【実施例】
【0041】
実施例1:70Ω/□ 多結晶シリコンウェーハを使用する太陽電池の調製
ヘレウス・マテリアルズ・テクノロジー・エルエルシー(Heraeus Materials Technology LLC)(ペンシルベニア州、ウエスト・コンショホッケン(W.Conshohocken))から市販されている市販の銀伝導性ペースト、SOL9235H、の構成成分(銀粉末、ガラスフリット、ガラス添加剤、および有機物)、約0.05〜5重量%のニッケルナノ粒子(この範囲の中の異なる百分率のNiを有する3つのペースト)、ならびにAl
2O
3、ZnO、Li
2O、Ag
2O、AgO、MoO
3、TiO
2、TeO
2、CoO、Co
2O
3、Bi
2O
3、CeO
2、CeF
4、SiO
2、MgO、PbO、ZrO
2、HfO
2、In
2O
3、SnO
2、P
2O
5、Ta
2O
5、B
2O
3、Ag
3PO
4、LiCoO
2、LiNiO
2、Ni
3(PO
4)
2、NiO、またはリン酸リチウムから選択される少なくとも1つのガラス添加剤を合わせることにより、電気伝導性ペースト(ペースト1)を調製する。このニッケルは、20nm〜500nmのd
50を有する粉末として利用する。このニッケルの重量%は、得られるペーストの総重量に基づく。
【0042】
ペースト1の1つの例示的なペーストは、約85重量%の銀粒子、約4〜5重量%のガラスフリット、約8重量%の有機媒体、約2重量%のガラス添加剤、および約0.5重量%のニッケルナノ粒子を含む(「ペースト1A」と呼ぶ)。ペースト1を構成する他の2つの例示的なペーストは、同量の銀粒子、ガラスフリット、有機媒体およびガラス添加剤を含むが、1つは、約0.2重量%のニッケルナノ粒子を含むのに対して、他方は、約0.7重量%のニッケルナノ粒子を含む。
【0043】
太陽電池を以下のようにして調製する:70Ω/□(mc)の面積抵抗を有する簡単にメタライゼーションできる(ready−to−be metalized)P型多結晶(mc)ソーラーウェーハの裏側に、アルミニウムペースト(RuXing 8252X)を印刷し、175℃で乾燥する。ペースト1Aを、ウェーハの前面に付与し、印刷し、150℃で乾燥する。次いでセルを、Despatch Ultra Flexオーブンの中で、700℃を超える温度で3.5秒間同時焼成する。3つの同一の6インチ(約15.2cm)の太陽電池を、上記3つの試料のペーストからこのようにして調製する。加えて、3つの同一の対照太陽電池(対照セルI)を、ニッケル添加剤を含まない市販のペーストを使用して、同じタイプの多結晶ソーラーウェーハ上に調製する。
【0044】
得られた太陽電池を、I−Vテスターを使用して試験する。I−Vテスターの中のXeアーク灯を、既知の強度を持つ太陽光を使用して模擬するように設定し、太陽電池の前面を照射して、I−V曲線を生成させる。この曲線を使用して、短絡電流密度(Jsc)、短絡電流(Isc)、開回路電圧(Voc)、曲線因子(FF)、シャント抵抗(並列抵抗)(Rsh)、直列抵抗(Rs)、およびEta(効率)を含めた、電気性能の比較を与えるいくつかのパラメータを決定する。
【0045】
ペースト1Aを使用して調製した3つのセルおよび3つの対照セルIについての平均の電気性能データを比較する。すべての測定値を対照セルの平均値に対して正規化した。そしてそれらを表1に示す。当該ニッケルナノ粒子含有ペーストは、対照ペーストよりも、曲線因子の顕著な向上および向上した効率を与えることがわかる。
【0046】
【表1】
【0047】
実施例2:100Ω/□ 多結晶シリコンウェーハを使用する太陽電池の調製
ヘレウス・マテリアルズ・テクノロジー・エルエルシー(ペンシルベニア州、ウエスト・コンショホッケン)から市販されている市販の銀伝導性ペースト、SOL9273MA、の構成成分(銀粉末、ガラス、ガラス添加剤、および有機物)、0.05〜5.0重量%のニッケルナノ粒子(この範囲の中の異なる百分率のNiを有する3つのペースト)、ならびにAl
2O
3、ZnO、Li
2O、Ag
2O、AgO、MoO
3、TiO
2、TeO
2、CoO、Co
2O
3、Bi
2O
3、CeO
2、CeF
4、SiO
2、MgO、PbO、ZrO
2、HfO
2、In
2O
3、SnO
2、P
2O
5、Ta
2O
5、B
2O
3、Ag
3PO
4、LiCoO
2、LiNiO
2、Ni
3(PO
4)
2、NiO、またはリン酸リチウムから選択される少なくとも1つのガラス添加剤を合わせることにより、電気伝導性ペースト(ペースト2)を調製する。このニッケルは、20nm〜500nmのd
50を有する粉末として利用する。このニッケルの重量%は、得られるペーストの総重量に基づく。
【0048】
ペースト2の1つの例示的なペーストは、約85重量%の銀粒子、約4〜5重量%のガラスフリット、約8重量%の有機媒体、約2重量%のガラス添加剤、および約0.2重量%のニッケルナノ粒子を含む(「ペースト2A」と呼ぶ)。ペースト2を構成する他の2つの例示的なペーストは、同量の銀粒子、ガラスフリット、有機媒体およびガラス添加剤を含むが、1つは、約0.2重量%のニッケルナノ粒子を含むのに対して、他方は、約0.7重量%のニッケルナノ粒子を含む。
【0049】
太陽電池を以下のようにして調製する:100Ω/□(mc)の面積抵抗を有する簡単にメタライゼーションできるP型多結晶(mc)ソーラーウェーハの裏側に、アルミニウムペースト(Monocrystal 1208D)を印刷し、175℃で乾燥する。ペースト2Aを、ウェーハの前面に付与し、印刷し、150℃で乾燥する。次いでセルを、Despatch Ultra flex加熱炉の中で、700℃を超える温度で3.8秒間同時焼成する。3つの同一の太陽電池を、上記3つの試料のペースト2Aからこのようにして調製する。加えて、3つの同一の対照太陽電池(対照セルII)を、ニッケル添加剤を含まない市販のペーストを使用して、同じタイプの多結晶ソーラーウェーハ上に調製する。
【0050】
得られた太陽電池を、I−Vテスターを使用して、実施例1に記載したようにして試験し、同じパラメータを記録する。加えて、TLM法を使用して接触抵抗(ρ
c)(Ωcm
2単位で表される)を測定する。
【0051】
ペースト2Aを使用して調製した3つのセル、および3つの対照セルIIについての平均の電気性能データを比較する。すべての測定値を対照セルの平均値に対して正規化した。そしてそれらを表2に示す。当該ニッケルナノ粒子含有ペーストは、対照ペーストよりも、曲線因子およびEtaの顕著な向上、およびより低い接触抵抗を与えることがわかる。
【0052】
【表2】
【0053】
実施例3:80Ω/□ 単結晶シリコンウェーハを使用する太陽電池の調製
ヘレウス・マテリアルズ・テクノロジー・エルエルシー(ペンシルベニア州、ウエスト・コンショホッケン)から市販されている市販の銀伝導性ペースト、SOL9235H、5nm〜300nmの粒径d
50を有するニッケルナノ粒子、ならびにAl
2O
3、ZnO、Li
2O、Ag
2O、AgO、MoO
3、TiO
2、TeO
2、CoO、Co
2O
3、Bi
2O
3、CeO
2、CeF
4、SiO
2、MgO、PbO、ZrO
2、HfO
2、In
2O
3、SnO
2、P
2O
5、Ta
2O
5、B
2O
3、Ag
3PO
4、LiCoO
2、LiNiO
2、Ni
3(PO
4)
2、NiO、またはリン酸リチウムから選択される少なくとも1つのガラス添加剤を合わせることにより、電気伝導性ペースト(ペースト3)を調製する。このニッケルを上記ペーストと混合し、三本ロール練り機にかけた。ペースト3は、得られるペーストの総重量に基づき、0.1%〜3.0%のニッケルを含有する(この範囲内の異なる百分率のNiを有する3つのペースト)。
【0054】
例示的なペースト3Aは、約85重量%の銀粒子、約4〜5重量%のガラスフリット、約8重量%の有機媒体、約2重量%のガラス添加剤、および約0.5重量%のニッケルナノ粒子を含む。例示的なペースト3Bは、同量の銀粒子、ガラスフリット、有機媒体、およびガラス添加剤を含むが、約0.2重量%のニッケルナノ粒子を含む。例示的なペースト3Cは、同量の銀粒子、ガラスフリット、有機媒体、およびガラス添加剤を含むが、約0.7重量%のニッケルナノ粒子を含む。
【0055】
太陽電池を以下のようにして調製する:80Ω/□の面積抵抗を有する簡単にメタライゼーションできるP型単結晶ソーラーウェーハの裏側に、アルミニウムペースト(Monocrystal 1208D)を印刷し、175℃で乾燥する。ペースト3A〜3Cを、各々、ウェーハの前面に付与し、印刷し、150℃で乾燥する。次いでセルを、Despatch Ultra flex加熱炉の中で、700℃を超える温度で3.5秒間同時焼成する。ペースト3A〜3Cの各々を使用して3つの同一の太陽電池を調製する。3つのさらなる太陽電池を、対照(対照セルIII)として、ニッケルを含まない市販のペーストを使用して、単結晶ソーラーウェーハ上に調製する。
【0056】
得られた太陽電池を、I−Vテスターを使用して、実施例1に記載したようにして試験する。ペースト3A〜3Cを使用して調製したセル、および3つの対照セルIIIについての平均の電気性能データを比較する。すべての測定値を対照セルの平均値に対して正規化した。そしてそれらを表3に示す。ペースト3Aおよびペースト3Cと比べて最も少ない量のニッケルナノ粒子を有するペースト3Bが、顕著な曲線因子の向上および対照ペーストよりも良好な直列抵抗および効率を与えることがわかる。
【0057】
【表3】
【0058】
実施例4:80Ω/□ 単結晶シリコンウェーハを使用する二層太陽電池の調製
ヘレウス・マテリアルズ・テクノロジー・エルエルシー(ペンシルベニア州、ウエスト・コンショホッケン)から市販されている市販の銀伝導性ペースト、SOL9273MA、の構成成分(銀粉末、ガラス、ガラス添加剤、および有機物)、0.05〜5.0重量%の、20〜500nmの粒径d
50を有するニッケルナノ粒子(この範囲の中の異なる百分率を有する3つの試料)、ならびに0.1〜2.0%の、Al
2O
3、ZnO、Li
2O、Ag
2O、AgO、MoO
3、TiO
2、TeO
2、CoO、Co
2O
3、Bi
2O
3、CeO
2、CeF
4、SiO
2、MgO、PbO、ZrO
2、HfO
2、In
2O
3、SnO
2、P
2O
5、Ta
2O
5、B
2O
3、Ag
3PO
4、LiCoO
2、LiNiO
2、Ni
3(PO
4)
2、NiO、またはリン酸リチウムから選択される少なくとも1つのガラス添加剤を合わせることにより、電気伝導性ペースト(ペースト4)を調製する。すべての重量%は、得られるペーストの総重量に基づく。
【0059】
ペースト4の1つの例示的なペーストは、約85重量%の銀粒子、約4〜5重量%のガラスフリット、約8重量%の有機媒体、約0.1〜2重量%のガラス添加剤、および約0.5重量%のニッケルナノ粒子を含む(「ペースト4A」と呼ぶ)。ペースト4を構成する他の2つの例示的なペーストは、同量の銀粒子、ガラスフリット、有機媒体およびガラス添加剤を含むが、1つは、約0.2重量%のニッケルナノ粒子を含むのに対して、他方は、約0.7重量%のニッケルナノ粒子を含む。
【0060】
太陽電池を以下のようにして調製する:70Ω/□の面積抵抗を有する簡単にメタライゼーションできるP型単結晶(sc)ソーラーウェーハの裏側に、アルミニウムペースト(RuXing 8252X)を印刷し、175℃で乾燥する。ペースト4Aの第1の層をこのウェーハの前面に付与し、印刷し、150℃で乾燥する。市販の銀ペーストSOL9273(ヘレウス・マテリアルズ・テクノロジー(Heraeus Materials Technology)から市販されている)の第2の層を、ペースト6の層の上(部)に付与し、印刷し、150℃で乾燥する。実施例はHeraeus SOL9273の使用に限定されず、いずれの銀伝導性ペーストを第2の層として使用してもよい。次いでセルを、Despatch Ultra flex加熱炉の中で、700℃を超える温度で3.6秒間同時焼成する。3つの同一の太陽電池をこのようにして調製する。
【0061】
加えて、市販の銀ペーストの2つの層、SOL9411の第1の層およびSOL9273の第2の層(両方とも、ヘレウス・マテリアルズ・テクノロジーから市販されている)、を、同じタイプの単結晶ソーラーウェーハ上で使用して3つの同一の対照太陽電池(対照セルIV)を調製する。
【0062】
得られた太陽電池を、I−Vテスターを使用して、実施例1に記載したようにして試験し、同じパラメータを記録する。加えて、実施例2に記載したように、TLM法を使用して接触抵抗(ρ
c)を測定する。
【0063】
ペースト4Aを使用して調製した3つのセル、および3つの対照セルIVについての平均の電気性能データを比較する。すべての測定値を対照セルの平均値に対して正規化した。そしてそれらを表4に示す。当該ニッケルナノ粒子含有ペーストは、対照ペーストよりも、曲線因子の顕著な向上および接触抵抗の顕著な低下をもたらす。
【0064】
【表4】
【0065】
実施例5:65Ω/□ 多結晶シリコンウェーハ上での、銀ペーストの中にNi合金を含む、および含まない太陽電池の調製
ヘレウス・マテリアルズ・テクノロジー・エルエルシー(ペンシルベニア州、ウエスト・コンショホッケン)から市販されている市販の銀伝導性ペースト、SOL9273MA、の構成成分(銀粉末、ガラス、ガラス添加剤、および有機物)、0.05〜5.0重量%の、500nm未満の粒径d
50を有するニッケル合金(この範囲の中の異なる百分率を有する10個の試料)、ならびに0.1〜2.0%の、Al
2O
3、ZnO、Li
2O、Ag
2O、AgO、MoO
3、TiO
2、TeO
2、CoO、Co
2O
3、Bi
2O
3、CeO
2、CeF
4、SiO
2、MgO、PbO、ZrO
2、HfO
2、In
2O
3、SnO
2、P
2O
5、Ta
2O
5、B
2O
3、Ag
3PO
4、LiCoO
2、LiNiO
2、Ni
3(PO
4)
2、NiO、またはリン酸リチウムから選択される少なくとも1つのガラス添加剤を合わせることにより、電気伝導性ペースト(ペースト5)を調製する。すべての重量%は、得られるペーストの総重量に基づく。
【0066】
太陽電池を以下のようにして調製する:65Ω/□の面積抵抗を有する簡単にメタライゼーションできるP型多結晶(sc)ソーラーウェーハの裏側に、アルミニウムペースト(RuXing 8204)を印刷し、175℃で乾燥する。ペースト5をウェーハの前面に付与し、印刷し、150℃で乾燥する。次いでセルを、Despatch CDF加熱炉の中で、700℃を超える温度で3.6秒間同時焼成する。10個の同一の太陽電池をこのようにして調製する。
【0067】
加えて、10個の同一の対照太陽電池(対照セルV)を、ニッケル添加剤を含まない市販のペーストSOL9411を使用して、同じタイプの多結晶ソーラーウェーハ上に調製する。
【0068】
得られた太陽電池を、I−Vテスターを使用して、実施例1に記載したようにして試験し、同じパラメータを記録する。加えて、実施例2に記載したように、TLM法を使用して接触抵抗(ρ
c)を測定する。
【0069】
ペースト5を使用して調製した10個のセル、および10個の対照セルVについての平均の電気性能データを比較する。当該ニッケル合金ナノ粒子含有ペーストは、対照ペーストよりも、曲線因子および効率の顕著な向上および接触抵抗の顕著な低下をもたらす。
【0070】
実施例6:80Ω/□ 多結晶シリコンウェーハ上での、銀ペーストの中にNiおよびNi合金を含む、および含まない太陽電池の調製
ヘレウス・マテリアルズ・テクノロジー・エルエルシー(ペンシルベニア州、ウエスト・コンショホッケン)から市販されている市販の銀伝導性ペースト、SOL9273MA、の構成成分(銀粉末、ガラス、ガラス添加剤、および有機物)、0.05〜5.0重量%の、5%〜95%のニッケルを含有するニッケルおよびニッケル合金ナノ粒子混合物、ならびに5%〜95%のニッケル合金、ならびに0.1〜2.0%の、Al
2O
3、ZnO、Li
2O、Ag
2O、AgO、MoO
3、TiO
2、TeO
2、CoO、Co
2O
3、Bi
2O
3、CeO
2、CeF
4、SiO
2、MgO、PbO、ZrO
2、HfO
2、In
2O
3、SnO
2、P
2O
5、Ta
2O
5、B
2O
3、Ag
3PO
4、LiCoO
2、LiNiO
2、Ni
3(PO
4)
2、NiO、またはリン酸リチウムから選択される少なくとも1つのガラス添加剤(これらの範囲の中の異なる百分率を有する各ペーストの10個の試料)を合わせることにより、2つの電気伝導性ペースト(ペースト6および7)を調製する。このニッケルおよびニッケル合金ナノ粒子は、20nm〜500nmの粒径d
50を有する。
【0071】
太陽電池を以下のようにして調製する:80Ω/□の面積抵抗を有する簡単にメタライゼーションできるP型多結晶(sc)ソーラーウェーハの裏側に、アルミニウムペースト(RuXing 8204)を印刷し、175℃で乾燥する。ペースト6またはペースト7をウェーハの前面に付与し、印刷し、150℃で乾燥する。次いでセルを、Despatch CDF加熱炉の中で、700℃を超える温度で3.6秒間同時焼成する。ペースト6を含有する10個の同一の太陽電池およびペースト7を含有する10個の同一の太陽電池をこのようにして調製する。
【0072】
加えて、10個の同一の対照太陽電池(対照セルVI)を、市販の銀ペーストSOL9273を使用して、調製する。得られた太陽電池を、I−Vテスターを使用して、実施例1に記載したようにして試験し、同じパラメータを記録する。加えて、実施例2に記載したように、TLMを使用して接触抵抗(ρ
c)を測定する。
【0073】
ペースト6およびペースト7を使用して調製した20個のセルおよび10個の対照セルVIについての平均の電気性能データを比較する。ニッケルおよびニッケル合金含有ペーストは、曲線因子の顕著な向上および顕著な効率の上昇をもたらす。
【0074】
実施例7:ニッケル−チタンナノ粒子を含む銀ペーストを有する多結晶シリコン太陽電池
ニッケル−チタンナノ粒子添加剤を電気伝導性ペーストの中に含める効果を確認するために、電気伝導性ペースト(ペースト8)を調製した。このペーストは、約85重量%の銀粒子、約4重量%のガラスフリット、約9重量%の有機媒体および約0.8重量%のNiTiナノ粒子を含んでいた。加えて、このペーストは、約0.1〜2重量%の、Al
2O
3、ZnO、Li
2O、Ag
2O、AgO、MoO
3、TiO
2、TeO
2、CoO、Co
2O
3、Bi
2O
3、CeO
2、CeF
4、SiO
2、MgO、PbO、ZrO
2、HfO
2、In
2O
3、SnO
2、P
2O
5、Ta
2O
5、B
2O
3、Ag
3PO
4、LiCoO
2、LiNiO
2、Ni
3(PO
4)
2、NiO、またはリン酸リチウムから選択される少なくとも1つのガラス添加剤を含む。このNiTiナノ粒子成分は、およそ50%のニッケルおよび50%のチタンを含む。このNiTiナノ粒子は、20nm〜500nmのd
50を有する粉末として利用する。
【0075】
太陽電池を以下のようにして調製する:70Ω/□の面積抵抗を有するP型多結晶(mc)ソーラーウェーハ(156mm
2)の裏側に、アルミニウムペースト(RuXing 8204)を印刷し、175℃で乾燥する。メッシュ290、ワイヤ厚さ20ミクロン(20μm)、EOM 18ミクロン(18μm)、フィンガーライン幅60ミクロン(60μm)の特徴を有するスクリーンを使用して、150mm/sの速度でペースト8をウェーハの前面にスクリーン印刷し、フィンガーラインを形成する。印刷したウェーハを、次いで、150℃で乾燥した。次いでこのセルを、700℃を超える温度でおよそ3〜4秒間焼成する。
【0076】
得られた太陽電池を、I−Vテスターを使用して試験する。I−Vテスターの中のXeアーク灯を、既知の強度を持つ太陽光を使用して模擬するように設定し、太陽電池の前面(部)を照射して、I−V曲線を生成させる。この曲線を使用して、太陽電池効率(NCell)、短絡電流(Isc)、開回路電圧(Voc)、曲線因子(FF)、逆方向飽和電流(Irev2)、シャント抵抗(Rsh)、直列抵抗(Rs)、前面グリッド抵抗(front grid resistance)(Rfront)および接触抵抗(Rc)を含めた、電気性能の比較を与えるいくつかのパラメータを決定する。
【0077】
ペースト8から印刷した4つのフィンガーラインの電気性能データを一緒にし、平均を算出した。結果を表5に示す。このペーストは、低直列抵抗および許容できる曲線因子を成し遂げた。
【0078】
【表5】
【0079】
実施例8:より少ない量のニッケル−チタンナノ粒子を含む銀ペーストを有する多結晶シリコン太陽電池
電気伝導性ペーストの中に(実施例7と比べて)より少ない量のニッケル−チタンナノ粒子を含めることの効果を確認するために、2つの電気伝導性ペースト(ペースト9および10)を調製した。これらのペーストは、約85重量%の銀粒子、約5重量%のガラスフリット、約8重量%の有機媒体、および約0.1〜2重量%の、Al
2O
3、ZnO、Li
2O、Ag
2O、AgO、MoO
3、TiO
2、TeO
2、CoO、Co
2O
3、Bi
2O
3、CeO
2、CeF
4、SiO
2、MgO、PbO、ZrO
2、HfO
2、In
2O
3、SnO
2、P
2O
5、Ta
2O
5、B
2O
3、Ag
3PO
4、LiCoO
2、LiNiO
2、Ni
3(PO
4)
2、NiO、またはリン酸リチウムから選択される少なくとも1つのガラス添加剤を含んでいた。ペースト9は約0.24重量%のNiTiナノ粒子をも含んでおり、ペースト10は、約0.20重量%のNiTiナノ粒子を含んでいた。このNiTiナノ粒子成分は、約50%のニッケルおよび約50%のチタンを含んでいた。このNiTiナノ粒子は、20nm〜500nmのd
50を有する粉末として利用した。
【0080】
80Ω/□の面積抵抗を有するP型多結晶(mc)ソーラーウェーハ(156mm
2)の上にペースト9を印刷したことを除いて、実施例7に示したものと同じパラメータに従って、太陽電池(ペースト9および10の各々を含む)を調製した。
【0081】
次いで、得られた太陽電池を、I−Vテスターを使用して試験した。I−Vテスターの中のXeアーク灯を、既知の強度を持つ太陽光を使用して模擬するように設定し、太陽電池の前面を照射して、I−V曲線を生成させる。この曲線を使用して、太陽電池効率(NCell)、短絡電流(Isc)、開回路電圧(Voc)、曲線因子(FF)、逆方向飽和電流(Irev2)、シャント抵抗(Rsh)、直列抵抗(Rs)、前面グリッド抵抗(Rfront)および接触抵抗(Rc)を含めた、電気性能の比較を与えるいくつかのパラメータを決定する。
【0082】
ペースト9およびペースト10から印刷した4つのフィンガーラインの電気性能データを一緒にし、平均を算出した。結果を表6に示す。これらのペーストは、優れた効率、曲線因子および開回路電圧を成し遂げた。
【0083】
【表6】
【0084】
上記の実施形態の幅広い創意工夫に富む技術思想から逸脱せず、上記の実施形態に変更を加えることができるということは、当業者にはわかるであろう。それゆえ、本発明は、開示された特定の実施形態に限定されるものではなく、添付の特許請求の範囲によって定められる本発明の趣旨および範囲に含まれる改変を包含することが意図されているということが理解される。