャネルは、E−DPDCH(enhanced dedicated physical data channel)である、請求項1に記載のネットワークデバイス。
【請求項9】
ネットワークデバイスにより実行される方法であって、
前記ネットワークデバイスにより、無線送信/受信ユニット(WTRU)へ、バッファ状態情報を含む周期的なスケジュール情報の前記WTRUによる伝送についての構成情報を送信することと、
前記ネットワークデバイスにより、前記WTRUの媒体アクセス制御(MAC)フローのデータが伝送され得ないときに、アップリンク制御チャネルにおいて送信時間間隔(TTI)内に、スケジュール情報の伝送の代わりに、アップリンクデータチャネルについてのアップリンクグラント必要とされていることのインジケーションを受信することと、
前記TTI内に、前記アップリンクデータチャネルが前記WTRUによって伝送されず、
前記ネットワークデバイスにより、前記受信したインジケーションに応答して、前記WTRUへアップリンクグラントを送信することと、
前記ネットワークデバイスにより、前記アップリンクグラントに応じて前記アップリンクデータチャネルで前記WTRUから、前記スケジュール情報を受信することと、
を備える、方法。
【請求項10】
フィードバック情報が、前記アップリンク制御チャネルで、前記アップリンクデータチャネルよりも低い電力レベルで、受信される、請求項に記載の方法。
【請求項11】
前記WTRUが前記アップリンクデータチャネルでアップリンクデータを送信できないことに応じて、フィードバック情報が前記アップリンク制御チャネルで送信される、請求項に記載の方法。
【請求項12】
前記ネットワークデバイスは、基地局、ノードB、サービスノードB、HSUPA(high speed uplink packet access)ネットワークデバイス、又は3GPP(Third Generation Partnership Project)ネットワークデバイスのうちの1つである、請求項に記載の方法。
【請求項13】
前記スケジュール情報はHSUPA(high speed uplink packet access)スケジュール情報である、請求項に記載の方法。
【請求項14】
前記HSUPAスケジュール情報は周期的に送信される、請求項13に記載の方法。
【請求項15】
前記アップリンク制御チャネルはE−DPCCH(enhanced dedicated physical control channel)である、請求項に記載の方法。
【請求項16】
前記アップリンクデータチャネルは、E−DPDCH(enhanced dedicated physical data channel)である、請求項に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高速上りリンク・パケット・アクセス(high speed uplink packet access、HSUPA)無線通信システムに関する。より具体的には、本発明は、HSUPA無線通信システムの送信ブロッキングを防ぐ方法と装置に関する。
【背景技術】
【0002】
第3世代パートナーシップ・プロジェクト(Third Generation Partnership Project、3GPP)リリース6は、HSUPAにおけるノードBベースのスケジューリングを通して無線送信/受信ユニット(Wireless Transmit/Receive Unit、WTRU)送信の高速制御を定めている。この高速制御では、上りリンク(UpLink、UL)雑音増加を良好に制御しており、スレッシュホウルドを超えずに、従ってシステム容量を増加させて、より高い平均UL負荷での動作を可能としている。HSUPAでは、制御とフィードバックは、異なる物理制御チャネルおよび情報要素(Information Element、IE)を通じて起こる。
【0003】
絶対的許可チャネル(Absolute Grant Channel)または相対的許可チャネル(Relative Grant Channel)によりノードB命令を伝達し、一方、エンハンスト個別物理制御チャネル(Enhanced Dedicated Physical Control Channel、E−DPCCH)に、即ちE−DPCCH内の“ハッピービット”に乗せて、WTRUフィードバックを送信し、ペイロードにスケジュール情報(Scheduling Information、SI)を添付する。UL制御チャネル(DPCCH)の電力に対する最大電力比でノードB命令を表現する。再送信シーケンス番号(Retransmission Sequence Number、RSN)に対する2ビットおよびエンハンスト・トランスポート・フォーマット組合せ表示(Enhanced Transport Format Combination Indication、E−TFCI)に対する7ビットと一緒に、E−DPCCH内でハッピービットを送信する。エンハンスト・トランスポート・フォーマット組合せ(Enhanced Transport Format Combination、E−TFC)の特定のサイズを意味するため、7TFCIビットの全ての組合せを定める。SIのみの送信を意味するため、値“0”(7ビット)を定める。圧縮モードの間を除いて、エンハンスト個別物理データ・チャネル(Enhanced Dedicated Physical Data Channel、E−DPDCH)と一緒に、E−DPCCHを常に送信する。E−DPCCHのみの送信は起こらない。
【0004】
WTRUおよびノードBは、所定の電力比でどれだけ多くのデータを送信できるか承知しており、RNC(Radio Network Controller)がこの対応を制御する。そのようなスケジュール動作は、遅延に敏感では無いアプリケーションに特によく適するが、しかしながら、高速な資源割付能力を与えれば、より多くの遅延に敏感なアプリケーションを支援するために使用することができる。
【0005】
現行の標準の下では、選択的にデータを分割し、無線リンク制御(radio link control、RLC)層でバッファする。媒体アクセス制御(medium access control、MAC)層に配信する、可能なRLCパケット・データ・ユニット(packet data unit、PDU)サイズの組を、無線資源制御(radio resource control、RRC)信号が構成する。分割が起こる場合、一般的には、数百ビット程度であるようにPDUのサイズを構成し、過剰なオーバヘッドを防ぎ、良好な符号化性能を得る。現行では、MAC層では更なる分割はない。従って、新しい送信が起こる場合、ゼロを含む整数のPDUを送らなければならない。
【0006】
RLC PDUのわずかな部分も送出することはできないので、WTRUに対するある最小の時間間隔(瞬間)のビットレートが課せられる。例えば、PDUサイズが320ビットで、送信時間間隔(TTI)が2ミリ秒(ms)であるなら、瞬間ビットレートは、MACオーバヘッドを含めないで、少なくとも160キロビット毎秒(kbps)である必要がある。そのような瞬間ビットレートはある最小の送信電力比になり、この下では全くRLC PDUを送信できない。
【0007】
スケジュール動作の間、許可された電力比がバッファの先頭でRLC PDUの送信に必要とする最小値に該当するなら、所定のMAC−dフローからのWTRU送信を完全に中断する、即ちブロックすることができる。そのような状況は、多くの理由で、サービス中の無線リンク・セット(即ち、ノードB)の制御外で起こる可能性がある。例えば、WTRUは、もう一つのノードBから電力を削減するよう要求する非サービス中の相対的許可(relative grant)を受信してしまう可能性があり、WTRUは、サービス中のノードBからの相対的許可命令または絶対的許可(absolute grant)命令を誤ってデコードしてしまう可能性があり、または、WTRUは、所定のMAC−dフローに、数個の異なる構成されたRLC PDUサイズを持つ可能性があり、通常のRLC PDUサイズ以上が送信の対象となる。
【0008】
そのような状況が起こる場合は、WTRUは、SIを送信するようスケジュールされた時まで送信できない。その時まで、および、以前のSIの送信が、その後の送信に基づきWTRUバッファが空でないとノードBが推察するのに十分な程最近に行われない限り、ノードBは、電力比が最小よりも低下したために、または単にWTRUが何も送信するものを持っていないたに、送信が停止されたのかどうかを決定する能力を全く持たない。その結果、WTRUからの送信は、SIを送信できるまで遅延させられる。
【0009】
この問題点は、遅延に敏感なアプリケーションに対する小さな周期性を持つSI送信(T_SIG)の構成を課し、それによって、オーバヘッドが増加する。さらに、多数のRLC PDUサイズを構成する場合、電力比が余りにも低いために送信を停止したとノードBが気付いた場合でも、ノードBはその状況を修正するためどれだけの電力比を適用すべきか分からない。それ故、ノードBは、正しい電力比は何なのか、試行錯誤で見出さなければならない。これは、不効率な資源割付および/または過剰なスケジュール遅延をもたらす。
【0010】
現状の技術では、スケジュール情報(scheduling information、SI)の送信は、3GPP TS 25.321で次のように説明しているある条件化でのみ許容される。即ち、ユーザがゼロの許可(電力比)を持つかまたはユーザのプロセスの全てが非活性化していて、かつユーザが送信すべきデータを有している場合に、E−DCHサービス中のRLS(基地局)の変化に基づいてするか、あるいは、ユーザが許可(Grant)を持っているかいないかに関わらず構成可能な時間間隔で周期的にするかである。その結果、現状の技術が定めるメカニズムと両立できるであろうブロッキング阻止の解決策には、殆んど全ての新しいデータを送信するのと一緒にSIを送信するような、非常に低い速度でSIを周期的に報告する構成を含めてもよい。しかしながら、各SIが18ビットを取るため、オーバヘッドが非常に大きく増加する可能性がある。280ビットのMACサービス・データ・ユニット(service data unit、SDU)サイズおよび18ビットのMAC−eヘッダ・サイズを仮定すると、これは、約6%の追加オーバヘッドを示すだろう。
【0011】
従って、HSUPA無線通信システムにおいて、現状技術の制限に左右されない送信ブロッキングの方法と装置を提供することは、利益のあることだろう。
【発明の概要】
【0012】
本発明は送信ブロッキングを防止する方法と装置に関する。媒体アクセス制御−d(MAC−d)の送信が停止した場合のスケジュール情報(scheduling information、SI)の送信である。トリガ条件を満足する場合、本SIを送信する。
【0013】
例として与え、添付の以下の図とともに理解すべき、好ましい実施形態の以下の説明から、本発明についてさらに詳細な理解をもつ可能性がある。
【図面の簡単な説明】
【0014】
図1】本発明に従って構成した、WTRUとノードBを示す機能ブロック図である。
図2】本発明に従い、HSUPA無線通信システムにおける送信ブロッキングを防ぐ方法のフロー図である。
図3】本発明のもう一つの実施形態に従い、HSUPA無線通信システムにおける送信ブロッキングを防ぐ方法のフロー図である。
図4】本発明のもう一つの実施形態に従い、HSUPA無線通信システムにおける送信ブロッキングを防ぐ方法のフロー図である。
【発明を実施するための形態】
【0015】
今後参照する場合、用語“無線送信/受信ユニット(wireless transmit/receive unit、WTRU)”には、ユーザ機器(user equipment、UE)、モバイル局、固定またはモバイル加入者ユニット、ページャ、セルラ電話、携帯情報端末(personal digital assistant、PDA)、コンピュータ、または無線環境において動作可能な他の任意の形態のユーザ装置を含むが、限定はしない。今後参照する場合、用語“基地局”には、ノードB、サイト制御装置、アクセス・ポイント(access point、AP)、または無線環境において動作可能な他の任意の形態のインタフェース装置を含むが、限定はしない。
【0016】
図1は、本発明に従って構成したWTRU110とNB120の機能ブロック図100である。図1に示すように、WTRU110はNB120と通信状態にあり、両方とも、本発明に従い、無線通信システムにおける送信ブロッキングを防ぐ方法を実行するよう構成される。
【0017】
典型的なWTRUで見られる可能性のある部品に加えて、WTRU110には、プロセッサ115、受信器116、送信器117およびアンテナ118を含む。本発明に従い、HSUPA無線通信システムにおける送信ブロッキングを防ぐ方法を実行するよう、プロセッサ115を構成する。受信器116および送信器117は、プロセッサ115と通信状態にある。アンテナ118は、受信器116および送信器117の両方と通信状態にあり、無線データの送信と受信を手助けする。
【0018】
典型的なノードBで見られる可能性のある部品に加えて、NB120には、プロセッサ125、受信器126、送信器127およびアンテナ128を含む。本発明に従い、HSUPA無線通信システムにおける送信ブロッキングを防ぐ方法を実行するよう、プロセッサ115を構成する。受信器126および送信器127は、プロセッサ125と通信状態にある。アンテナ128は、受信器126および送信器127の両方と通信状態にあり、無線データの送信と受信を手助けする。
【0019】
図2は、本発明に従い、HSUPA無線通信システムにおける送信ブロッキングを防ぐ方法200のフロー図である。本発明の本実施形態では、SIの送信のために、新しい条件を生成する。ステップ210では、SIを送信するトリガ条件を検出する。例えば、現行のゼロではない許可が、特定のMAC−dフローの次のMAC SDU、またはRLC PDUを送信するのに必要な最小値より小さいため、任意の、または特別に定めたMAC−dフローを停止する場合、SIのみの送信が起こってもよい。この場合には、所定のMAC−dフローの単一のPDUを送信することが可能でない場合に、トリガ条件が起こり得る。望ましくは、MAC−dフローは、インデックスで識別または特定されてもよい論理チャネルのグループである。
【0020】
ひとたびトリガ条件を決定すると、特定のWTRU110はSIを送信する(ステップ220)。トリガ条件が満たされ、そしてその後周期的に、(例えば、構成可能な区間で)満たされた場合、この送信は一度だけ生起するか、またはトリガ条件が生起する毎に送信が生起してもよい。加えて、ブロッキングのためSIの送信をトリガすることに制約されるMAC−dフローのリストを、より高い層により信号伝達してもよく、同様に、条件がひとたび満足した場合は送信の構成可能な周期性により信号伝達してもよい。
【0021】
図3は、本発明のもう一つの実施形態に従い、HSUPA無線通信システムにおける送信ブロッキングを防ぐ方法300のフロー図である。ステップ310では、トリガ条件を検出する。好ましくは、ステップ310で満足するトリガ条件は、実質的には、上記の方法200のステップ210で述べたトリガ条件に類似である。しかしながら、方法200と異なり、ステップ310でトリガ条件を検出すると、SIを送信する代わりに、E−DPDCHになにも送信せず、E−DPCCHの全ての10ビットをゼロ“0”の値に設定する(ステップ320)。
【0022】
実際には、SIを実際に送信しない場合を除き、SIのみを最初に送信する場合に関しては、これは同じ設定に相当する。この技術の利点は、必要な送信電力が、SIを実際に送信する場合よりはるかに低下するということである。しかしながら、ネットワークがE−DPCCHに何かを送信したことを検出するのに十分高い値で、E−DPCCHを送信すべきである。加えて、WTRU110におけるバッファの状態については、ネットワークに対してもっと少ない情報を利用可能としてもよい。
【0023】
図4は、本発明のもう一つの実施形態に従い、HSUPA無線通信システムにおける送信ブロッキングを防ぐ方法400のフロー図である。本発明の本実施形態では、最小電力比を示す改善されたフィードバック即ちMAC SDUサイズを利用する。
【0024】
現状の技術では、可能なMAC SDUサイズ、または等価なRLC SDUサイズは、RRC信号を通して、無線ベアラのセットアップまたは再構成で構成される。また、NB120は、NBアプリケーション・パート(NB application part、NBAP)信号を通して、PDUサイズに気付く。あるサイズのE−TFC(MAC−e PDU)を送信するのに必要な電力比許可を、WTRU110、NB120およびRNCが知り、RRC/NBAP信号を通して任意の変更を信号伝達する。それ故、現行の標準で利用可能な情報を使用して、構成した各々のRLC PDUサイズに対して単一のRLC PDUを含むE−TFCを送信するため、どれほどの電力比を必要とするかを、NB120は決定することができるであろう。
【0025】
現行の標準で定まる信号伝達を活用して、構成したRLC PDUサイズの中で最大のRLC PDUサイズを送信するのに必要なものより低い電力比をWTRU110へ決して信号伝達しないことにより、NB120は問題点の発生頻度を削減できる可能性がある。しかしながら、“下げよ”という非サービス中の相対的許可を受信したため、またはサービス中の許可を誤解したため、WTRU110は送信をブロックする可能性が依然として存在するかもしれない。WTRUの側で送信のために一列になっている次のRLC PDUのサイズに気が付かないため、NB120は最大のRLC PDUを仮定すべきである。構成した一つのRLC PDUサイズ以上があるとすぐに、NB120は、より小さなRLC PDUサイズの一つを使用するときは何時も、WTRU110に資源を過剰に割付ける。
【0026】
その結果、WTRU110はNB120に新しい形式の制御情報を信号伝達してもよく、送信のためにバッファした次のRLC PDUのサイズに関して、WTRU110に許可すべき最小電力比に気付く可能性がある。この情報は、好ましくは、最小許可情報(Minimum Grant Information、MGI)として参照されてもよい。
【0027】
方法400のステップ410では、本MGIを設定する。多くの方法でMGIの設定を達成できる可能性がある。例えば、そのバッファにあるデータを持つ最高の優先度のMAC−dフローの一つに、またはRRC信号によって構成する可能性のある特定のMAC−dフローに、(即ち、現行のE−TFCを送信した後)送信列内の次のRLC PDUのサイズに本MGIを設定してもよい。加えて、最高の優先度のMAC−dフローの最大バッファのRLC PDUのサイズに従って、本MGIを設定してもよい。また、最高の優先度のMAC−dフローの最大バッファのRLC PDUのサイズに従って、または、現行の許可および多くの活性化プロセスで、ある遅延で送信されることが期待される特定のMAC−dフローに、本MGIを設定してもよい。また、RRC信号が本遅延を構成する可能性がある。
【0028】
本MGIを送信すべきと決定した後、次に本MGIを符号化する(ステップ420)。本MGIのフィールド値を設定するのに使用するサイズを持つRLC PDUを記述するため、“次のRLC PDU”を使用してもよい。次に、各種の方法に従って、本MGIを符号化してもよい。例えば、5ビットから構成し、3GPP TS 25.212仕様で見られるものと同様のビット・マッピングのようなマッピングで電力比を表すよう、本MGIを符号化してもよい。この場合には、信号伝達する電力比は、次のRLC PDUの送信を許可する最小値であるだろう。
【0029】
或いは、本MGIは、より少ないビット数で符号化され、電力比を表わしてもよい。しかしながら、この場合には、マッピングは異なっており、3GPP TS 25.212仕様で見るマッピングより低い精度を持ってもよい。例えば、本MGIを上記で述べた5ビットより少ないビット数で符号化してもよい。加えて、マッピングは事前に確立されている可能性があるであろう。
【0030】
もう一つの代替案では、いかに多くの可能性のあるRLC PDUサイズを現わすべきかに依存して、可変ビット数で本MGIを構成してもよい。例えば、4個の構成したRLC PDUサイズがある場合には、2個のMGIビットが必要とされ、各組合せは特定のRLC PDUサイズを表わすであろう。注意すべきことは、全ての構成したRLC PDUサイズがマッピングされる必要性は必ずしもない、ということである。その結果、RLC PDUサイズのサブセットのみをマッピングする場合、WTRU110は、次のRLC PDUより大きな最小RLC PDUサイズに従って、本MGIを設定する。
【0031】
次に、WTRU110は本MGIを送信する(ステップ430)。本MGIのトリガは数種の方法の一つで起る可能性がある。例えば、ひとたびその値が本MGI設定に従って変化する場合、本MGIを送信してもよい。また、新しいMAC−e送信の特定の数(N)のそれそれで本MGIを送信してもよい。ここでNは無線資源制御装置(RRC)によって構成可能である。加えて、少なくとも特定の数(M)の送信時間間隔(transmission time interval、TTI)の遅延によって、2個の連続したMGI送信を分離するということが要求される。ここでまた、MはRRCによって構成可能である。
【0032】
ひとたび送信されると、望ましくはMAC−e PDUと同じ時間に、NB120が本MGIを受信して復号し(ステップ440)、NB120は本MGIに基づき調整を行う(ステップ450)。望ましくは、NB120は電力比を調整して、送信のためバッファした次のRLC PDUの送信を可能にする。
【0033】
本発明のもう一つの実施形態では、許可(Grant)のスケジュールの使用を通してデータレートを管理する。この実施形態では、電力比が課したデータレートに関係なく、また、ひとつのPDUまたは複数のPDUのサイズに関係なく、新しい各MAC−e送信毎にMAC−dフローの最小数のPDU(Nmin)に対する送信を許可する。
【0034】
現行の3GPP標準、(例えば、TS 25.309リリース6)の下では、スケジュールされていない送信(非スケジュール送信)またはスケジュールされた許可(スケジュール許可)の両方ではなく、どちらかを通して、MAC−dフローを管理する。所定のMAC−dフローのための非スケジュール送信を利用して、このMAC−dフローのための現行技術の問題点を克服できるであろうが、このフローによって発生する干渉量に対する制御を失うという犠牲が伴う。
【0035】
しかしながら、本発明の本ハイブリッド・スケジュール/非スケジュール実施形態では、雑音増加安定性の点からスケジュール許可の利点を維持し、一方、単一のPDU送信のスレッシュホウルドに該当する許可された電力比のため、決して送信を完全にはブロックしないということを確実にしている。RRC信号を通して、新しい送信に許可するNminを設定してもよい。
【0036】
minのPDUを送信するために要求する電力比が現行の許可(Grant)より高ければ、数個の選択肢を採用してもよい。望ましくは、PDUの送信をサポートする現行の許可以上に増加するよう、電力比を許可する。しかしながら、NminのPDUをサポートすることが可能な最小E−TFCを選択するWTRU110で、電力比はまた、現行の許可に留まってもよい。同じ電力に対して、このシナリオではより多くのデータを送信するので、このMAC−e PDUのため、もっと多くのハイブリッド自動再送要求(HARQ)の再送信を要求するであろう。
【0037】
例えば、MAC−dフローが2個の構成したRLC PDUサイズ、300ビットおよび600ビットを持つと仮定すると、MAC−e PDUを送信するために必要な最小電力比は、もし300ビットの2個のRLC PDUを含むなら、(47/15)2であると仮定してもよく、もし600ビットの単一のRLC PDUを含むなら、(53/15)2であると仮定してもよい。300ビットのPDUサイズを殆どの時間に送信し、600ビットのものにまれに遭遇するというシナリオでは、WTRU110のために活性化したHARQプロセスに対して、WTRU110に許可する電力比を(53/15)2に維持してもよいだろう。許可のスケジューリングによって管理されるMAC−dフローを有する現行の標準の下で、600ビットのRLC PDUがバッファの先頭に現れた場合、その送信はブロックするであろう。本発明の本実施形態であるハイブリッド非スケジュール/スケジュール解決策で、600ビットのRLC PDUを含むそのMAC−e PDUを送信するよう、WTRU110を許可するであろうし、再送信を中断しないであろう。このMAC−e送信のために、干渉は計画よりやや高い可能性があるか、または、現行の許可以上に増加するよう電力比を許可するかしないかに依存して、より多くのHARQ再送信がより高い確率で存在する可能性があるだろう。
【0038】
本発明の特徴と要素について、特別の組合せの好ましい実施形態で説明したが、好ましい実施形態の他の特徴および要素がなく、または、本発明の他の特徴および要素を有するまたは有しない各種の組合せにおいて、各特徴または要素を単独に使用できる。本発明で提示した方法またはフローチャートは、コンピュータ・プログラム、ソフトウエア、または、汎用コンピュータまたはプロセッサが実行するためのコンピュータ読取可能な記憶媒体に明白に組込んだファームウエアに実装してもよい。コンピュータ読取可能な記憶媒体の例には、読取専用メモリ(ROM)、ランダム・アクセス・メモリ(RAM)、レジスタ、キャッシュ・メモリ、半導体メモリ素子、内部ハードデスクおよびリム−バブル・デスクのような磁気媒体、磁気−光媒体、およびCD−ROMデスクのような光媒体、そしてデジタル多目的デスク(DVD)を含む。
【0039】
適当なプロセッサには、例として、汎用プロセッサ、専用プロセッサ、従来プロセッサ、デジタル信号プロセッサ(DSP)、複数のマイクロプロセッサ、DSPコアと連動する一つ以上のマイクロプロセッサ、コントローラ、マイクロコントローラ、特定用途向け集積回路(ASIC)、フィールド・プログラマブル・ゲートアレイ(FPGA)回路、任意の他の形式の集積回路(IC)、および/またはステート・マシンを含む。
【0040】
無線送信/受信ユニット(wireless trnsmit/receive unit、WTRU)、ユーザ機器(user equipment、UE)、端末、基地局、無線ネットワーク制御装置(radio network controller、RNC)、または任意のホストコンピュータにおける用途に無線周波数送信器を実装するため、ソフトウエアと関連するプロセッサを使用してもよい。カメラ、ビデオカメラ・モジュール、ビデオフォン、スピーカフォン、振動デバイス、スピーカ、マイクロフォン、テレビジョン・トランシーバ、ハンドフリー・ヘッドセット、キーボード、ブルートゥース「商標」モジュール、周波数変調(FM)無線ユニット、液晶ディスプレイ(LCD)表示装置、有機発光ダイオード(OLED)表示装置、デジタル音楽プレヤ、メディアプレーヤ、ビデオゲーム・プレーヤ・モジュール、インターネット・ブラウザ、および/または任意の無線ローカル・エリア・ネットワーク(WLAN)モジュールのようなハードウエアおよび/またはソフトウエアに実装するモジュールと連動して、本WTRUを使用してもよい。
【0041】
実施例
1. 少なくとも一つの無線送信/受信ユニット(wireless transmit/receive unit、WTRU)および少なくとも一つのノードB(NB)を含むようにした、無線通信システムにおける送信ブロッキングを防ぐ方法。
2. 媒体アクセス制御−d(medium access control−d、MAC−d)フローが停止した場合、スケジュール情報(scheduling information、SI)のトリガ送信をさらに備えるようにした、実施例2の方法。
3. トリガ条件を満足する場合、SIを送信することをさらに備えるようにした、任意の先行実施例における方法。
4. トリガ条件を満足する場合、SIを一度送信するようにした、任意の先行実施例における方法。
5. トリガ条件を満足した後、SIを周期的に送信することをさらに備えるようにした、任意の先行実施例における方法。
6. SIを送信する期間を事前に構成するようにした、任意の先行実施例における方法。
7. トリガ条件を満足する毎に、SIを送信するようにした、任意の先行実施例における方法。
8. MAC−dフローが任意のMAC−dフローを含むようにした、任意の先行実施例における方法。
9. MAC−dフローが特別に定義するMAC−dフローを含むようにした、任意の先行実施例における方法。
10. 現行の非ゼロ許可が、前記特定のMAC−dフローの次のMACサービス・データ・ユニット(SDU)または無線リンク制御プロトコル・データ・ユニット(RLC PDU)の送信に必要な最小値より小さい場合、MAC−dフローを停止するようにした、任意の先行実施例における方法。
11. 停止したMAC−dフローの送信に基づき、トリガ条件を検出することをさらに備えるようにした、任意の先行実施例における方法。
12. エンハンスト個別物理データ・チャネル(enhanced dedicated physical data channel、E−DPDCH)上の送信を停止することをさらに備えるようにした、任意の先行実施例における方法。
13. エンハンスト個別物理制御チャネル(enhanced dedicated physical control channel、E−DPCCH)の全てのビットをゼロに設定することをさらに備えるようにした、任意の先行実施例における方法。
14. 最小許可情報(MGI)を設定することをさらに備え、本MGIが、WTRUに許可する最小電力比に関する情報を含むようにした、任意の先行実施例における方法。
15. MGIの送信をトリガすることをさらに備えるようにした、任意の先行実施例における方法。
16. トリガ条件を満足する場合、MGIを送信することをさらに備えるようにした、任意の先行実施例における方法。
17. MGIを符号化することをさらに備えるようにした、任意の先行実施例における方法。
18. MGIをMAC−e PDUの一部として送信するようにした、任意の先行実施例における方法。
19. 一列に並んだ次のRLC PDUのサイズに基づき、そのバッファにあるデータを持つ最高優先度のMAC−dフローの一つに送信するため、MGIを設定するようにした、任意の先行実施例における方法。
20. 前記最高優先度のMAC−dフローの最大バッファのRLC PDUのサイズに基づきMGIを設定するようにした、任意の先行実施例における方法。
21. 特定のMAC−dフローに基づきMGIを設定するようにした、任意の先行実施例における方法。
22. 無線資源制御装置(RRC)信号を通して、MGIが基づく特定のMAC−dフローを構成するようにした、任意の先行実施例における方法。
23. 現行の許可および多くの活性化プロセスで、特別な遅延が送信するよう期待する最高優先度のMAC−dフローの最大バッファのRLC PDUのサイズに基づき、MGIを設定するようにした、任意の先行実施例における方法。
24. RRC信号を通して遅延を構成するようにした、任意の先行実施例における方法。
25. MGIを、その値が変化する場合、一度だけ送信するようにした、任意の先行実施例における方法。
26. 特別な数のMAC−d送信の各々でのMGIを送信するようにした、任意の先行実施例における方法。
27. 前記RRCが特別な数を構成するようにした、任意の先行実施例における方法。
28. 特別な数の送信時間間隔(TTI)遅延が二つの連続するMGI送信を分離するようにした、任意の先行実施例における方法。
29. 前記RRCがTTI遅延を構成するようにした、任意の先行実施例における方法。
30. 多数のビットと信号伝達の電力比を含むようにした、任意の先行実施例における方法。
31. ビット数が5であるようにした、任意の先行実施例における方法。
32. 信号伝達の電力比が、次のRLC PDUの送信を許可するだろう最小値であるようにした、任意の先行実施例における方法。
33. ビット数が可変であるようにした、任意の先行実施例における方法。
34. ビット数が可能なRLC PDUサイズの数に基づくようにした、任意の先行実施例における方法。
35.0 NBが前記MGIを受信し、前記MGIを符号化し、そして前記MGIに基づき調整するようにした、任意の先行実施例における方法。
36. スケジュール許可を出すことをさらに備えるようにした、任意の先行実施例における方法。
37. 新しい各MAC−e送信のためのMAC−dフローの最小数のPDUを送信することをさらに備えるようにした、任意の先行実施例における方法。
38. RRC信号を通して、送信する最小数のPDUを構成するようにした、任意の先行実施例における方法。
39. 最小数のPDUを送信するための要求電力比が現行の許可より大きい場合、前記現行の許可レベル以上に電力比を増加するようにした、任意の先行実施例における方法。
40. 最小数のPDUを送信するための要求電力比が現行の許可より大きい場合、前記電力比が前記現行の許可レベルに留まるようにした、任意の先行実施例における方法。
41. WTRUが最小エンハンスト・トランスポート・フォーマット組合せ(enhanced transport format combination、E−TFC)を選択し、最小数のPDUをサポートするようにした、任意の先行実施例における方法。
42. 任意の先行実施例における方法を実行するよう構成したWTRU。
43. 送信器をさらに備えるようにした、実施例42のWTRU。
44. 受信器をさらに備えるようにした、実施例42−43の任意におけるWTRU。
45. 前記受信器および前記送信器と通信状態にあるプロセッサさらに備えるようにした、実施例42−44の任意におけるWTRU。
46. MAC−dフローの送信が停止した場合、SIの送信をトリガするようプロセッサを構成した、実施例42−45の任意におけるWTRU。
47. トリガ条件を満足する場合、NBにSIを送信するようプロセッサを構成した、実施例42−46の任意におけるWTRU。
48. 停止したMAC−dフローの送信に基づいてトリガ条件を検出するようプロセッサを構成した、実施例42−47の任意におけるWTRU。
49. エンハンスト個別物理データ・チャネル(enhanced dedicated physical data channel、E−DPDCH)に送信を中止するようプロセッサを構成した、実施例42−48の任意におけるWTRU。
50. エンハンスト個別物理制御チャネル(enhanced dedicated physical control channel、E−DPCCH)の全てのビットをゼロに設定するようプロセッサを構成した、実施例42−49の任意におけるWTRU。
51. MGIを設定するようプロセッサを構成し、本MGIには、前記WTRUに許可する最小電力比に関する情報を含むようにした、実施例42−50の任意におけるWTRU。
52. MGIの送信をトリガするようプロセッサを構成した、実施例42−51の任意におけるWTRU。
53. トリガ条件を満足する場合、MGIを送信するようプロセッサを構成した、実施例42−52の任意におけるWTRU。
54. スケジュール許可を受信するようプロセッサを構成した、実施例42−53の任意におけるWTRU。
55. 新しい各MAC−eのための前記MAC−dフローの最小数のPDUを送信するようプロセッサを構成した、実施例42−54の任意におけるWTRU。
図1
図2
図3
図4