特許第6097881号(P6097881)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ マイクロ モーション インコーポレイテッドの特許一覧

<>
  • 特許6097881-振動デンシトメータの振動部材 図000002
  • 特許6097881-振動デンシトメータの振動部材 図000003
  • 特許6097881-振動デンシトメータの振動部材 図000004
  • 特許6097881-振動デンシトメータの振動部材 図000005
  • 特許6097881-振動デンシトメータの振動部材 図000006
  • 特許6097881-振動デンシトメータの振動部材 図000007
  • 特許6097881-振動デンシトメータの振動部材 図000008
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6097881
(24)【登録日】2017年2月24日
(45)【発行日】2017年3月15日
(54)【発明の名称】振動デンシトメータの振動部材
(51)【国際特許分類】
   G01N 9/00 20060101AFI20170306BHJP
【FI】
   G01N9/00 C
【請求項の数】18
【全頁数】12
(21)【出願番号】特願2016-505453(P2016-505453)
(86)(22)【出願日】2013年4月4日
(65)【公表番号】特表2016-519298(P2016-519298A)
(43)【公表日】2016年6月30日
(86)【国際出願番号】US2013035298
(87)【国際公開番号】WO2014163642
(87)【国際公開日】20141009
【審査請求日】2015年9月25日
(73)【特許権者】
【識別番号】500205770
【氏名又は名称】マイクロ モーション インコーポレイテッド
(74)【代理人】
【識別番号】110000556
【氏名又は名称】特許業務法人 有古特許事務所
(72)【発明者】
【氏名】パンクラッツ, アンソニー ウィリアム
(72)【発明者】
【氏名】ケーシー, ミーガン
【審査官】 北川 創
(56)【参考文献】
【文献】 米国特許出願公開第2012/0144901(US,A1)
【文献】 国際公開第2012/030353(WO,A1)
【文献】 特表2013−536945(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 9/00
(57)【特許請求の範囲】
【請求項1】
振動デンシトメータ(400)に用いるように構成された振動部材(412)であって、
ベース(407)と、
該ベース(407)に固定される振動チューブ部(405)であって、
第1の弧状部(430a)と、
第2の弧状部(430b )と、
第1の非弧状部(432a )と、
第2の非弧状部(432b )を備えた振動チューブ部(405)を備え、
前記第1及び第2の非弧状部(432a 、432b)は、前記第1及び第2の弧状部(430a 、430b)の間に位置し、楕円形の断面に形成されて、小軸寸法よりも長い大軸寸法を有し、前記楕円形の断面形は振動チューブ部(405)における振動モード間の周波数分離を増加
前記第1及び第2の非弧状部(432a 、432b)は、各第1及び第2の弧状部(430a、430b)に接合されて、複数の長端部を規定する、振動部材(412)。
【請求項2】
前記振動チューブ部(405)は、1以上のラジアル振動モードにて振動されるように構成される、請求項1に記載の振動部材(412)。
【請求項3】
前記第1及び第2の非弧状部(432a、432b)は、前記第1及び第2の弧状部(430a、430b)の間に、オフセットスパン(OS)を付与する、請求項1に記載の振動部材(412)。
【請求項4】
前記第1及び第2の非弧状部(432a、432b)は、前記第1及び第2の弧状部(430a、430b)の間に、オフセットスパン(OS)を付与し、オフセットスパン(OS)内の増大部は第1のラジアル振動モードと第2のラジアル振動モード間の周波数分離を増加させる、請求項1に記載の振動部材(412)。
【請求項5】
前記第1及び第2の非弧状部(432a、432b)は、第1及び第2の弧状部(430a、430b)に固定される、請求項1に記載の振動部材(412)。
【請求項6】
前記第1及び第2の非弧状部(432a、432b)は、前記第1及び第2の弧状部(430a、430b)に溶接又はろう付けされる、請求項1に記載の振動部材(412)。
【請求項7】
第1及び第2の非弧状部(432a、432b)は、前記振動チューブ部(450)の長さに延びている、請求項1に記載の振動部材(412)。
【請求項8】
前記振動チューブ部(405)は、振動デンシトメータ(400)のハウジング(401)に含まれている、請求項1に記載の振動部材(412)。
【請求項9】
前記振動デンシトメータ(400)は、前記ハウジング(401)に対して前記振動チューブ部(450)を振動させるように構成されたドライバ(416)を含み、少なくとも1つの振動センサ(417)を含む、請求項8に記載の振動部材(412)。
【請求項10】
振動デンシトメータに使用されるように構成された振動部材を形成する方法であって、
ベースを形成する工程と、
第1の弧状部と第2の弧状部と第1の非弧状部と第2の非弧状部を備える振動チューブ部を形成する工程であって、前記第1と第2の非弧状部は、第1の弧状部と第2の弧状部との間に位置し、前記振動チューブ部は楕円形の断面に形成されて、小軸寸法よりも長い大軸寸法を有し、前記第1及び第2の非弧状部は、各第1及び第2の弧状部に接合されて、複数の長端部を規定し、前記楕円形の断面形は振動チューブ部における振動モード間の周波数分離を増加する工程と、
前記振動チューブ部をベースに固定する工程を備える、方法。
【請求項11】
前記振動チューブ部は、1以上のラジアル振動モードにて振動されるように構成される、請求項10に記載の方法。
【請求項12】
前記第1及び第2の非弧状部は、前記第1及び第2の弧状部の間に、オフセットスパン(OS)を付与する、請求項10に記載の方法。
【請求項13】
前記第1及び第2の非弧状部は、第1及び第2の弧状部の間に、オフセットスパン(OS)を付与し、該オフセットスパン(OS)内の増大部は第1のラジアル振動モードと第2のラジアル振動モード間の周波数分離を増加させる、請求項10に記載の方法。
【請求項14】
前記振動チューブ部を形成する工程は更に、前記第1及び第2の非弧状部を、前記第1及び第2の弧状部に固定する工程を備える、請求項10に記載の方法。
【請求項15】
前記振動チューブ部を形成する工程は更に、前記第1及び第2の非弧状部を、前記第1及び第2の弧状部に溶接又はろう付けする工程を備える、請求項10に記載の方法。
【請求項16】
前記第1及び第2の非弧状部を形成する工程は更に、前記第1及び第2の非弧状部を前記振動チューブ部の長さに延びるように形成する工程を備える、請求項10に記載の方法。
【請求項17】
更に、前記振動チューブ部の少なくとも一部がハウジング内に位置するように、前記振動チューブ部の入口端部を振動デンシトメータの前記ハウジングに連結する工程を含む、請求項10に記載の方法。
【請求項18】
更に、前記振動チューブ部を振動させるように位置決めされるドライバを付与する工程と、
前記振動チューブ部の振動を定量化するように位置決めされる少なくとも1つの振動センサを付与する工程を含む、請求項17に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、振動デンシトメータに関し、特に振動デンシトメータの振動部材に関する。
【背景技術】
【0002】
問題の記述
デンシトメータは当該技術分野で一般的に公知であり、流体の密度を測定するのに用いられる。流体は、液体、ガス、浮遊した粒子及び/又は混入ガスを有する液体、又はそれらの組み合わせを含む。
振動デンシトメータは、テスト下に流体に晒されるシリンダのような振動部材を備える。振動するデンシトメータの一例は、片持ち取付けされた円筒状の導管であり、入口端部は既存のパイプライン又は他の構造に連結され、出口端部は振動自在である。導管が振動されて共振周波数が測定される。当該技術分野で一般的に公知の如く、テスト下の流体の密度は流れ流体が存在する状態にて導管の共振周波数を測定することにより決定される。周知の原理に従って、導管の共振周波数は導管に接する流体の密度に反比例して変化する。
【0003】
図1は、従来技術の振動ガスデンシトメータの振動シリンダを示す。ガスは密度が低いから、そのような振動シリンダ要素はガスの密度を決定するのに有用である。従来技術の環状の振動シリンダは、固有振動数(即ち、共振周波数)にて又は固有振動数の近傍で振動される。ガスが存在している状態でシリンダの共振周波数を測定することにより、ガスの密度が決定される。従来技術の振動シリンダは金属から形成され、シリンダ壁の変形及び/又は欠陥は振動シリンダの共振周波数に影響しないように、均一の厚みが望ましい。
【0004】
理論的には、完全に環状で均一の断面形状を有するシリンダは、3つに分葉した(three-lobed)形の周波数モードを1つだけ有する結果となる。しかし、公差によって生じる現実の非対称及び他の不規則性又は欠陥により、おそらくは周波数が非常に近い形の2つの振動モードを生成する結果となる(図3参照)。2つの振動モードを区別するのは実際には不可能であるので、これは問題である。その結果、従来技術のデンシトメータは2つの振動モードの混合又は結合である共振周波数の値を生成し、密度測定に誤りを生じる。
【0005】
図2は、従来技術のデンシトメータを示す。従来技術のデンシトメータは、少なくとも部分的にハウジング内に位置する円筒状の振動部材を含む。ハウジング又は振動部材は、デンシトメータをパイプライン又は同様の流体を搬送するデバイスに流体が漏れない方法で作動的に連結するフランジ又は他の部材を含む。示された例において、振動部材は入口端部にてハウジングに片持ち梁状に取り付けられている。他端部は振動自在である。振動部材は複数の流体開口を含み、該流体開口により流体はデンシトメータ内に入り、ハウジングと振動部材の間を流れることが出来る。従って、流体は振動部材の外面と同様に振動部材の内側に接する。これはより大きな表面がガスに晒されるから、テスト下の流体がガスであるときに特に有益である。
他の例において、開口はハウジングに配備されて、振動部材の開口は必要ではない。
【0006】
ドライバと振動センサは、シリンダ内に位置している。ドライバはメータ電子機器から駆動信号を受信し、固有振動数にて又は固有振動数の近傍で振動部材を振動させる。振動センサは振動部材の振動を検出し、処理の為に、振動情報をメータ電子機器に送信する。メータ電子機器は、振動部材の共振周波数を決定し、測定された共振周波数から密度測定を生成する。
【0007】
正確な密度測定を得るべく、共振周波数は安定しなければならない。所望の安定性を得る1つの従来技術のアプローチは、振動部材をラジアル振動モードで振動させることである。ラジアル振動モードにて、振動部材の長軸は本質的に安定し、一方、振動部材の壁の少なくとも一部は、待機位置から平行移動し及び/又は回転して離れる。ラジアル振動モードは直線状の導管のデンシトメータに好ましい、何故ならラジアル振動モードは自己平衡型であり、振動部材の取付け特性は、幾つかの他の振動モードに比して重要ではないからである。
【0008】
図3は、振動部材の壁の動作を示し、第1のラジアル振動モードと第2のラジアル振動モードを示している。これは3つに分葉したラジアル振動モードを構成するラジアル振動モードの例である。
ガス密度シリンダ用の重要な設計基準は、振動モード形を分離して、モード形が容易に且つ正確に区別されることである。振動部材が完全に環状の断面形状を有し、完全に均一な壁厚を有していれば、1つだけの3つに分葉したラジアル振動モードがある。しかし、設計公差故に、これは普通は達成可能ではない。従って、製造業者が完全に均一な壁厚を有する完全に環状の振動部材を作ろうと試みるときは、小さな欠陥が周波数が非常に接近した2つの振動モードで振動する2つの3つに分葉したラジアル振動モードをもたらす。2つのモード間の周波数分離は一般的に非常に小さく、例えば1ヘルツ以下である。2つの周波数が接近している状態では、密度の決定は困難か不可能である。
【0009】
幾つかの従来技術のデンシトメータにて、この問題は振動部材がラジアル振動モード間に最小の周波数分離を有するように、振動部材を同調させることにより取り組まれる。同調は長手方向を厚く形成し、振動部材の壁の薄い領域を軸方向に並んだストリップ状に形成することを含む種々の技術に従って達成される。しかし、この従来技術の厚み同調は尚、非常に厳しい公差を要求し、製造上の困難と高いコストをもたらす。
従って、振動モードの分離が増加した振動型デンシトメータを求めるニーズが存在する。
【発明の概要】
【課題を解決するための手段】
【0010】
発明の態様
発明の一態様にて、振動デンシトメータに用いる振動部材は、
ベースと、
該ベースに固定される振動チューブ部であって、
第1の弧状部と、
第2の弧状部と、
第1の非弧状部と、
第2の非弧状部を備えた振動チューブ部を備え、
前記第1及び第2の非弧状部は、第1及び第2の弧状部の間に位置し、楕円形の断面に形成されて、小軸寸法よりも長い大軸寸法を有し、前記楕円形の断面形は振動チューブ部における振動モード間の周波数分離を増加する。
【0011】
振動チューブ部は、1以上のラジアル振動モードにて振動されるように構成されるのが好ましい。
第1及び第2の非弧状部は、第1及び第2の弧状部の間に、オフセットスパン(OS)を付与するのが好ましい。
第1及び第2の非弧状部は、第1及び第2の弧状部の間に、オフセットスパン(OS)を付与し、オフセットスパン(OS)内の増大部は第1のラジアル振動モードと第2のラジアル振動モード間の周波数分離を増加させるのが好ましい。
第1及び第2の非弧状部は、第1及び第2の弧状部に固定されるのが好ましい。
第1及び第2の非弧状部は、第1及び第2の弧状部に溶接又はろう付けされるのが好ましい。
【0012】
第1及び第2の非弧状部は、振動チューブ部の長さに延びているのが好ましい。
振動チューブ部は振動デンシトメータのハウジングに含まれているのが好ましい。
振動デンシトメータは、ハウジングに対して振動チューブ部を振動させるように構成されたドライバを含み、少なくとも1つの振動センサを含むのが好ましい。
【0013】
本発明の1つの態様において、振動デンシトメータに使用される振動部材を形成する方法は、
ベースを形成する工程と、
第1の弧状部と第2の弧状部と第1の非弧状部と第2の非弧状部を備える振動チューブ部を形成する工程であって、前記第1と第2の非弧状部は、第1の弧状部と第2の弧状部との間に位置し、前記振動チューブ部は楕円形の断面に形成されて、小軸寸法よりも長い大軸寸法を有し、前記楕円形の断面形は振動チューブ部における振動モード間の周波数分離を増加する工程と、
前記振動チューブ部をベースに固定する工程を備える。
【0014】
振動チューブ部は、1以上のラジアル振動モードにて振動されるように構成されるのが好ましい。
第1及び第2の非弧状部は、第1及び第2の弧状部の間に、オフセットスパン(OS)を付与するのが好ましい。
第1及び第2の非弧状部は、第1及び第2の弧状部の間に、オフセットスパン(OS)を付与し、オフセットスパン(OS)内の増大部は第1のラジアル振動モードと第2のラジアル振動モード間の周波数分離を増加させるのが好ましい。
振動チューブ部を形成する工程は更に、第1及び第2の非弧状部を、第1及び第2の弧状部に固定する工程を備えるのが好ましい。
【0015】
振動チューブ部を形成する工程は更に、第1及び第2の非弧状部を、第1及び第2の弧状部に溶接又はろう付けする工程を備えるのが好ましい。
第1及び第2の非弧状部を形成する工程は更に、第1及び第2の非弧状部を振動チューブ部の長さに延びるように形成する工程を備えるのが好ましい。
方法は更に、振動チューブ部の少なくとも一部がハウジング内に位置するように、振動チューブ部の入口端部を振動デンシトメータのハウジングに連結する工程を含むのが好ましい。
方法は更に、振動チューブ部を振動させるように位置決めされるドライバを付与する工程と、振動チューブ部の振動を定量化するように位置決めされる少なくとも1つの振動センサを付与する工程を含むのが好ましい。
【図面の簡単な説明】
【0016】
同じ符号は全ての図面上の同じ要素を表す。図面は必ずしも縮尺通りではない。
図1図1は、従来技術の振動ガスデンシトメータの振動シリンダを示す。
図2図2は、従来技術のデンシトメータを示す。
図3図3は、振動部材の壁の動作を示し、第1のラジアル振動モードと第2のラジアル振動モードを示している。
図4図4は、本発明の実施形態に従った振動デンシトメータに使用される振動部材を示す。
図5図5は、本実施形態に従った振動デンシトメータを示す。
図6図6は、周波数対オフセットスパン(OS)のグラフであり、オフセットスパン(OS)の増加が振動デンシトメータの第1及び第2のラジアル振動モード間の周波数分離におよぼす効果を示している。
図7図7は、振動ガスデンシトメータについて、振動周波数対流れ材の密度のグラフである。
【発明を実施するための形態】
【0017】
図4図7及び以下の記述は特定の例を記載して、本発明の最良のモードを作り使用する方法を当業者に開示する。進歩性を有する原理を開示する目的で、いくつかの従来の態様は単純化されたか省略された。
当業者は、これらの例示から本発明の範囲内にある変形例を理解するだろう。当業者は、下記に述べられた特徴が種々の方法で組み合わされて、本発明の多数の変形例を形成することを理解するだろう。その結果、本発明は、下記に述べられた特定の例にではなく特許請求の範囲とそれらの等価物によってのみ限定される。
【0018】
図4は、本発明の実施形態に従った振動デンシトメータ400に使用される振動部材412を示す。示された実施形態の振動部材412はベース407と、該ベース407に固定される長い振動チューブ部405を含む。振動部材412は大凡中空で、入口端部413と出口端部414を含む。ベース407は、振動部材412の入口端部413に位置する。入口端部413はハウジング401又は振動デンシトメータ400の他のコンポネントに連結される(図3参照)。振動部材412に入り又は振動部材412を通過する流体は入口端部413にて入り、出口端部414にて出る。
【0019】
振動チューブ部405は密度感知要素を備える。振動チューブ部405は幾つかの実施形態にて、薄い金属チューブである。動作時に振動チューブ部405は駆動されて、固有振動数にてラジアルモードで振動する(例えば、図3参照)。振動部材412(従って、振動チューブ部405)は、1以上のラジアル振動モードにて振動されるように構成される。ガスはチューブの外面と内面を通過し、従って振動チューブ部405の壁に接する。チューブと共に振動するガスの質量は、ガスの密度に依存する。振動する質量の増加は振動の固有振動数を減じるから、ガス密度は振動部材412が流体の存在下で振動する時、振動部材412の固有又は共振周波数を測定することにより決定される。
【0020】
振動チューブ部405は、第1の弧状部430aと第2の弧状部430bと第1の非弧状部432aと第2の非弧状部432bを含むチューブを備える。第1及び第2の非弧状部432a、432bは、第1の弧状部430aと第2の弧状部430bとの間に位置する。2つの非弧状部432a、432bは、振動チューブ部405の直径方向の反対側に位置し、第1の弧状部430aと第2の弧状部430bとは離れている。2つの非弧状部432a、432bは、振動チューブ部405にオフセットスパンOSを形成するサイズを有する。オフセットスパンOS内の増大部は対応して大軸寸法を増加させ、小軸は第1及び第2の弧状部430a、430bの直径によって規定される。
【0021】
2つの非弧状部432a、432bは示された実施形態にて、大凡平面状である。或いは、2つの非弧状部432a、432bは他の形を有する。幾つかの実施形態において、非弧状部432a、432bは大体振動チューブ部405の長さに延びる。
オフセットスパンOSはあらゆる所望のスパンを含むように選択される。しかし、オフセットスパンOSが増加するにつれ、周波数分離が対応して増加することは理解されるべきである。周波数分離は、ラジアル振動モードのような振動モード間の周波数分離である。例えば、周波数分離は、第1のラジアル振動モードと第2のラジアル振動モード間の周波数分離を含む。その結果、第1のラジアル振動モードと第2のラジアル振動モード間の周波数分離は、振動デンシトメータの設計者によって、オフセットスパンOSを適切に選択することにより選択される。
【0022】
2つの非弧状部432a、432bは、振動チューブ部405に楕円形又は長く延びた断面形状を生成する。振動チューブ部405は小軸寸法よりも大きな大軸寸法を有する楕円形に形成され、楕円形の断面形状は振動チューブ部405の振動モード間の周波数分離を増加させる。
本発明の文脈内の「楕円形」の語は、振動チューブ部405の断面形状は一つの寸法が他の寸法よりも長い又は広いことを意味する。ここで、図面に表示されているように、水平軸は大軸を含み、垂直軸は小軸を含み、大軸の寸法は小軸の寸法よりも大きい。振動チューブ部405は大凡環状の断面であり、断面形状は2つの非弧状部432a、432bを介在させることによって楕円形に作られる。振動チューブ部405は、矩形を有しないが、滑らかで、均一な円形部A及びBを保持する。
【0023】
幾つかの実施形態にて、第1及び第2の弧状部430a、430bは、円弧の約180度に亘って延びる。或いは、第1及び第2の弧状部430a、430bは、円弧の180度以下又は180度以下である。
有利なことに、楕円形の断面構造の長端部は所定の方向のモード形状に影響し、このように駆動モードを他の干渉モードから分離する。他の利点は、楕円形の平坦側は曲げ抵抗が少なく、正確な卵形又は楕円形よりも周波数を分離することが出来るからである。
【0024】
幾つかの実施形態において、オフセット距離ODは所望の周波数分離を付与するように選択される。実施形態に従って、意図した駆動モードと意図しない駆動モードの周波数分離は閾値量に等しいか閾値量を超える。例えば、幾つかの実施形態は低周波数の3つに分葉したラジアル振動モードは少なくとも10Hzだけ次の最も近い振動モードから分離される。しかし、10Hzは単なる一例であり、特定の周波数分離は1つの用途から他の用途に変化し、これは以下の特許請求の範囲を全く限定しない。
【0025】
幾つかの実施形態において、楕円形のチューブは約±0.001インチだけの公差を要求する。壁の厚さは振動モードを制御するのに用いられないから、周波数分離は製造時に非常に厳しい形状公差を達成することには依存しないので、振動部材412の製造は単純化され、コストが低減される。更に、楕円形の断面形状が振動部材412の振動モードと十分に間隔を空けていれば、壁厚の幾らかの変化は許容される。本発明は2つの周波数を分離して、設計の構造安定性を改善し、設計を製造公差(製造公差の差)に過敏にならないようにするために、チューブの楕円形の新規性があり、独特の幾何学的な断面形状を用いる。
【0026】
長い振動チューブ部405の構築時に、ベース407が形成される。振動チューブ部405は第1及び第2の弧状部430a、430b、及び第1及び第2の非弧状部432a、432bを備えるようにまた形成される。第1及び第2の非弧状部432a、432bは、第1及び第2の弧状部430a、430bの間に位置決めされる。第1及び第2の非弧状部432a、432bは、第1及び第2の弧状部430a、430bに固定されて、第1及び第2の弧状部430a、430bとは離れている。幾つかの実施形態にて、第1及び第2の非弧状部432a、432bは、第1及び第2の弧状部430a、430bに溶接される。或いは、幾つかの実施形態にて、第1及び第2の非弧状部432a、432bは、第1及び第2の弧状部430a、430bにろう付けされる。しかし、溶接又はろう付けは単に例として付与され、他の適切な固定方法が用いられ得る。
【0027】
或いは、振動チューブ部405の楕円形の断面形状は他の方法で形成される。例えば、振動チューブ部405は、圧縮されて押し潰される環状断面を備える。幾つかの実施形態において、マンドレル又は他のコンポネントが圧縮される前に振動チューブ部405に挿入され、振動チューブ部405は挿入されたマンドレル上に圧縮され、挿入されたマンドレルは適切な楕円形の断面形状が達成されることを確実にする。
他の代替例として、楕円形の断面形状は円形の振動チューブ部405を引き延ばす(又は加熱して引き延ばす)ことにより形成される。
【0028】
振動チューブ部405はその後、ベース407に固定される。振動チューブ部405は幾つかの実施形態にてベース407に溶接され又はろう付けされる。しかし、振動チューブ部405は永続的または取り外し可能にベース407に固定される方法を含むあらゆる適切な方法でベース407に固定されることは理解されるべきである。
動作において、振動チューブ部405の壁はドライバ又は他の励起機構により、半径方向に励起される。長い振動チューブ部405の壁は対応するラジアルモードであるが、長い振動チューブ部405及び流れ流体の周囲の共振周波数にて振動する。振動の駆動力及びチューブ壁の非対称性の関係により、一方又は両方のモード形は励起される。
【0029】
楕円形の振動チューブ部405は、生じる振動モードを少なくとも所定の周波数差だけ分離し、振動モード間の区別を達成するのに実際的で容易にする。従って、振動デンシトメータ400は、少なくとも1つの振動センサ417によって捉えられる振動モードをろ過し又は分離し又は区別する。例えば、楕円形の振動チューブ部405は、高い周波数のラジアル振動モードから低い周波数のラジアル振動モードを分離し離す。
ここでの記載は、一端部が固定され、他端部が自由な振動チューブに関するが、概念と例示はまた両端が固定され、ラジアルモードで振動されるチューブにも適用されることは理解されるべきである。
【0030】
図5は、実施形態に従った振動デンシトメータ400を示す。振動デンシトメータ400はガス、液体、混入ガスを有する液体、浮遊した粒子を有する液体、又はそれらの組み合わせを含む流体の密度を決定するように構成される。粘性減衰故に、振動デンシトメータ400は液体の密度ではなく、ガスの密度を測定するのに一般的に用いられる。
実施形態に従って、振動デンシトメータ400はハウジング401の内側に振動部材412を含む。振動部材412は永続的または取外し可能にハウジング401に固定される。定量化すべき流体はハウジング401に導入され、又はハウジング401を通過する。幾つかの実施形態にて、振動部材412はハウジング401内で大凡同軸である。しかし、振動部材412は断面形状はハウジング401に完全には対応していない。
【0031】
振動チューブ部405が振動デンシトメータ400に組み込まれると、振動部材412の入口端部413はハウジング401に連結され、一方、出口端部414は振動自在である。示された実施形態では、振動チューブ部405はハウジング401に直接連結されず、ベース407がハウジング401に連結され、出口端部414が振動自在である。その結果、振動チューブ部405はハウジング401に片持ち梁状に取り付けられる。
【0032】
実施形態に従って、振動デンシトメータ400は更にドライバ416と少なくとも1つの振動センサ417を含み、それらは中央タワー又は本体450に連結される。ドライバ416は1以上の振動モードにおいて、振動部材412を振動させるように構成される。示されるドライバ416は振動部材412内に位置する中央タワー450内に位置している一方、幾つかの実施形態にて、ドライバ416は例えばハウジング401と振動部材412の間に位置する。更に、ドライバ416は入口端部413に接近して位置すると示されるが、ドライバ416はあらゆる所望の箇所に位置決めされる。実施形態に従って、ドライバ416はリード419を介してメータ電子機器418から電気信号を受信する。一実施形態に従って、ドライバ416は例えば、弧状部430a又は430bの1つ上に位置し又は中央にある。或いは、ドライバ416は非弧状部432a又は432bの1つ上に位置し又は中央にある。
【0033】
示された実施形態にて、少なくとも1つの振動センサ417はドライバ416と同軸上に整列される。他の実施形態にて、少なくとも1つの振動センサ417が他の箇所にて連結される。例えば、少なくとも1つの振動センサ417が振動部材412の外面に位置する。更に、少なくとも1つの振動センサ417が振動部材412の外側に位置し、その一方、ドライバ416が振動部材412の内側に位置し、振動センサ417が振動部材412の内側に位置し、その一方、ドライバ416が振動部材412の外側に位置してもよい。
【0034】
少なくとも1つの振動センサ417はリード419を介して信号をメータ電子機器418に送信することが出来る。メータ電子機器418は少なくとも1つの振動センサ417によって受信された信号を処理して振動部材412の共振周波数を決定することが出来る。テスト下の流体があれば、振動部材412の共振周波数は、当該技術分野で公知の如く、流体密度に反比例するように変化する。比例する変化は、例えば初期の較正中に決定される。示された実施形態にて、少なくとも1つの振動センサ417はまたコイルを含む。ドライバ416は電流を受けて振動部材412に振動を誘発し、少なくとも1つの振動センサ417はドライバ416によって生成される振動部材412の動きを用いて電圧を誘発する。コイルドライバとセンサは当該技術分野で周知であり、記載の簡潔さゆえにそれらの動作の更なる説明を省く。更に、ドライバ416と少なくとも1つの振動センサ417はコイルに限定されず、例えば圧電センサのような種々の他の周知の振動コンポネントでもよい。従って、本実施形態はコイルに少しも限定されない。更に、当業者はドライバ416及び少なくとも1つの振動センサ417の特定の設置は、本実施形態の範囲内に残りつつ変更され得ることを容易に理解するだろう。
【0035】
メータ電子機器418はバス426又は他の通信リンクに連結される。メータ電子機器418はバス426を介して密度測定を通信する。更にメータ電子機器418はバス426を介して他の信号、測定又はデータをあらゆる方法で送信する。更に、メータ電子機器418はバス426を介して指示、プログラミング又は他のコマンドをバス426を介して受信する。
【0036】
図6は、周波数対オフセットスパンOSのグラフであり、振動デンシトメータ400の第1及び第2のラジアル振動モード間にて周波数分離上のオフセットスパンOSの増加の効果を示している。図はオフセットスパンOSが増加すると、周波数分離が対応して増加することを示している。選択された及び/又は増加した周波数分離はより良く実行するセンサを生成し、振動モードは互いに区別し易くなる。
【0037】
図7は、振動周波数対振動デンシトメータ400の流れ材密度のグラフである。グラフはガス密度の範囲にわたって、楕円形の振動チューブ部405の共振周波数を示す。楕円形チューブについての周波数/密度の関係は、実際の振動チューブ部の較正カーブということになる。グラフから2つの振動モード間の周波数分離は密度の変化に亘って維持される。
【0038】
上記の実施形態の詳細な記述は、本発明の範囲内にある発明者によって熟考された全ての実施形態の完全な記述ではない。実際に当業者は、さらに実施形態を作成するために上記実施形態のある要素が種々に組み合わせられるかもしれないし除去されるかもしれないことを認識している、そしてそのような、さらなる実施形態は現在の記述の範囲及び開示の範囲内にある。現在の記述の範囲及び開示の範囲内にある追加の実施形態を作成するために、上記実施形態の全部或いは一部が組み合わせられるかもしれないことも当業者には明白である。
従って、特定の実施形態が説明の目的のためにここに記述されているが、当業者が認識するように、様々な等価な修正は現在の記述の範囲内で可能である。ここに提供される開示は、他の振動計に適用可能であり、上記に記載され添付の図面に示された実施形態だけではない。従って、上記の実施形態の範囲は、添付の特許請求の範囲から決定されるべきである。
図1
図2
図3
図4
図5
図6
図7