特許第6095065号(P6095065)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日立建機株式会社の特許一覧

<>
  • 特許6095065-ダンプトラック 図000008
  • 特許6095065-ダンプトラック 図000009
  • 特許6095065-ダンプトラック 図000010
  • 特許6095065-ダンプトラック 図000011
  • 特許6095065-ダンプトラック 図000012
  • 特許6095065-ダンプトラック 図000013
  • 特許6095065-ダンプトラック 図000014
  • 特許6095065-ダンプトラック 図000015
  • 特許6095065-ダンプトラック 図000016
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6095065
(24)【登録日】2017年2月24日
(45)【発行日】2017年3月15日
(54)【発明の名称】ダンプトラック
(51)【国際特許分類】
   G01C 15/00 20060101AFI20170306BHJP
   B60P 1/04 20060101ALI20170306BHJP
【FI】
   G01C15/00 104C
   B60P1/04 Z
【請求項の数】2
【全頁数】15
(21)【出願番号】特願2013-190676(P2013-190676)
(22)【出願日】2013年9月13日
(65)【公開番号】特開2015-55603(P2015-55603A)
(43)【公開日】2015年3月23日
【審査請求日】2016年1月19日
(73)【特許権者】
【識別番号】000005522
【氏名又は名称】日立建機株式会社
(74)【代理人】
【識別番号】110001829
【氏名又は名称】特許業務法人開知国際特許事務所
(74)【代理人】
【識別番号】100077816
【弁理士】
【氏名又は名称】春日 讓
(74)【代理人】
【識別番号】100156524
【弁理士】
【氏名又は名称】猪野木 雄一
(72)【発明者】
【氏名】板東 幹雄
(72)【発明者】
【氏名】佐藤 隆之
(72)【発明者】
【氏名】石本 英史
【審査官】 ▲うし▼田 真悟
(56)【参考文献】
【文献】 米国特許第06671587(US,B2)
【文献】 米国特許第07400956(US,B1)
【文献】 特開平07−244150(JP,A)
【文献】 特開2008−216062(JP,A)
【文献】 特開2002−286829(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01C 15/00
B60P 1/04
(57)【特許請求の範囲】
【請求項1】
フレームに回転可能に取り付けられた複数の後輪と、
車両前後方向に互いにずらして配置された2つの位置推定装置とを備え、
ダンプトラックに設定した車両座標系において前記複数の後輪が地面と接触している部分から任意に選択した点を基準点としたとき、
前記2つの位置推定装置は、当該2つの位置推定装置によって位置が算出される2点を結ぶ線分から前記基準点に対して垂線が下ろせるように配置されているダンプトラックにおいて、
前記基準点が設定された後輪の位置における車高変化を検出するセンサと、
前記ダンプトラックが走行する道路の勾配情報が記憶された記憶装置と、
前記ダンプトラックが前記基準点を中心に回転して姿勢が変化すると仮定し、前記2つの位置推定装置によって算出される前記2点の位置から前記基準点の位置を算出し、前記2つの位置推定装置によって位置が算出される前記2点のうち少なくとも一方から地面までの距離を前記センサの検出値に基づいて算出し、前記2点のうち少なくとも一方から地面までの距離と、前記勾配情報と、前記2点および前記基準点の位置とに基づいて前記ダンプトラックの姿勢を算出する演算装置と
を備えることを特徴とするダンプトラック。
【請求項2】
フレームに回転可能に取り付けられた複数の後輪と、
車両前後方向に互いにずらして配置された2つの位置推定装置とを備え、
ダンプトラックに設定した車両座標系において前記複数の後輪が地面と接触している部分から任意に選択した点を基準点としたとき、
前記2つの位置推定装置は、当該2つの位置推定装置によって位置が算出される2点を結ぶ線分から前記基準点に対して垂線が下ろせるように配置されているダンプトラックにおいて、
前記基準点が設定された後輪の位置における車高変化を検出するセンサと、
前記ダンプトラックが前記基準点を中心に回転して姿勢が変化すると仮定し、前記2つの位置推定装置によって算出される前記2点の位置から前記基準点の位置を算出し、前記2つの位置推定装置によって位置が算出される前記2点のうち少なくとも一方から地面までの距離を前記センサの検出値に基づいて算出し、前記ダンプトラックの走行地点における勾配を前記ダンプトラックの過去の位置データに基づいて算出し、その算出した勾配情報と、前記2点のうち少なくとも一方から地面までの距離と、前記2点および前記基準点の位置とに基づいて前記ダンプトラックの姿勢を算出する演算装置と
を備えることを特徴とするダンプトラック。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、鉱山や建設現場で移動するダンプトラックに関する。
【背景技術】
【0002】
鉱山や建設現場で利用されるダンプトラックの姿勢はロール角、ピッチ角、ヨー角で表わされる。重力方向と垂直に交わる面を水平面と定義すると、ダンプトラックの前後軸に直交する左右軸(側方軸)を中心に当該前後軸が回転して当該水平面と成す角度がピッチ角となり、当該前後軸を中心に当該左右軸が回転して当該水平面と成す角度がロール角となる。そして、ダンプトラックの前後軸と左右軸の双方に直交する上下軸の回転角であるヨー角は方位角となる。
【0003】
ダンプトラックと関連して、建設機械の一種である油圧ショベルの姿勢を推定する公知の技術としては、特開2012−233353号公報に記載されているように、GPS等の位置推定装置を2つ用いて、建設機械の方位(ヨー角)を計測し、ジャイロセンサや加速度センサを組み合わせた慣性計測装置を用いて建設機械のロール角およびピッチ角を推定するものがある。
【0004】
また、姿勢推定の他の手段として、特開2010−190806号公報には、一般的な移動体に対して位置推定装置を3つ取り付けることにより姿勢を推定する方法が開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2012−233353号公報
【特許文献2】特開2010−190806号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
前者の特開2012−233353号公報の技術においては、慣性計測装置は、建設機械の動作中は角速度を積算して姿勢を推定しているため、ジャイロセンサや加速度センサのスケールファクタやバイアスの誤差によりロール角やピッチ角の推定値に大きな誤差が生じる。この誤差を補正するためには、建設機械の動作を一度停止するか、他の手段により姿勢を推定して補正することなる。
【0007】
また、特開2010−190806号公報の技術に関して、一般的な移動体と比較してダンプトラックは過酷な環境下で動作するため、センサデバイスの故障が多く、位置推定装置というセンサの増加はメンテナンス機会の増加につながる。すなわち、センサの増加は導入コストだけでなく維持コストも増加する結果となるため、ダンプトラックでの利用を想定すると、センサ数を増加せずに常に高精度に姿勢が推定できる手法が望まれる。しかし、単純に2つの位置推定装置だけでダンプトラックの姿勢を推定しようとすると、2つの位置推定装置を結ぶ線分を中心とした回転角を算出できなくなるため、姿勢が一意に決定できない。
【0008】
本発明の目的は、2つの位置推定装置を用いて、動作を停止することなく精度良く姿勢を推定できるダンプトラックを提供することにある。
【課題を解決するための手段】
【0009】
ダンプトラックの姿勢を、重心を原点とした車体軸周りのロール角、ピッチ角、ヨー角で定義する。路面にカント角が付いていないことを前提とし、2つの位置推定手段を車体軸と平行にならないように、また、ダンプトラックの回転誤差値を最も小さくする接地点が唯一2つの位置推定手段の線分内に入るように設置する。路面の勾配を計算する勾配算出部を設け、路面の勾配を計算し、接地点の位置を算出する。接地点の位置と2つの位置推定手段から算出された位置から姿勢を算出する。
【発明の効果】
【0010】
本発明によれば、2つの位置推定装置で精度良くダンプトラックの姿勢を推定できる。
【図面の簡単な説明】
【0011】
図1】本発明の第1の実施の形態に係るダンプトラックの概略構成図。
図2図1に示したダンプトラックの構造を模式的に示した上面図。
図3】コンピュータ110の概略構成図。
図4】記憶装置106に係るトポロジカル地図データベースのデータ構造。
図5】コンピュータ110で実行されるダンプトラックの姿勢算出処理のフローチャート。
図6図1に示したダンプトラックのモデル図。
図7】本発明の第1の実施の形態に係る線分DKの移動可能範囲を示す図。
図8】本発明の第2の実施の形態における記憶装置106のデータ構造のうち点P,Qの位置の時系列情報に関係する部分を示した図。
図9】点P,Qの位置推定結果を上から見たモデル図
【発明を実施するための形態】
【0012】
後述するように、本発明の各実施の形態では、鉱山などで利用されるダンプトラックに対して、フレームに起伏自在に取り付けられた荷台と、当該フレームに回転可能に取り付けられた複数の後輪と、車両前後方向に互いにずらして配置された2つの位置推定装置(例えば、GPS受信機)とを備え、当該ダンプトラックに設定した車両座標系において前記複数の後輪が地面と接触している部分から任意に選択した点を基準点Dとし、前記2つの位置推定装置によって位置が算出される2点P,Qを結ぶ線分PQから前記基準点Dに対して垂線が下ろせるように前記2つの位置推定装置を配置している。
【0013】
本発明の創出に際し、まず、発明者らは、ダンプトラックの重心は、荷台の積載重量に応じて多少は前後移動するものの後輪の車軸近傍に位置することには変わりは無く、ダンプトラックの姿勢や積載重量が変化しても後輪は常に地面と接触している点に着目した。そして、ダンプトラックの姿勢の算出に際しては、後輪と地面の接触部(接触面)に基準点Dを設定し、当該基準点Dを固定端にして前記垂線(基準点Dから線分PQに下ろした垂線)が揺動すると仮定できると考えた。なお、当該垂線は、その中心軸を中心に回転することも可能とする。
【0014】
このような仮定の下では、基準点Dから前記2点P,Qまでの距離(ベクトルPD,QDのスカラー)はダンプトラックの姿勢が変化しても一定となるので、前記2つの位置推定装置を介して得られる前記2点の位置P,Qから前記基準点Dの位置を算出できる。これにより、前記2点P,Qの位置に加えて、基準点Dの位置が決まる。これら3点P,Q,Dの位置が判明すれば、ダンプトラックの姿勢が特定できるので、2つの位置推定装置で精度良くダンプトラックの姿勢を推定できる。
【0015】
また、ダンプトラックの姿勢をロール角φ、ピッチ角θ、ヨー角ψで定義する場合には、前記基準点Dが設定された後輪の位置における車高変化を検出するセンサ(例えば、サスペンション長の変化を検出するレベリングセンサや、荷台の積載量変化を算出するために利用されるサスペンション圧力を検出する圧力センサ)をさらに備え、前記2点P,Qのいずれか一方から地面までの距離Δzを前記センサの検出値に基づいて算出し、当該算出距離Δzと、前記2点P,Qおよび前記基準点Dの位置とに基づいてダンプトラックの姿勢をコンピュータ等の演算装置によって算出する。
【0016】
これにより、前記基準点Dから地面の法線方向に距離Δzだけ進んだ点Tを設定できる。2点P,Qのうち距離Δzの基準とした点(点Pまたは点Q)と点Tを結んだ線分は地面と平行となる。3点P,Q,Tを通過する平面の法線ベクトルUは、当該点Tから前記2点P,Qに向かうベクトルTQ,TPの外積をとることで算出できる。そして、後述する式に、ベクトルUと、前記2点P,Qおよび前記基準点Dの位置を入力することで、ダンプトラックのロール角φ、ピッチ角θ、ヨー角ψを算出できる。
【0017】
なお、ロール角φ、ピッチ角θ、ヨー角ψは、ダンプトラックに設定した所定の原点(例えば、ダンプトラックの中心)を基準にして、互いに直交する3軸(ダンプトラックの前後軸、左右軸および上下軸)で座標系を設定したとき、当該座標系における各軸回りの回転角度として定義されるものとする。また、上記のように2つの位置推定装置を車両前後方向に互いにずらして配置すると、線分PQが、上記3軸のいずれとも平行にならない。そのため、ダンプトラックの姿勢をロール角φ、ピッチ角θ、ヨー角ψで定義できる。
【0018】
また、前記ダンプトラックが走行する道路の勾配情報が記憶された記憶装置をさらに備え、前記演算装置において、さらに、当該記憶装置の勾配情報と、前記2点P,Qおよび前記基準点Dの位置とに基づいてダンプトラックの姿勢を算出することが好ましい。これにより道路の勾配を考慮した姿勢が算出できる。
【0019】
また、前記ダンプトラックでは、前記演算装置において、さらに、前記ダンプトラックの走行地点における勾配を前記ダンプトラックの過去の位置データに基づいて算出し、当該勾配情報と、前記2点および前記基準点の位置とに基づいてダンプトラックの姿勢を算出することが好ましい。これにより、ダンプトラックが走行する道路の勾配情報が記憶装置に記憶されていない場合にも、道路の勾配を考慮した姿勢が算出できる。
【0020】
また、前記基準点Dは、前記ダンプトラックの重心に最も近い位置に設定することが好ましい。ダンプトラックは重心を中心にして姿勢が変化するので、このように基準点を設定すると、ダンプトラックの姿勢算出時に生じる誤差を小さくでき、算出されるダンプトラックの姿勢の精度が向上する。
【0021】
また、前記基準点Dは、前記2点P,Qを結ぶ線分PQから最も離れた位置にある後輪の接地面の中から抽出することが好ましい。これにより、基準点Dから線分PQに対する垂線の長さが最大になり、ダンプトラックの姿勢算出時に生じる誤差を小さくできるので、算出されるダンプトラックの姿勢の精度が向上する。
【0022】
また、2点P,Qと基準点Dは、各点P,Q,Dを頂点とする三角形が正三角形になるように設定することが好ましい。このようにすると、ダンプトラックの姿勢算出時に生じる誤差をロール角φとピッチ角θに均等に分散できるので、算出されるダンプトラックの姿勢の精度が総合的に向上する。
【0023】
また、2つの位置推定装置は、車両座標系における同じ高さに設置することが好ましい。このようにすると、2つの位置推定装置を異なる高さに設置した場合と比較してダンプトラックの姿勢算出が容易になる。
【0024】
以下、図面を参照しながら、本発明に係るダンプトラックの効率的な姿勢推定を実現するための構成および処理について具体的に説明する。
【0025】
<第1の実施の形態>
第1の実施の形態では、ダンプトラックの走行路を示す地図データとともに記憶装置(トポロジカル地図データベース)106に記憶された道路の勾配情報を参照しながら、ダンプトラックの姿勢を求める。なお、便宜上、本実施の形態でダンプトラックが走行する路面は縦断勾配を有するが、横断勾配を有しない(カント角がゼロ)とする。
【0026】
本発明の第1の実施の形態に係るダンプトラックの概略構成を図1に示す。この図に示すダンプトラックは、フレーム11と、フレームに起伏自在に取り付けられた荷台(ボディ)12と、荷台12を起伏するために車両の幅方向に所定の間隔を介して設置された2本の油圧シリンダ13,13と、フレーム11の前方に回転自在に取り付けられた2つの前輪14a,14bと、フレームの後方に回転自在に取り付けられた4つの後輪15a,15b,15c,15dと、前輪14a,14bにフレーム11を懸架するためのフロントサスペンション16a,16bと、後輪15a,15b,15c,15dにフレーム11を懸架するためのリアサスペンション17a,17bと、フロントサスペンション16a,16bおよびリアサスペンション17a,17bの長さ変位をそれぞれ検出するための4つのレベリングセンサ18と、直接又は間接的にフレーム11に固定された2つのGPS受信機(位置推定装置)101,102と、ダンプトラックの加速度や角速度などを計測する慣性計測装置103と、ダンプトラックの姿勢算出処理を含む各種処理を実行するコンピュータ110とを備えている。なお、以下においては、同種の部分を区別して説明する必要が特に無い場合には、各符号に付した小文字のアルファベットは省略して表記することがある。また、各図において同じ部分または対応部分には同じ符号を付す。
【0027】
図2図1に示したダンプトラックの構造を模式的に示した上面図である。なお、図中に示すように、ダンプトラックの内部に原点を有し、前後軸y、左右軸x、上下軸zの3軸を有する直交座標系Bを設定する(図2では座標系Bの原点は、ダンプトラックの中心に設定している。)。以下では、この座標系を車両座標系Bと称することがある。また、ここでは、ダンプトラックが左右軸xを中心に回転したとき前後軸yが水平面と成す角度をピッチ角θとし、ダンプトラックが前後軸yを中心に回転したとき左右軸xが水平面と成す角度がロール角φとする。上下軸zの回転角であるヨー角ψは方位角となる。
【0028】
図2において、2つのGPS受信機101,102は、車両左右方向(x軸方向)にΔxだけ間隔を空けて配置されており、さらに、車両前後方向(y軸方向)にΔyだけ互いにずらして配置されている。Δxは車幅より大きく設定しても構わない。ここでは、2つのGPS受信機101,102によって位置が検出される点をそれぞれ点P,Qとする。このように2つのGPS受信機101,102を前後方向にずらして配置すると、2点P,Qを結ぶ線分PQが、車両座標系Bに係る3軸x,y,zのいずれとも平行にならないので、点P,Qおよび後述する基準点Dの位置を取得することで、ダンプトラックのロール角φ、ピッチ角θおよびヨー角ψを特定できる。
【0029】
GPS受信機101,102が受信したGPS衛星からの航法信号は、コンピュータ110に定期的に出力されており、コンピュータ110では、GPS受信機101,102から入力される航法信号に基づいて点P,Qの位置を推定する処理が行われる。
【0030】
なお、GPS受信機101,102の固定に関して、フレーム11と相対移動不能に固定できればその固定方法について特に限定はない。例えば、ダンプトラックの外壁から略水平に突出させた梁状の部材の上にGPS受信機101,102を略垂直に立てて設置しても構わない。
【0031】
ところで、車両座標系Bにおいて4つの後輪15がそれぞれ地面と接触している部分(接地面)をCとする。図2では接地面Cを矩形状の破線で囲まれた領域で表している。本実施の形態に係るダンプトラックは4つの後輪15を備えているので接地面Cは4つ存在しており、その4つの接地面Cから任意に選択した点を基準点(接地点)Dとする。図の例では、車両の右端に位置する後輪15dの接地面Cに後輪の車軸を投影した直線上に基準点Dを設定した。なお、図2では各接地面Cの輪郭を矩形で示したが、これは接地面Cを模式的に示したに過ぎず、接地面Cの輪郭を限定する趣旨ではない。基準点Dは、実際のタイヤと地面の接触面の中から任意に選択すれば良い。
【0032】
このように接地面C上に基準点Dを設置するとき、2つのGPS受信機101,102は、基準点Dから線分PQに対して垂線が1本だけ下ろせるように位置調整されて配置されている。ダンプトラックの姿勢算出に関してロール角またはピッチ角の精度低下を図る観点からは、基準点Dから線分PQに対する垂線の足は線分PQ上に位置するように基準点Dを位置調整することが好ましい。
【0033】
また、車両座標系Bの前後軸yと左右軸xで張られる平面(すなわち図2の紙面上)において、点Pから点QへのベクトルPQが前後軸yと成す角をδとする。
【0034】
また、図1に示すように、本実施の形態に係る2つのGPS受信機101,102は、点P,Qが同じ高さに位置するように設置されている。このように2つのGPS受信機101,102を設置すると、2つのGPS受信機を異なる高さに設置した場合と比較して後述するダンプトラックの姿勢算出が容易になる。
【0035】
また、図2に示すように、本実施の形態に係るダンプトラックは、左側前輪14aおよび右側前輪14bの2つの前輪を備えており、左側前輪14aに係るフロントサスペンション16aと、右側前輪14bに係るフロントサスペンション16bを備えている。また、後輪として合計4つの車輪15a,15b,15c,15dを備えており、このうち2つの後輪15a,15bは車両左側に配置されており、残りの2つの後輪15c,15dは車両右側に配置されている。リアサスペンション17aは左側の後輪群15a,15bに係るものであり、リアサスペンション17bは右側の後輪群15c,15dに係るものである。
【0036】
図2に示したシンボルGはダンプトラックの重心を示している。重心Gは、荷台12の積載量に応じてy軸に沿って図2中の上下方向に多少移動することはあるが、荷台12の積載量が変化しても前輪14よりも後輪15に近い位置に常に存在する。すなわち、後輪15は常に重心Gの近くに存在することになる。
【0037】
図3はコンピュータ110の構成図である。この図に示すように、コンピュータ110は、各種プログラムを実行するための演算手段としての演算処理装置(例えば、CPU)104と、当該プログラムをはじめ各種データを記憶するための記憶手段としての記憶装置(例えば、ROM、RAMおよびフラッシュメモリ等の半導体メモリや、ハードディスクドライブ等の磁気記憶装置)106と、コンピュータ110内の各装置104,106およびコンピュータ110外の各装置へのデータ及び指示等の入出力制御を行うための入出力インターフェース111を備えている。なお、演算処理装置104の処理結果(例えば、ダンプトラックの姿勢の演算結果)等を表示するための表示装置(例えば、液晶モニタ等)をコンピュータ110に接続しても良い。
【0038】
コンピュータ110には、入出力インターフェース111を介して、GPS受信機101,102と、右側の後輪15c,15dに係るリアサスペンション17bの変位を検出するレベリングセンサ18と、慣性計測装置103が接続されており、各装置101,102,18,103からの出力値がコンピュータ110に入力されている。
【0039】
記憶装置106には、ダンプトラックの走行路の形状および勾配を示す地図がデータ(地図データ)として記憶されている。走行路の形状は、点(以下、ノード)と、線(以下、リンク)で表わされており、記憶装置106内にはトポロジカル地図データベースが構成されている。
【0040】
図4に記憶装置106に係るトポロジカル地図データベースのデータ構造を示す。この図に示すように、記憶装置106には、地図を構成する全てのリンク(リンク総数はn個とする)に個別に与えられ、各リンクを一意に表わすリンクID401と、対応するリンクIDを有するリンクの始点(ノード)の座標を示すリンク始点402、対応するリンクIDを有するリンクの終点(ノード)の座標を示すリンク終点403と、対応するリンクIDを有するリンクの始点が接続する他のリンクのIDを示す接続ID404と、対応するリンクIDを有するリンクの終点が接続する他のリンクのIDを示す接続ID405と、対応するリンクIDを有するリンクが示す道路の勾配を角度で示したリンク勾配406とが保存されている。
【0041】
なお、リンク始点402およびリンク終点403に係るノードの座標は、例えば世界測地系等の地上(地球)に設定した地上座標系O(図6,7参照)における3次元座標で示す。また、本実施の形態におけるリンクの勾配(道路勾配)は、リンクが水平面となす角で定義されているが、これに代えて当該リンクの両端に位置する2つのノードの高さで定義しても良い。
【0042】
次に上記のように構成されるダンプトラックのコンピュータ110で実行されるダンプトラックの姿勢算出処理について説明する。図5はコンピュータ110で実行されるダンプトラックの姿勢算出処理のフローチャートである。図6図1に示したダンプトラックをモデル化した図(モデル図)であり、ここでは図6を参照しながら図5の姿勢算出処理について説明する。
【0043】
図6において、座標系Oは地上に設定された3次元座標系(地上座標系)であり、ダンプトラックはリンク601を含む走行面Jを走行しているものとする。リンク601は、ダンプトラックの走行路の一部をなすものであり、個別のリンクIDと、始点S及び終点Eを有している。また、水平面に対するリンク610の傾斜角(すなわち、水平面と走行面Jのなす角)をαとする。
【0044】
Δzは、点P,Qから走行面Jまでの距離を示し、図6の例では基準点(接地点)Dを地面側の基準として設定している。Δzは、基準点が設定された後輪15dの位置における車高変化を検出することで算出可能である。本実施の形態では、後輪15dに係るサスペンション17bの長さをレベリングセンサ18で検出し、これにサスペンション17bの上端から点P,Qまでの高さ距離(当該距離は一定値となる)を加えることでΔzを算出している。なお、2点P,Qの高さが異なる場合には、2点P,Qのうちいずれか一方から走行面までの距離をΔzとすれば良い。また、サスペンション長の代わりに、サスペンション圧力を圧力センサで検出することで荷台12の積載量を検出し、当該積載量の変化からΔzを算出する等しても良い。
【0045】
また、図6において、点Tは、基準点Dから走行面Jの法線方向にΔzだけ進んだ点である。2点P,Qと点Tを含む平面は走行面Jと平行であり、当該平面の法線ベクトルUは、当該点Tから前記2点P,Qに向かうベクトルTQ,TPの外積をとることで次の式(1)のように算出できる。
【0046】
【数1】
【0047】
図5に示す処理が開始されると、まず、コンピュータ110は、GPS受信機101,102からの入力値に基づいて地上座標系Oにおける点P,Qの位置(ベクトルOP,OQ)を算出する(ステップ100)。
【0048】
次に、コンピュータ110は、ダンプトラックが現在走行中の走行路に係るリンク601を点P,Qの位置から特定し、当該リンクの始点、終点および勾配αを記憶装置106から取得する。本実施の形態では、点Pまたは点Qの位置を自車位置とみなし、自車位置から所定の範囲内に存在するリンク始点またはリンク終点を記憶装置106で検索し、そのリンク始点またはリンク終点に紐付けられたリンクIDを全て取得する。そして、取得したIDを有する全てのリンクに対して自車位置から垂線を引き、その垂線の長さが最も短いリンクを現在走行中の走行面を示すリンクとして選択している。さらに、当該選択したリンクの始点、終点および勾配αを記憶装置106から取得している(ステップ110)。
【0049】
ステップ110で勾配を取得したら、コンピュータ110は、ステップ100で取得した点P,Qの位置に基づいて基準点Dの位置を算出する。基準点Dの位置は次のようにして求めることができる。
【0050】
まず、図6において、リンク601の始点Sと終点EからベクトルSEを定義し、当該ベクトルSEと走行面J上で直交する法線方向ベクトルをベクトルNLと定義する。地上座標系Oにおける基準点Dの位置を示すベクトルODは、ベクトルSEとベクトルNLで張られる平面(走行面J)上に存在するため、未知変数s,tを利用して次の式(2)で表すことができる。
【0051】
【数2】
【0052】
一方、点Pから基準点Dまで距離(ベクトルPDのスカラー)は、ベクトルODとベクトルOPの差のスカラーであり、上記式(2)を利用して下記式(3)のように表すことができる。同様に、点Qから基準点Dまでの距離(ベクトルQDのスカラー)は、ベクトルODとベクトルOQの差のスカラーであり、上記式(2)を利用して下記式(4)のように表すことができる。
【0053】
【数3】
【0054】
ところで、本発明の創出に際し、まず、発明者らは、ダンプトラックの重心G(図2参照)は、荷台12の積載重量に応じて前後軸yに沿って多少移動するものの後輪15の車軸近傍に位置することには変わりは無く、ダンプトラックの姿勢や積載重量が変化しても後輪15は常に地面と接触している点に着目した。そして、ダンプトラックの姿勢の算出に際しては、後輪15と地面の接触部(接地面C)に基準点Dを設定し、当該基準点Dを固定端にして基準点Dから線分PQに下ろした垂線が揺動すると仮定できると考えた。つまり、基準点Dから線分PQに下ろした垂線の足をKとすると、図7に示すように、ダンプトラックの姿勢が変化しても、基準点Dを中心とし線分DKの長さを半径とする球610の表面に常に点Kが位置すると仮定できる。なお、線分DKは、その長軸を中心に回転することができ、線分PQは水平面に対して角度を有することができる。このような仮定の下では、基準点Dから前記2点P,Qまでの距離(ベクトルPD,QDのスカラー)はダンプトラックの姿勢が変化しても一定であり、これらの距離は予め算出可能である。
【0055】
このようにベクトルPDのスカラーと、ベクトルQDのスカラーは既知の値であり、また、ベクトルOPとベクトルOQはステップ100で取得済みなので、上記2式(2),(3)から2組のs,tを求めることができる(ステップ120)。さらに、ダンプトラックは横転しないことを前提とすると、当該2組のs,tのうち下記の等式を満足するものが解となる。ただし、下記式においてsgnは符号を示すものとする。
【0056】
【数4】
【0057】
上記2式(3),(4)から求めたs、tと、式(1)とからODを算出する(ステップ130)。これにより3点P,Q,Dの位置が決定するため、走行路に勾配がある場合にはαを適宜考慮して、ダンプトラックの姿勢を求めることができる。
【0058】
そして、ダンプトラックの姿勢を、ロール角φ、ピッチ角θおよびヨー角ψで特定する場合には、さらに次の処理を行う。まず、コンピュータ110は、後輪15dに係るサスペンション17bの長さをレベリングセンサ18で検出し、これにサスペンション17bの上端から点P,Qまでの高さ距離を加えることでΔzを算出し、点Tを決定する(ステップ140)。
【0059】
そして、コンピュータ110は、上記式(1)で示したように、ステップ140で決定した点Tから2点P,Qに向かう2つのベクトルTQ,TPの外積をとることで法線ベクトルUを算出する(ステップ150)。ベクトルUが算出できたら、コンピュータ110は、次の各式を利用することでロール角φ、ピッチ角θおよびヨー角ψを求める(ステップ160)。
【0060】
【数5】
【0061】
すなわち、上記各式において、ヨー角ψはベクトルPQから算出でき、ピッチ角θはヨー角ψおよび法線ベクトルUから算出でき、ロール角φはヨー角ψおよび法線ベクトルUから算出できる。ロール角φ、ピッチ角θおよびヨー角ψを算出したら、ステップ100に戻り、先述の処理を繰り返す。
【0062】
なお、ステップ160からステップ100に戻って新たな姿勢算出処理が開始されるタイミングが一定の間隔になるように、タイマでステップ100の開始タイミングを制御しても良い。また、図5に示した各演算処理は、同じ演算結果が得られれば、各処理の順序を変更したり、複数の処理を同時に処理(並列処理)したりしても良い。
【0063】
ところで、特に説明しなかったが、慣性計測装置103で計測したダンプトラックの加速度や角速度の変化を利用すれば、点P,Qの位置算出精度が向上するので、ダンプトラックの姿勢の算出精度を向上することができる。
【0064】
以上のように、本実施の形態によれば、2つの位置推定装置(GPS受信機101,102)だけで精度良くダンプトラックの姿勢を推定できる。
【0065】
なお、上記の実施の形態では、道路勾配αがある場合を例に挙げて説明したが、勾配αがゼロ度である場合には図5のステップ110を実行することなくダンプトラックの姿勢を算出することができる。
【0066】
<第2の実施の形態>
本発明の第2の実施の形態は、GPS受信機101,102を介して得られる点P,Qの位置の時系列情報を記憶装置106に保存しておき、当該時系列情報に基づいて位置データの移動ベクトルを算出し、当該移動ベクトルに基づいてダンプトラックが走行する道路の勾配αを算出する点に特徴がある。本実施の形態と第1の実施の形態は、記憶装置106のデータ構造と、コンピュータ110によって勾配αが演算される点に相違点があるが、他の構成は姿勢算出処理も含めて第1の実施の形態と同じなので説明は省略する。
【0067】
図8は、本発明の第2の実施の形態における記憶装置106のデータ構造のうち点P,Qの位置の時系列情報に関係する部分を示した図である。この図に示すように、本実施の形態に係る記憶装置106には、点P,Qの位置を検出した各時刻が時系列で記録される時刻列701と、時刻列701に係る各時刻における点Pの位置が記録される位置列702と、時刻列710に係る各時刻における点Qの位置が記録される位置列703とが保存されている。なお、GPS受信機101,102から出力値の存在しない時刻も存在し、その場合には当該時刻には点Pまたは点Qの位置が算出できなかった旨を示す文字列FFが入力される。
【0068】
図5に示したステップ110に代替して本実施の形態に係るコンピュータ110が実行する勾配算出処理について説明する。勾配の算出に際して、コンピュータ110は、現時刻における2点P,Qの位置と、現時刻から所定のサンプル数前に係る2点P,Qの位置であって2点P,Qの出力が両方とも揃っているものの、合計4点の位置を記憶装置106から抽出する。例えば、当該4点の位置を図8の例で示すと、位置704,705,706,707がこれに該当する。
【0069】
ところで、勾配算出のために抽出した4点は必ずしも同一平面上に存在している訳ではない。そこで、本実施の形態に係るコンピュータ110は、抽出した4点において同じ時刻に係る2点P,Qをそれぞれ結んで第1および第2の線分を描き、さらに当該第1の線分の中点と当該第2の線分の中点を結ぶことで第3の線分(位置データの移動ベクトル)を描き、当該第3の線分の水平面に対する傾斜角を道路勾配として算出している。なお、本実施の形態に係る勾配算出処理は、カント角が付いていないことを前提としている。
【0070】
図9を用いて上記算出手順について説明する。図9は点P,Qの位置推定結果のモデル図である。図9には4点P(0)、Q(0)、P(3)、Q(3)が示されており、このうちP(0)とQ(0)は現時刻における点P,Qの位置を示し、P(3)とQ(3)は3サンプル数前の点P,Qの位置を示す。現時刻における2点P(0),Q(0)から得られる線分PQの中点をR0とし、3サンプル数前の2点P(0),Q(0)から得られる線分PQの中点をR1とする。このときの点R0、R1と勾配α[rad]は下記式により求めることができる。
【0071】
【数6】
【0072】
このように、本実施の形態では、コンピュータ110において、ダンプトラックの走行地点における勾配αを点P,Qの現在および過去の位置データに基づいて算出できるので、当該勾配αと、3点P,Q,Dの現在の位置に基づいてダンプトラックの姿勢を算出することができる。これにより、ダンプトラックの走行路の勾配情報が地図データに含まれていない場合(例えば、地図データの作成に際して勾配を測定しなかった場合)にも、道路の勾配を考慮したダンプトラックの姿勢が算出できる。
【0073】
なお、上記ではΔz(車高)を算出する際に、リアサスペンション17bの長さを検出するレベリングセンサ18を利用したが、サスペンション17b内の流体(油圧)の圧力を圧力センサで検出することで荷台12の積載重量を推定し、当該積載重量に基づいてΔzを推定しても良い。
【0074】
また、上記では、ダンプトラックの位置推定にGPS受信機101,102を利用したが、他の衛星からの航法信号を受信する受信装置をダンプトラックに同様に設置し、当該航法信号に基づいて測位を行う他の衛星測位システムを構成してダンプトラックの位置推定をしても良い。
【0075】
また、微小な姿勢変化を検出する場合には、点Dから線分PQへの垂線の長さをできるだけ長くした方が好ましい。そのため、基準点Dは線分PQから最も離れた位置に設定することが好ましい。すなわち、図2の例では、後輪15dの接地面Cにおける図中右下の頂点に基準点を設定することが好ましい。
【0076】
また、上記では、右端の後輪15dの接地面Cに基準点Dを設定したが、ダンプトラックの姿勢算出時に発生する誤差をできるだけ低減する観点からは、他の後輪よりもダンプトラックの重心G(図2参照)に近い位置にある2つの車輪15b,15cの接地面C上において、重心Gに最も近い位置に基準点Dを設定することが好ましい。このように基準点Dを設定すると、ダンプトラックの揺動中心となる重心Gに基準点Dを近づけることができ、ダンプトラックの実際の動作に近い状態で計算できるので誤差を小さくできる。
【0077】
また、2点P,Qと基準点Dは、各点P,Q,Dを頂点とする三角形が正三角形になるように設定することが好ましい。すなわち、線分PQ,QD,DPの長さが均等になるように各点を設定することが好ましい。このようにすると、ダンプトラックの姿勢算出時に生じる誤差をロール角φとピッチ角θに均等に分散できるので、算出されるダンプトラックの姿勢の精度が総合的に向上する。
【0078】
また、上記では、ダンプトラックに搭載したコンピュータ110でダンプトラックの姿勢を算出したが、自律走行する複数のダンプトラックの走行制御を行うコンピュータであって、管制局などの建屋に設置されたコンピュータにおいて無線通信装置等を介してダンプトラックから点P,Qの位置を入力し、当該コンピュータで姿勢を算出しても良い。
【0079】
なお、本発明は、上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば、本発明は、上記の実施の形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。また、ある実施の形態に係る構成の一部を、他の実施の形態に係る構成に追加又は置換することが可能である。
【0080】
また、上記のコンピュータに係る各構成や当該各構成の機能及び実行処理等は、それらの一部又は全部をハードウェア(例えば各機能を実行するロジックを集積回路で設計する等)で実現しても良い。また、上記のコンピュータに係る構成は、演算処理装置(例えばCPU)によって読み出し・実行されることで当該制御装置の構成に係る各機能が実現されるプログラム(ソフトウェア)としてもよい。当該プログラムに係る情報は、例えば、半導体メモリ(フラッシュメモリ、SSD等)、磁気記憶装置(ハードディスクドライブ等)及び記録媒体(磁気ディスク、光ディスク等)等に記憶することができる。
【0081】
また、上記の各実施の形態の説明では、制御線や情報線は、当該実施の形態の説明に必要であると解されるものを示したが、必ずしも製品に係る全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えて良い。
【符号の説明】
【0082】
11…フレーム、15…後輪、17…リアサスペンション、18…レベリングセンサ、101…GPS受信機、102…GPS受信機、103…慣性計測装置、106…記憶装置、110…コンピュータ、P…GPS受信機101による位置算出点、Q…GPS受信機102による位置算出点、C…接地面、D…基準点、Δz…点P,Qから基準点Dまでの高さ距離、G…ダンプトラックの重心
図1
図2
図3
図4
図5
図6
図7
図8
図9