【0019】
特定の方法では、発酵培養物にCO
2を供給するステップには、発酵培養物に重炭酸イオン(HCO
3−)を加えるステップ、例えば、発酵培養物にNaHCO
3を加えるステップが含まれる。5mM、10mM、15mM、20mM、25mM、30mM、35mM、40mM、45mM、または50mMなど、5〜50mMのNaHCO
3の添加を利用することができる。他の方法では、発酵培養物にCO
2を供給するステップには、発酵培養物に炭酸イオン(CO
32−)を加えるステップ、例えば、発酵培養物にNa
2CO
3を加えるステップが含まれる。0.1M、0.2M、0.4M、0.6M、0.7M、0.9M、1.0M、1.5M、1.8M、または2.0Mなど、0.1M〜2.0MのNa
2CO
3の添加を利用することができる。5%(w/v)Na
2CO
3、10%(w/v)Na
2CO
3または20%(w/v)Na
2CO
3などの重量/体積(w/v)当量を利用することもできる。さらに他の方法では、発酵培養物にCO
2を供給するステップには、発酵培養物へのNaHCO
3の第1の添加およびNa
2CO
3の第2の添加が含まれる。さらなる方法では、発酵培養物にCO
2を供給するステップには、発酵培養物の上部にCO
2を通気するステップが含まれる。5%〜100%、例えば、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、または100%のCO
2通気を使用してもよい。
【実施例】
【0026】
選択された肺炎連鎖球菌(Streptococcus pneumoniae)血清型を、ワクチンに含まれる莢膜血清型による肺炎連鎖球菌(Streptococcus pneumoniae)を原因とする侵襲性疾患に対する能動免疫化のためのワクチンを生成するのに必要とされる多糖を供給するために増殖させた。細胞を発酵槽で増殖させ、発酵の終わりに溶解を誘導した。次いで溶解物ブロスを、下流の精製および莢膜多糖の回収のために集めた。多糖サイズは各調製バッチ中で分析される品質特性なので、多糖サイズは適切に制御しなければならない。糖の繰返し単位の間にホスホジエステル結合を有する血清型(例えば、6A、6B、19A、および19F)の分子量は、発酵プロセスのパラメーターによって影響を受けていることがわかった。以下の実施例は、多糖分子量を改善するために繰返し単位の間にホスホジエステル結合を有する肺炎連鎖球菌(Streptococcus pneumoniae)血清型の発酵中のCO
2の供給に関する試験について記載している。
【0027】
(実施例1)
多糖分子量に対する二酸化炭素供給効果
発酵
3LのBraun Biostat B発酵槽(B. Braun Biotech、米国ペンシルベニア州Allentown)で実験室での実験を行った。発酵槽にHYS培地(20g/L HySoy、2.5g/L NaCl、0.5g/L KH
2PO
4、0.013g/L CaCl
2・2H
2O、0.15g/L L−システインHCl)1.8Lを充填した。次いで発酵槽を、121℃で60分間加圧滅菌した。冷却した後、各ユニットに50%グルコース+1%硫酸マグネシウム(w/v)(DMS)溶液40または60mL/Lを加えた。必要に応じて、接種の前に重炭酸ナトリウムを加えた。
【0028】
HYS培地1Lを含有する2L種ボトル2本に、19A型または6A型の凍結保存種菌を接種し、撹拌せずに36℃で約6〜8時間インキュベートした。発酵槽の接種は、OD
600が0.3〜0.9、pHが4.75〜5.60のボトルから小分けにした100mL(約5.2% v/v)の体積量で行った。発酵温度およびpHは、所望の設定値で制御した。36℃、1L/分の空気通気、7に制御したpHおよび75rpmの撹拌の標準条件を使用した。2枚のインペラーを、撹拌シャフト上の低位置および中央位置に配置した。適切な塩基滴定液(3N NaOH、種々の濃度のNaHCO
3とブレンドした3N NaOH、種々の濃度のNa
2CO
3およびNaHCO
3とブレンドした3N NaOH、ならびに20%Na
2CO
3)を含有するボトルを、自動pH制御のために接続した。発酵槽を、外部pH、OD
600、グルコース、多糖、およびタンパク質について種々の時点でサンプリングした。グルコース濃度がほとんど枯渇したら、あるいは時間が経つにつれてODの増加が認められなくなったら、実験を終了した。
【0029】
光学密度(OD
600)測定
Shimadzu(米国メリーランド州Columbia)UV−1601(2nm帯域幅)またはSpectronics(米国ニューヨーク州Westbury)Genesys 5分光光度計(5nm帯域幅)を用いて600nmで試料の吸光度を読み取ることによって、発酵ブロスの細胞密度を決定した。ユニットは、試料の要求される希釈度に合うように脱イオン(DI)水で希釈したHYS培地で対照をとった。吸光度の数値を、十分に分光光度計の直線領域の範囲内である0.4未満に維持するために試料を希釈した。
【0030】
グルコース濃度
細胞を遠心分離機で分離し、その上清をそのまま、もしくはDI水で3倍希釈することによって、グルコースレベルを決定した。試料をNova Biomedical(米国マサチューセッツ州Waltham)BioProfile 400で分析した。
【0031】
多糖分析
試料を最終発酵読み取り値で採取し、0.13%(w/v)の濃度まで12%デオキシコール酸ナトリウム(DOC)で処理し、穏やかに撹拌した。それらを5℃で8〜24時間保持し、次いで50%酢酸でpHを5.0に調節して、大部分のDOCおよびタンパク質を沈殿させた。5℃でのさらに12〜24時間の保持間隔の後、試料を遠心分離した(14000rpm、Sorvall(Thermo Fisher Scientific、米国マサチューセッツ州Waltham)SS34ローター、15℃で10分)。上清のpHを6.0に調節した。次いで、上清を0.45μm Pall(米国ニューヨーク州East Hills)HT Tuffryn膜シリンジフィルター(低タンパク質結合)に通してろ過した。ろ過した生成物を、当技術分野でよく知られている標準的な方法を用いて高速サイズ排除クロマトグラフィー(HPLC−SEC)によって分析した(例えば、Aquilar、M.「HPLC of Peptides and Proteins: Methods and Protocols」 Totowa、NJ: Humana Press(2004)を参照のこと)。
【0032】
タンパク質分析
タンパク質レベルを、当技術分野でよく知られているドデシル硫酸ナトリウムポリアクリルアミドゲル電気泳動(SDS−PAGE)法によって分析した(例えば、Walker、J.M.「The Protein Protocols Handbook」 Totowa、NJ: Humana Press(2002)を参照のこと)。上記で調製したろ過した細胞溶解物(上清)を分注して65μL/チューブでマイクロチューブ中に入れた。還元剤(10μLジチオスレイトール(DTT))およびNuPAGE(登録商標)(Invitrogen、米国カリフォルニア州Carlsbad)4倍ドデシル硫酸リチウム(LDS)試料バッファー(25μL)の添加を各試料に行った。試料をボルテックスにかけて10分間加熱してからNuPAGE(登録商標)4〜12%Bis−Tris12ウェルゲルに10μL/レーンを導入した。ゲルをNuPAGE(登録商標)MES−SDSバッファー中150Vで約60分間に限定して泳動し、続いてZoion染色プロトコル(Zoion Biotech、米国マサチューセッツ州Worcester)を用いて染色した。LabWorks(商標)(UVP Inc.)V.3ソフトウェアを備えたUVP Imager(UVP Inc.、米国カリフォルニア州Upland)を用いて試料分析を行って、目的とする特定のタンパク質バンドのおおよその濃度を得た。ウシ血清アルブミン(BSA)フラクションVを使用してタンパク質の標準曲線を作って、試料(溶解した細胞ブロス中)のおおよそのタンパク質値を計算した。
【0033】
分子量分析
発酵試料1〜2リットルを、200rpmで撹拌しながら12%ナトリウムDOCで処理して0.13%(w/v)の濃度にした。試料を5℃または20℃のいずれかで8〜24時間保持した。次いで、50%酢酸で試料のpHを5.0または6.6に調節して、大部分のDOCおよびタンパク質を沈殿させた。5℃での12〜24時間の別の保持間隔の後、試料を遠心分離した(11000rpm、Sorvall(Thermo Fisher Scientific、米国マサチューセッツ州Waltham)SLA−3000ローター、10℃で15分)。次いで、3N NaOHで上清試料のpHを6.0に調節し、0.45μm Millipore(米国マサチューセッツ州Billerica)MP60フィルターを用いてろ過した。次いで、試料を、100K分子量カットオフ(MWCO)ダイアフィルトレーション(5倍濃度、続いてDI水を用いた7.5倍ダイアフィルトレーション)、0.1%HB沈殿、および炭素ろ過で構成される改変精製プロセスにかけた。次いで、精製した物質を多角度光散乱(MALLS)分析にかけた。
【0034】
発酵プロセス試験
これまでの試験に基づいて、塩基滴定液としてNa
2CO
3からNaOHに切り換えることによって発酵プロセスを最適化した。NaOHの使用により、回収pHを5.0に下げることが可能になり、顕著なタンパク質沈殿が得られた。Na
2CO
3は、CO
2を低pH(<6.6)で放出し、発泡体の形成をもたらす。19A型多糖およびタンパク質レベルに対する塩基滴定液の影響を調べた。3L発酵槽2台を設置し、1台の発酵槽は、塩基供給として20%Na
2CO
3溶液(w/v)を用いて元のプロセスの対照とした。他の発酵槽は、塩基供給として3N NaOHを使用した。
【0035】
回収段階の間に、発酵槽を36℃で30分間保持しながら、発酵槽中で細胞をDOC(最終濃度0.13%(w/v))で溶解した。このステップに続いて、溶解物を周囲温度(22℃)で撹拌しながら終夜保持した。溶解物保持の後、試料を種々のpH設定値で取り出しながら、溶解物を未調整から4.5までの範囲にわたってpH滴定した。これらの試料を周囲温度で終夜保持してからプロセスにかけ、多糖およびタンパク質濃度について分析した。発酵段階中のOD、塩基およびグルコースレベルを
図1および
図2に示す。主な違いは、炭酸塩実験についての高い最終ODであった。
【0036】
全タンパク質レベルに対するDOC溶解物pH調整後の影響も調べ、
図3に示した。より低いpHレベルでは、NaOH実験でもNa
2CO
3実験でも細胞を含まないブロスでタンパク質量が低減した。より低いpH(<6.6)は、多糖の収量に悪影響を与えなかった。発酵分析結果は、NaOH塩基供給が、発酵中にNa
2CO
3塩基供給を用いるプロセスの許容できる代替法であったが、Na
2CO
3供給で得られたものよりも低い収量をもたらしたという指標となった。
【0037】
19Aおよび6A分子量に対する塩基滴定液の影響
3Lスケールでの一連の発酵を行って、塩基滴定液、HySoy濃度およびpH保持ステップが血清型19A分子量に影響を及ぼしたかどうかを決定した。改変精製プロセスとその後のMALLSアッセイを用いて分子量決定を行った。結果を表1に示す。血清型6Aでは、塩基滴定液だけを評価した。結果を表2に示す。
【0038】
【表1】
【0039】
【表2】
【0040】
重炭酸塩および混合塩基pH滴定液の影響
第1の試験(実験L29331−122および−139)では、DOC保持ステップ後にpH5.0保持ステップと共に異なるレベルの初期重炭酸ナトリウムおよび水酸化ナトリウムと炭酸ナトリウムの塩基ブレンドを使用した。初期の重炭酸塩添加は、10〜50mMの範囲であり、塩基滴定液用の3N水酸化ナトリウムに加えた炭酸ナトリウムは、0.2〜1.8Mの範囲であった。1つの実験は、50mM初期重炭酸塩を含有しており、塩基滴定液としてNaOHを使用した。これらの発酵の終わりの炭酸塩レベルは、14〜111mMの範囲であった。血清型19A分子量は、520〜713kDaの範囲であった。実験パラメーターおよび結果を表3に示す。
【0041】
【表3】
【0042】
第2の試験(L29331−159および−185)は、15〜30mMの初期重炭酸塩添加を使用し、塩基ブレンドは、0.4〜1.0M Na
2CO
3を使用した。発酵の終わりの炭酸塩レベルは、24〜62mMの範囲であった。血清型19A分子量は、502〜763kDaの範囲であった。実験パラメーターおよび結果を表4に示す。
【0043】
【表4】
【0044】
混合されたおよび純粋な炭酸塩滴定塩基発酵プロセスの比較
塩基ブレンドプロセス(0.7M Na
2CO
3/3N NaOH)と炭酸塩滴定液プロセス(20%Na
2CO
3溶液、w/v)を比較するために実験を行った。結果(表5)は、炭酸塩滴定液プロセスの分子量が、塩基ブレンドプロセス(561−671kDa)の分子量よりも高く、より安定(778、781kDa)していたことを立証した。多糖収量も、Na
2CO
3プロセスでより高かった。
【0045】
【表5】
【0046】
パイロットスケール実験
種々の塩基滴定液を用いたいくつかの血清型19Aパイロットスケール(100L)実験を行った。完全な精製プロセスとその後のMALLSアッセイを用いて分子量決定を行い、最終精製バッチのものを報告している。結果を表6に示す。
【0047】
【表6】
【0048】
19A分子量に対する塩基滴定液および通気の影響
3Lスケールでの一連の発酵を行って、塩基滴定液および大気通気が分子量に影響を及ぼしたかどうかを決定した。改変精製プロセスとその後のMALLSアッセイを用いて分子量決定を行った。結果を表7に示す。
【0049】
【表7】
【0050】
冠詞「a」および「an」は、本明細書において、1個または2個以上(すなわち、少なくとも1個)の文法上の目的語の冠詞を意味するように使用している。一例として、「an element」は、1個または2個以上の要素を表す。
【0051】
本明細書に記載した全ての刊行物および特許出願は、本発明に関連する当業者のレベルを示すものである。全ての刊行物および特許出願は、それぞれ単独の刊行物または特許出願が具体的にかつ単独で参照により組み込まれるように示されている場合と同じ程度に参照により本明細書に組み込まれる。
【0052】
前述の発明は、理解を明確にするために例示および実施例によって多少詳しく記載されているが、特定の変形形態および変更形態を添付の特許請求の範囲内で実施してもよい。