特許第6095620号(P6095620)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 田岡化学工業株式会社の特許一覧

<>
  • 特許6095620-ビナフタレン骨格を有するエポキシ樹脂 図000007
  • 特許6095620-ビナフタレン骨格を有するエポキシ樹脂 図000008
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6095620
(24)【登録日】2017年2月24日
(45)【発行日】2017年3月15日
(54)【発明の名称】ビナフタレン骨格を有するエポキシ樹脂
(51)【国際特許分類】
   C08G 59/04 20060101AFI20170306BHJP
【FI】
   C08G59/04
【請求項の数】2
【全頁数】13
(21)【出願番号】特願2014-171135(P2014-171135)
(22)【出願日】2014年8月26日
(65)【公開番号】特開2015-86361(P2015-86361A)
(43)【公開日】2015年5月7日
【審査請求日】2016年5月30日
(31)【優先権主張番号】特願2013-199079(P2013-199079)
(32)【優先日】2013年9月26日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000216243
【氏名又は名称】田岡化学工業株式会社
(72)【発明者】
【氏名】河村 芳範
(72)【発明者】
【氏名】藤井 克宏
【審査官】 久保 道弘
(56)【参考文献】
【文献】 特開2010−189534(JP,A)
【文献】 特開2011−184623(JP,A)
【文献】 特開平07−268060(JP,A)
【文献】 特開平06−184131(JP,A)
【文献】 特開2009−203427(JP,A)
【文献】 特開2014−227387(JP,A)
【文献】 特開2014−227388(JP,A)
【文献】 国際公開第2015/045674(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C08G 59/00−59/72
C08L 63/00−63/10
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
下記式(1):
【化1】

(式中nは0または1以上の整数である。)
で表わされる、ジエポキシビナフタレン樹脂。
【請求項2】
アルカリ金属水酸化物存在下、2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンにエピハロヒドリンを反応させる工程を含む、請求項1記載のジエポキシビナフタレン樹脂の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ビナフタレン骨格を有する新規なエポキシ樹脂に関する。
【背景技術】
【0002】
エポキシ樹脂は、一般的に、種々の硬化剤で硬化させることにより、機械的性質、耐水性、耐薬品性、耐熱性、電気的性質などに優れた硬化物となる。その為に、エポキシ樹脂は、接着剤、塗料、積層板、成形材料、注型材料などの幅広い分野に利用されている。
【0003】
その中で、ビナフタレン骨格を有するエポキシ樹脂は、吸水率が低く、かつ高温域での弾性率が低い等といった特徴を有するエポキシ樹脂として、半導体封止材料分野などへの利用に活発な研究開発が行われている。また、同時に、半導体封止材分野においては、表面実装時の耐ハンダクラック性の向上のため、フィラーを高充填化することが求められており、フィラーの高充填化という目的を達成するため、溶融粘度を低くし流動性に優れるエポキシ樹脂が必要とされている。(例えば特許文献1参照。)
【0004】
一方、ビナフタレン骨格を有するエポキシ樹脂として、例えば、特許文献1及び特許文献2に、下記構造式(2):
【0005】
【化1】
で表わされるビナフトールのジグリシジルエーテルが開示されている。しかし、特許文献1には実施例1〜3に記載される上記式(2)のエポキシ樹脂の軟化点は61〜79℃であることが、同様に、特許文献2には実施例に記載の上記式(2)のエポキシ樹脂の軟化点は59〜60℃であることが記載されており、これらを固体として取り扱うとしても軟化点が低く、保管条件によりブロッキングするなどハンドリング性に難があり、一方で液体として取扱う為には溶解作業が必要になるなど、使用用途が限定されるといった問題があった。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開平6−184131号公報
【特許文献2】特開2009−292996号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明の目的は、ビナフタレン骨格を有し、さらには溶融粘度が低く、室温でも液体であるため、作業性と流動性に優れた新規なビナフタレン骨格含有エポキシ樹脂を提供することにある。
【課題を解決するための手段】
【0008】
本発明者らは、前記の課題を解決すべく鋭意研究を重ねた結果、下記式(1)で示す構造を有するビナフタレン骨格含有エポキシ樹脂は溶融粘度が低く、室温でも液体であり、作業性と流動性に優れるものであることを見出した。更には、該ビナフタレン骨格含有エポキシ樹脂は、高屈折率、高アッベ数を示すことも判明した。具体的には本発明は以下のものを含む。
[1]下記式(1):
【0009】
【化2】


(式中nは0または1以上の整数である。)
で表わされる、ジエポキシビナフタレン樹脂。
【0010】
[2]
アルカリ金属水酸化物存在下、2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンにエピハロヒドリンを反応させる工程を含む、[1]記載のジエポキシビナフタレン樹脂の製造方法。
【発明の効果】
【0011】
本発明によれば、ビナフタレン骨格を有し、室温でも液体である、作業性と流動性に優れた、新規なビナフタレン骨格含有エポキシ樹脂及びその製造方法を提供することが可能となる。更には、本発明のビナフタレン骨格含有エポキシ樹脂は高屈折率、高アッベ数を示すことから新規な光学系材料としての利用も期待される。
【図面の簡単な説明】
【0012】
図1】式(1)で表されるジエポキシビナフタレン樹脂(1)の13C−NMR(CDCl)チャートである。
図2】式(1)で表されるジエポキシビナフタレン樹脂(1)の質量分析チャートである。
【発明を実施するための形態】
【0013】
<新規なジエポキシビナフタレン樹脂の製造方法>
以下式(1)
【0014】
【化3】

(式中nは0または1以上の整数である。)
で表わされるジエポキシビナフタレン樹脂は、例えば、アルカリ金属水酸化物存在下、2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンとエピハロヒドリンを反応させることにより得られる。
【0015】
原料として使用する2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンは、市販品を用いてもよく、慣用の方法、例えば、1,1−ビ−2−ナフトールと所定量のエチレンカーボネートまたはエチレンオキサイドとを、不活性溶媒及びアルカリ触媒存在下反応させ2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンとしたものをそのまま用いてもよく、また、前記反応終了後の反応生成物から、慣用の精製方法(抽出、晶析など)を利用して精製したものを用いてもよい。本発明において原料として使用する2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンの純度は、通常90重量%以上、好ましくは95重量%以上、特に好ましくは99重量%以上である。
【0016】
本発明におけるアルカリ金属水酸化物としては、例えば、水酸化ナトリウム、水酸化カリウム等が例示され、その使用量は2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンの水酸基1モル当量に対し通常0.8〜4.0モル、好ましくは2.0〜3.0モルである。アルカリ金属水酸化物は固体であっても水溶液であっても良い。
【0017】
本発明において使用するエピハロヒドリンとしては、具体的には、エピクロルヒドリン、エピブロムヒドリン等が例示され、その使用量は2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンの水酸基1モル当量に対し通常2〜30モル、好ましくは3〜20モルである。なお、上記式(1)で表されるジエポキシビナフタレン樹脂の繰り返し単位数であるnの値(n数)は、エピハロヒドリンの使用量により調整が可能である。すなわち、2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンに対してエピハロヒドリンを大過剰に使用すると、nが0の化合物が主成分として得られ、2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンに対してエピハロヒドリンの使用量を下げていけば、nが0より大きい化合物の割合を高くすることが可能である。
【0018】
2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンとエピハロヒドリンとを反応させる際の反応方法としては、例えば、2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンとエピハロヒドリンとを反応容器に投入し、溶解混合させた後、20〜120℃、好ましくは40〜90℃でアルカリ金属水酸化物を添加し、その後、20〜120℃、好ましくは40〜90℃で1〜24時間反応させることにより本発明のジエポキシビナフタレン樹脂を得ることが出来る。なお、アルカリ金属水酸化物は一括添加しても良いが、所定の反応温度を維持する為、一定時間、例えば1〜10時間かけて滴下等の方法により連続的に添加すること、または、必要量を分割添加することが好ましい。
【0019】
前記反応を実施する際、アルカリ金属水酸化物の水溶液を使用する場合は、該アルカリ金属水酸化物の水溶液を連続的に反応系内に添加する一方で、反応系を減圧下、または常圧下で還流状態とし、水及び未反応のエピハロヒドリンを留出させた後留出液を分液し、水は系外へ除去し、エピハロヒドリンは反応系内へと戻すことが好ましい。
【0020】
前記反応を実施する際、テトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムクロライド、ベンジルトリエチルアンモニウムクロライド等の4級アンモニウム塩を用いることが、反応性向上の観点から好ましい。4級アンモニウム塩を使用する場合の使用量は2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレン1モルに対し、通常0.01〜0.50モル、好ましくは0.02〜0.20モル使用する。また、4級アンモニウム塩を使用する場合、通常、アルカリ金属水酸化物を2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンとエピハロヒドリンの溶解混合物に添加する前に添加する。
【0021】
前記反応後、そのまま上記式(1)で表されるジエポキシビナフタレン樹脂を使用しても良いが、下記<1>〜<3>に示す後処理工程を適宜施し、所望の該ジエポキシビナフタレン樹脂とすることが好ましい。
【0022】
<1>無機分等除去工程及び濃縮工程
前記反応で得られた反応生成物を必要に応じろ過および/または水洗・分液除去し、不溶解分、無機塩、及びアルカリ金属水酸化物を除去する。その後、前記反応においてエピハロヒドリンを大過剰使用した場合、内温100〜150℃、内圧30mmHg以下、好ましくは、10mmHg以下でエピハロヒドリンを除去することが好ましい。
【0023】
<2>閉環工程
加水分解性ハロゲンの含有量がより少ないジエポキシビナフタレン樹脂とするために、前記反応後のジエポキシビナフタレン樹脂または<1>で示す後処理工程を施したジエポキシビナフタレン樹脂に有機溶媒を添加した後、アルカリ金属水酸化物を添加し、通常20〜120℃で撹拌することにより加水分解性ハロゲンの含有量がより少ないジエポキシビナフタレン樹脂とすることができる。
【0024】
閉環工程で使用する有機溶媒としてはジエポキシビナフタレン樹脂やアルカリ金属水酸化物と反応しないものであればどのようなものでも良く、例えばトルエン、メチルイソブチルケトン、メチルエチルケトン等が例示される。また、閉環工程で使用するアルカリ金属水酸化物としては、例えば水酸化ナトリウム、水酸化カリウムが例示され、固体であっても水溶液であっても良いが、好ましくは水溶液が用いられる。また、アルカリ金属水酸化物の使用量はエポキシ化に使用した2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンの水酸基1モル当量に対して通常0.01〜2.5モル、好ましくは0.20〜1.2モルである。本閉環工程は通常0.5〜6時間で実施される。
【0025】
<3>精製工程
前記閉環工程終了後、閉環工程で得られた反応物を必要に応じろ過および/または水洗・分液除去を行い副生したタール分や塩を除去する。その後、pHが8.0〜4.0になるよう、リン酸、リン酸ナトリウム、シュウ酸、酢酸等の酸で中和を行う。中和後、水洗・分液除去を繰り返し、必要に応じろ過を行うことによって不溶解分を除去した後、減圧下、閉環工程で使用した有機溶媒を留去することにより本発明のジエポキシビナフタレン樹脂を得る。
【0026】
<新規なジエポキシビナフタレン樹脂>
以下式(1)
【0027】
【化4】

(式中nは0または1以上の整数である。)
で表わされるジエポキシビナフタレン樹脂(以下本発明のジエポキシビナフタレン樹脂と称することもある)の繰り返し単位数であるnの値(n数)は本発明のジエポキシビナフタレン樹脂の用途に併せて任意に選択することができ、n数が単一のものを精製により得ることも可能ではあるが、通常はn数の異なるジエポキシビナフタレン樹脂が混合したものを本発明のジエポキシビナフタレン樹脂として使用する。また、本発明のジエポキシビナフタレン樹脂には中間体であるモノグリシジル体、少量の加水分解性塩素、α−グリコール等の不純物及びn=1のジエポキシビナフタレン樹脂の水酸基にさらにエピクロヒドリンが付加したトリグリシジル体などの少なくとも1つが混合している場合がある。
【0028】
本発明のジエポキシビナフタレン樹脂のn数は好ましくは0または1〜10の整数、更に好ましくは0または1〜2の整数、最も好ましくは0または1とする。n数が3を超えるものの割合が高くなると、相溶性が悪くなり、組成物とする際に、添加量に制約が生じる等の不都合が生じる場合がある。また、より低粘度のジエポキシビナフタレン樹脂とする為には、n=0である樹脂の割合を通常は65%以上、好ましくは85%以上とする。
【0029】
本発明のジエポキシビナフタレン樹脂は、吸水率が低く、かつ高温域での弾性率が低い等といった特徴を示すビナフタレン骨格を有しているにもかかわらず、室温で液体であり、さらに溶融粘度が低いといった特徴を示す。たとえば、本発明のジエポキシビナフタレン樹脂の100℃における溶融粘度は50〜200mPa・s、150℃における溶融粘度は、5〜30mPa・sである為、ハンドリング性に優れている。
【0030】
本発明のジエポキシビナフタレン樹脂は、高耐熱性などの特性を有し、低粘度である為、ハンドリング性にもすぐれており、熱硬化性樹脂原料、硬化剤などにも利用できる。たとえば、本発明のジエポキシビナフタレン樹脂は、そのまま一般的なエポキシ樹脂と同様に用いてもよく、エポキシ(メタ)アクリレートなどの熱硬化性樹脂原料として用いてもよい。
【0031】
本発明のジエポキシビナフタレン樹脂は、通常、硬化剤、必要に応じて希釈剤、硬化促進剤、さらに、必要に応じて、慣用の添加剤(例えば、着色材、安定材、充填剤、帯電防止材、難燃剤など)などを含むエポキシ樹脂組成物としてもよい。該エポキシ樹脂組成物とする際、該エポキシ樹脂組成物に含まれるエポキシ樹脂成分は本発明のジエポキシビナフタレン樹脂のみで構成してもよく、他のエポキシ樹脂と併用してもよい。
【0032】
本発明のジエポキシビナフタレン樹脂と併用しうる他のエポキシ樹脂としてはノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂などが挙げられる。これらの他のエポキシ樹脂は、単独又は2種類以上組み合わせてもよい。
【0033】
本発明のジエポキシビナフタレン樹脂、または該ジエポキシビナフタレン樹脂を含むエポキシ樹脂組成物は、ビナフタレン骨格を有することから吸水率が低く、かつ高温域での弾性率が低い等といった特性を有し、硬化前は低粘度で作業性が良好である為、耐熱性、低粘度の要求される広範囲な分野で用いることができる。具体的には封止材料、積層板、絶縁材料、プリント基板用のソルダーレジスト、カバーレイなどのレジスト材料、カラーフィルター、コーティング剤などのあらゆる電気・電子材料として有用である。また、高屈折、低アッベ数という特性を有することから光学材原料としても有用である。その他、成形材料、接着剤、複合材料、塗料、印刷インキ、光硬化性樹脂原料、感光性樹脂原料などの分野にも用いることができる。
【実施例】
【0034】
以下、実施例及び比較例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
【0035】
なお、実施例及び比較例において各測定値は、次の方法、測定条件に従って測定した。
【0036】
〔1〕HPLC純度
次の測定条件でHPLC測定を行ったときの面積百分率値をHPLC純度とした。
・装置:(株)島津製作所製「LC−2010AHT」
・カラム:一般財団法人 化学物質評価研究機構製「L−column ODS」
(5μm、4.6mmφ×250mm)
・カラム温度:40℃
・検出波長:UV 254nm
・移動相:A液=30%メタノール、B液=メタノール
・移動相流量:1.0ml/分
移動相グラジエント:B液濃度:30%(0分)→100%(25分後)→100%(35分後)
【0037】
〔2〕NMR測定
次の測定条件にて13C−NMRを測定した。
・内部標準:テトラメチルシラン
・溶媒:CDCl
・装置:JEOL−ESC400分光計
【0038】
[3]LC−MS測定
次の測定条件にて分離、質量分析し、目的物を同定した。
・装置:(株)Waters製「Xevo G2 Q−Tof」
・カラム:(株)Waters製「ACQUITY UPLC BEH C18」
(1.7μm、2.1mmφ×100mm)
・カラム温度:40℃
・検出波長:UV 230−800nm
・移動相:A液=超純水、B液=メタノール
・移動相流量:0.3ml/分
移動相グラジエント:B液濃度:60%(0分)→70%(10分後)→100%(12分後)
検出法:Q−Tof
イオン化法:ESI(+)法
Ion Source:電圧(+)2.0kV、温度120℃
Sampling Cone :電圧 10V、ガスフロー50L/h
Desolvation Cas:温度500℃、ガスフロー1000L/h
【0039】
〔4〕エポキシ当量
自動滴定装置(京都電子製 AT−5100)を用いて、JIS K7236による方法で測定した。
【0040】
〔5〕溶融粘度
B型粘度計(TOKIMEC INC製、MODEL:BBH)を用いて、ローターHH−1にて、20〜100rpmで100℃及び150℃に加熱して測定した。
【0041】
〔6〕屈折率及びアッベ数
アッベ屈折計((株)アタゴ製「多波長アッベ屈折計 DR−2M」)を用いて、20℃における屈折率(波長:589nm)及び20℃におけるアッベ数(波長:486、589、656nm)を測定した。なおサンプル調製及び屈折率・アッベ数の算出は以下の方法にて行った。
得られた本発明のジエポキシビナフタレン樹脂をN,N−ジメチルホルムアミドに溶解して10重量%、20重量%及び30重量%溶液を調製し、各溶液について前述の条件にて屈折率及びアッベ数を測定した。次に、得られた3点の測定値から近似曲線を導き、これを100重量%に外挿したときの値を得られた樹脂の屈折率及びアッベ数とした。
【0042】
<実施例1>
攪拌器、冷却器及び温度計を備えた200mlのガラス製反応容器に、窒素雰囲気下で2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレン(田岡化学工業(株)製、商品名TBIS−BNE)15.00g(0.040mol)、エピクロルヒドリン74.20g(0.800mol)を仕込み、50℃に昇温、溶解させた後、ベンジルトリエチルアンモニウムクロライド1.37g(0.006mol)を添加した。添加後80℃に昇温し、粒状水酸化ナトリウム6.65g(0.166mol)を同温度で80分かけて分割添加し、更に同温度で4時間攪拌した後、HPLCにより反応生成物の分析を行ったところ、原料2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンは0.1%以下であった。
得られた反応生成物に水を加え撹拌し、ろ過を行うことによって不溶解分を除去した。その後、水層を分液除去し、さらに水洗・分液を行った後、有機層を130℃まで加熱し、内圧10mmHgで濃縮を行った。その後、80℃まで冷却し、残留物にトルエンを加え残留物を溶解した後、該トルエン溶液に、80℃で24重量%の水酸化ナトリウム水溶液5.00g(0.030mol)を添加し、同温度で6時間攪拌した。撹拌後、ろ過を行うことによって不溶解分を除去し、更に水層を分液除去した。その後、水及び酸を加えて中和し、水層を分液除去した。次いで、有機層を水洗・分液し、有機層をろ過し不溶解分を除去した後に減圧濃縮することによって、黄褐色粘調性の液体17.27g(みかけ収率89.2%)を得た。
得られた黄褐色粘調性の液体をHPLCにて分析した所、上記式(1)においてn=0のものが86.6%、2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンにエピクロヒドリンが1個付加したモノグリシジル体が4.8%、上記式(1)においてn=1のものが1.9%、n=1の水酸基にさらにエピクロヒドリンが付加したトリグリシジル体が1.8%、上記式(1)においてn=2以上のものが0.1%以下含まれていることから、目的とする上記式(1)で表されるジエポキシビナフタレン樹脂が生成していることを確認した。得られたジエポキシビナフタレン樹脂の物性を以下に示す。
・エポキシ当量:256g/eq
・溶融粘度;100℃:80mPa・s、150℃:15mPa・s
・屈折率:1.60
・アッベ数:21.5
【0043】
得られたジエポキシビナフタレン樹脂の13C−NMR(CDCl)チャートを図1に示す。ここで、115.4〜154.2ppmまではナフタレン骨格の炭素に帰属され、43.9、50.6、69.8ppmはグリシジル基の炭素、71.4、71.7ppmは、エトキシ基の炭素に帰属される。
また、得られたジエポキシビナフタレン樹脂の内、上記式(1)におけるn=0に該当するピークをLC−MSにて分析した結果を図2に示す。本分析におけるジエポキシビナフタレン樹脂の計算値(TOF MS ESI;C3030+Na)は509.1940であり、実測値は509.1955であった。
【0044】
<実施例2>
攪拌器、冷却器及び温度計を備えた200mlのガラス製反応容器に、窒素雰囲気下で2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレン(田岡化学工業(株)製、商品名TBIS−BNE)15.00g(0.040mol)、エピクロルヒドリン74.20g(0.800mol)を仕込み、50℃に昇温、溶解させた後、ベンジルトリエチルアンモニウムクロライド1.37g(0.006mol)を添加した。添加後80℃に昇温し、粒状水酸化ナトリウム8.00g(0.200mol)を同温度で90分かけて分割添加し、更に同温度で3時間攪拌した後、HPLCにより反応生成物の分析を行ったところ、原料2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンは0.1%以下であった。
得られた反応生成物に水を加え、ろ過を行うことによって不溶解分を除去した後、130℃まで加熱し、内圧10mmHgで濃縮を行った。その後、60℃まで冷却し、残留物にトルエンを加え溶解した。このトルエン溶液に、60℃で24重量%の水酸化ナトリウム水溶液3.30g(0.020mol)を添加し、更に同温度で2時間攪拌した後ろ過を行うことによって不溶解分を除去後、水層を分液除去した。その後、水及び酸を加えて中和した後、水層を分液除去した。更に、有機層を食塩水及び水で数回洗浄・分液除去操作を行った後、有機層をろ過し不溶解分を除去した後に減圧濃縮することによって、黄褐色粘調性液体16.64g(みかけ収率85.5%)を得た。
得られた黄褐色粘調性液体をHPLCで分析した所、上記式(1)においてn=0のものが82.3%、2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンにエピクロヒドリンが1個付加したモノグリシジル体が5.0%、上記式(1)においてn=1のものが2.0%、n=1の水酸基にさらにエピクロヒドリンが付加したトリグリシジル体が2.1%、上記式(1)においてn=2以上のものが0.2%含まれていることから、目的とする上記式(1)で表されるジエポキシビナフタレン樹脂が生成していることを確認した。得られたジエポキシビナフタレン樹脂の物性を以下に示す。
・エポキシ当量:258g/eq
・溶融粘度;100℃:87mPa・s、150℃:17mPa・s
【0045】
<実施例3>
攪拌器、冷却器及び温度計を備えた200mlのガラス製反応容器に、窒素雰囲気下で2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレン(田岡化学工業(株)製、商品名TBIS−BNE)15.00g(0.040mol)、エピクロルヒドリン37.10g(0.400mol)を仕込み、50℃に昇温、溶解後、ベンジルトリエチルアンモニウムクロライド1.37g(0.006mol)を添加した。添加後80℃に昇温し、粒状水酸化ナトリウム6.65g(0.166mol)を同温度で50分かけて分割添加し、更に同温度で4時間攪拌した後、HPLCにより反応生成物の分析を行ったところ、原料2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンは0.1%以下であった。
得られた反応生成物に水を加え、ろ過を行うことによって不溶解分をろ過除去した後、130℃まで加熱し、内圧10mmHgで濃縮した。その後、80℃まで冷却し、残留物にトルエンを加え溶解した。このトルエン溶液に、80℃で30重量%の水酸化ナトリウム水溶液10.95g(0.082mol)を添加し、同温度で3時間攪拌した後、水を追加し水洗を行い、水層を分液除去した。その後、水及び酸を加えて中和した後、水層を分液除去した。更に水洗・分液除去操作を行い、有機層をろ過し不溶解分を除去した後に、減圧濃縮することによって、黄褐色粘調性液体16.28g(みかけ収率84.2%)を得た。
得られた黄褐色粘調性液体をHPLCで分析した所、上記式(1)においてn=0のものが73.0%で、2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンにエピクロヒドリンが1個付加したモノグリシジル体が2.1%、上記式(1)においてn=1のものが4.1%、n=1の水酸基にさらにエピクロヒドリンが付加したトリグリシジル体が6.2%、上記式(1)においてn=2以上のものが1.2%含まれていることから、目的とする上記式(1)で表されるジエポキシビナフタレン樹脂が生成していることを確認した。得られたジエポキシビナフタレン樹脂の物性を以下に示す。
・エポキシ当量:251g/eq
・溶融粘度;100℃:68mPa・s、150℃:15mPa・s
【0046】
<実施例4>
攪拌器、冷却器及び温度計を備えた200mlのガラス製反応容器に、窒素雰囲気下で2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレン(田岡化学工業(株)製、商品名TBIS−BNE)20.00g(0.053mol)、エピクロルヒドリン29.70g(0.321mol)を仕込み、80℃に昇温、溶解させた後、ベンジルトリエチルアンモニウムクロライド1.82g(0.008mol)を添加した。その後、粒状水酸化ナトリウム8.87g(0.222mol)を同温度で90分かけて分割添加し、更に同温度で3時間攪拌した後、HPLCにより反応生成物の分析を行ったところ、原料2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンは0.1%以下であった。
反応生成物にトルエン40gを加えた後にろ過を行うことによって不溶解分を除去した後、このトルエン溶液に、30℃で24重量%の水酸化ナトリウム水溶液4.50g(0.027mol)を添加し、同温度で3時間攪拌した。その後、水を追加し水洗を行い、水層を分液除去した。その後、水及び酸を加えて中和した後、水層を分液除去した。更に、水洗、分液除去を行った後、有機層をろ過し不溶解分を除去した後に、減圧濃縮することによって、黄褐色粘調性液体25.26g(みかけ収率97.9%)を得た。
得られた黄褐色粘調性液体をHPLCで分析した所、上記式(1)においてn=0のものが77.9%で、2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンにエピクロヒドリンが1個付加したモノグリシジル体が0.6%、上記式(1)においてn=1のものが3.6%、n=1の水酸基にさらにエピクロヒドリンが付加したトリグリシジル体が7.4%、上記式(1)においてn=2以上のものが1.5%含まれていることから、目的とする上記式(1)で表されるジエポキシビナフタレン樹脂が生成していることを確認した。得られたジエポキシビナフタレン樹脂の物性を以下に示す。
・エポキシ当量:254g/eq
・溶融粘度;100℃:77mPa・s、150℃:16mPa・s
【0047】
<実施例5>
攪拌器、冷却器及び温度計を備えた200mlのガラス製反応容器に、窒素雰囲気下で2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレン(田岡化学工業(株)製、商品名TBIS−BNE)20.00g(0.053mol)、エピクロルヒドリン20.80g(0.225mol)を仕込み、80℃に昇温、溶解させた後、テトラブチルアンモニウムブロマイド、2.58g(0.008mol)を添加した。その後、粒状水酸化ナトリウム8.87g(0.222mol)を同温度で80分かけて分割添加し、更に同温度で2時間攪拌した後、HPLCにより反応生成物の分析を行ったところ、原料2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンは0.1%以下であった。
得られた反応生成物にトルエン40gを加えた後にろ過を行うことによって不溶解分を除去した後、このトルエン溶液に、40℃で24重量%の水酸化ナトリウム水溶液4.50g(0.027mol)を添加し、同温度で2時間攪拌した後、水を追加し水洗を行い、水層を分液除去した。その後、水及び酸を加えて中和した後、水層を分液除去した。次いで、水洗・分液操作を行った後、有機層をろ過し不溶解分を除去した後に減圧濃縮することによって、黄褐色粘調性液体25.34g(みかけ収率98.3%)を得た。
得られた黄褐色粘調性液体をHPLCで分析した所、上記式(1)においてn=0のものが68.3%で、2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンにエピクロヒドリンが1個付加したモノグリシジル体が0.4%、上記式(1)においてn=1のものが3.9%、n=1の水酸基にさらにエピクロヒドリンが付加したトリグリシジル体が9.0%、上記式(1)においてn=2以上のものが3.2%含まれていることから、目的とする上記式(1)で表されるジエポキシビナフタレン樹脂が生成していることを確認した。得られたジエポキシビナフタレン樹脂の物性を以下に示す。
・エポキシ当量:280g/eq
・溶融粘度;100℃:150mPa・s、150℃:23mPa・s
【0048】
<比較例1>
原料を1,1’−ビ−2−ナフトール11.45g(0.040mol)に変更した以外は実施例1と同様にエポキシ化反応、反応後の後処理を実施し、淡黄色固体の上記式(2)で表されるビナフトールのジグリシジルエーテルを主体とするエポキシ樹脂14.30g(みかけ収率91.9%、HPLC純度90.4%)得た。得られたエポキシ樹脂の物性を以下に示す。
・エポキシ当量:218g/eq
・溶融粘度;100℃:825mPa・s、150℃:40mPa・s
図1
図2