特許第6098048号(P6098048)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社豊田自動織機の特許一覧

<>
  • 特許6098048-半導体装置の製造方法 図000002
  • 特許6098048-半導体装置の製造方法 図000003
  • 特許6098048-半導体装置の製造方法 図000004
  • 特許6098048-半導体装置の製造方法 図000005
  • 特許6098048-半導体装置の製造方法 図000006
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6098048
(24)【登録日】2017年3月3日
(45)【発行日】2017年3月22日
(54)【発明の名称】半導体装置の製造方法
(51)【国際特許分類】
   H01L 21/02 20060101AFI20170313BHJP
   H01L 21/20 20060101ALI20170313BHJP
【FI】
   H01L21/02 B
   H01L21/02 C
   H01L21/20
【請求項の数】6
【全頁数】11
(21)【出願番号】特願2012-146820(P2012-146820)
(22)【出願日】2012年6月29日
(65)【公開番号】特開2014-11301(P2014-11301A)
(43)【公開日】2014年1月20日
【審査請求日】2015年5月12日
(73)【特許権者】
【識別番号】000003218
【氏名又は名称】株式会社豊田自動織機
(74)【代理人】
【識別番号】110000110
【氏名又は名称】特許業務法人快友国際特許事務所
(72)【発明者】
【氏名】今岡 功
【審査官】 堀江 義隆
(56)【参考文献】
【文献】 特開2011−009268(JP,A)
【文献】 特開2002−280531(JP,A)
【文献】 特開2009−062247(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/02
H01L 21/20
(57)【特許請求の範囲】
【請求項1】
多結晶SiCで形成された支持基板を真空中で1300℃以上に加熱して表面を構成しているSiを昇華させ、グラフェン(graphene)が複数積層された層状膜を前記支持基板の表面の少なくとも一部に形成する成膜工程と、
半導体の単結晶で形成された半導体層を、前記層状膜の表面に貼り合わせる貼り合わせ工程と、
前記層状膜のへき開面を起点として、前記支持基板に貼り合わせてある前記半導体層を前記支持基板から分離する分離工程と、
を備えることを特徴とする半導体装置の製造方法。
【請求項2】
多結晶SiCで形成された前記支持基板の表面には、様々な面方位を有する複数の結晶粒が表出しており、
前記成膜工程では、SiC結晶の(0001)面に対するオフセット角度が所定角度の範囲内である表面を有する結晶粒の表面に、前記層状膜を選択的に形成することを特徴とする請求項1に記載の半導体装置の製造方法。
【請求項3】
多結晶SiCで形成された前記支持基板の表面における、前記層状膜が形成されている面積割合が30〜70%の範囲であることを特徴とする請求項1または2に記載の半導体装置の製造方法。
【請求項4】
前記支持基板は、複数のポリタイプが混合している多結晶SiCで形成されていることを特徴とする請求項1〜3の何れか1項に記載の半導体装置の製造方法。
【請求項5】
前記支持基板を形成している多結晶SiCの結晶粒の平均粒子径は、前記半導体層が貼り合わせてある前記支持基板を複数のチップに分割した場合における前記チップの短辺の長さの半分以下になるように決定されることを特徴とする請求項1〜4の何れか1項に記載の半導体装置の製造方法。
【請求項6】
前記貼り合せ工程は、
前記半導体層の接合面、および、前記支持基板の前記層状膜が形成されている面に、真空状態でイオンビームを照射する照射工程と、
前記半導体層の前記イオンビームが照射された接合面と、前記支持基板の前記イオンビームが照射された面とを、真空状態で接触させる接触工程と、
を備えることを特徴とする請求項1〜5の何れか1項に記載の半導体装置の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書では、半導体層貼り合わせ用の支持基板を用いた、半導体装置の製造方法に関する技術を開示する。
【背景技術】
【0002】
近年、薄膜状の単結晶の半導体層と支持基板とを貼り合わせることによって構成される、貼り合せ基板が開発されている。高品位の単結晶の半導体層を、デバイスの活性領域だけに使用することができるため、デバイスの低コスト化を図ることが可能となる。また、関連する文献として、例えば特許文献1が挙げられる。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2012−4232号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
貼り合わせ基板の半導体層上にデバイスを製造した後においては、支持基板が不要となる。よって、貼り合わせ基板に用いる支持基板には、除去容易性が要求される。
【課題を解決するための手段】
【0005】
本明細書では、半導体装置の製造方法を開示する。この半導体装置の製造方法は、SiC結晶で形成された支持基板を真空中で所定温度に加熱して表面を構成しているSiを昇華させ、Cを主体する層が複数積層された層状膜を支持基板の表面の少なくとも一部に形成する成膜工程を備える。半導体の単結晶で形成された半導体層を、層状膜の表面に貼り合わせる貼り合わせ工程を備える。層状膜のへき開面を起点として、支持基板に貼り合わせてある半導体層を支持基板から分離する分離工程を備える。
【0006】
上記方法では、支持基板と半導体層とが、Cを主体する層が複数積層されている層状膜を介して接着されている、貼り合わせ基板を形成することができる。Cを主体する層の一例としては、グラフェンが挙げられる。層状膜は、層内の原子間の結合力よりも、層間の原子間の結合力の方が弱い特性を有している。よって層状膜は、各層に垂直な方向に最も分離し易いという、へき開する性質を有している。これにより分離工程において、層状膜を形成する複数のCを主体する層を互いにへき開させることで、半導体層を支持基板から分離させることができる。よって、支持基板の除去容易性を高めることが可能となる。
【発明の効果】
【0007】
本明細書に開示の技術によれば、除去容易性を高めた支持基板を用いた、半導体装置の製造方法を提供することができる。
【図面の簡単な説明】
【0008】
図1】貼り合わせ基板の斜視図である。
図2】支持基板の部分拡大図である。
図3】グラフェンの成長状態を示す模式図である。
図4】グラフェンの成長状態を示す模式図である。
図5】グラフェン積層膜が成膜されたSiC結晶粒の一部断面拡大図である。
【発明を実施するための最良の形態】
【0009】
以下、本明細書で開示する実施例の技術的特徴の幾つかを記す。なお、以下に記す事項は、各々単独で技術的な有用性を有している。
【0010】
(特徴1)上記の半導体装置の製造方法では、半導体層は単結晶SiCであってもよい。半導体層を形成する単結晶SiCの結晶欠陥密度に比して、支持基板を形成するSiC結晶の結晶欠陥密度の方が高くてもよい。結晶性が低いSiC結晶(マイクロパイプ等の結晶欠陥が多い結晶)は、結晶性が高いSiC結晶(結晶欠陥が少ない結晶)よりも安価に製造することができる。そして支持基板は、半導体層を補強する基板であり、高い結晶性が要求されない基板であるため、半導体層を形成する単結晶SiCよりも結晶性が低い結晶を使用することができる。これにより、貼り合わせ基板のコストを低減することができる。また、半導体層と支持基板に同一材料であるSiC結晶を用いることで、熱膨張率を同等にすることができるため、貼り合わせ後に剥離が発生してしまう事態を防止することができる。
【0011】
(特徴2)上記の半導体装置の製造方法では、支持基板を形成するSiC結晶は多結晶SiCであってもよい。分離工程は、半導体層が貼り合わせてある支持基板を複数に分割した後に、半導体層を支持基板から分離してもよい。支持基板は多結晶SiCで形成されているため、さまざまな面方くらいを有する結晶粒が支持基板の表面に表出している。また、層状膜は、SiC結晶のある特定の面に対するオフセット角度が所定角度の範囲内である表面を有する結晶粒に、選択的に形成される場合がある。この場合、これらの面方位を有する結晶粒に選択的に層状膜を形成させることができるため、支持基板の表面に層状膜を点在させることが可能となる。よって、支持基板表面の全面に層状膜を形成する場合に比して、半導体層と支持基板との接着力を高めることができるため、意図せずに半導体層と支持基板とが分離してしまう事態を防止することが可能となる。また、支持基板を複数に分割することによって、半導体層と支持基板との接着面積を減らすことができる。よって、半導体層と支持基板との接着力の絶対値を、支持基板の分割前に比して小さくすることができる。これにより、支持基板の除去容易性を高めることが可能となる。なお、支持基板の分割方法の例としては、ダイシングによりチップを切り出す方法が挙げられる。
【0012】
(特徴3)上記の半導体装置の製造方法では、支持基板を形成するSiC結晶は、主表面の面方位が(0001)面である六方晶の単結晶SiCであってもよい。分離工程は、半導体層が貼り合わせてある支持基板を分割しない状態で、半導体層を支持基板から分離してもよい。層状膜は、六方晶のSiC結晶の(0001)面に形成されやすい特性を有しているため、支持基板表面の全面に層状膜を成膜することができる。これにより、支持基板表面の一部に層状膜が成膜されている場合に比して、半導体層を支持基板から分離させやすくすることができる。よって、支持基板を分割しない状態で、半導体層を支持基板から分離させることができるため、分離後の支持基板を再利用することが可能となる。
【0013】
(特徴4)上記の半導体装置の製造方法では、所定温度は1300℃以上であってもよい。Cを主体する層はグラフェン(graphene)であってもよい。真空中で1300℃以上でSiC結晶を加熱することで、SiC結晶表面のSi原子を昇華させ、残存したC原子によって自己組織的にグラフェンを形成させることができる。グラフェンは厚さ1原子層の炭素材料であるため、グラフェンを積層させることで層状膜を形成することができる。
【実施例1】
【0014】
<貼り合わせ基板の構成>
図1に、本実施例に係る貼り合わせ基板10の斜視図を示す。貼り合わせ基板10は略円盤状に形成されている。貼り合わせ基板10は、下側に配置された支持基板11と、支持基板11の上面に配置されたグラフェン積層膜12と、グラフェン積層膜12の上面に貼り合わされた半導体層13とを備えている。支持基板11は、6Hポリタイプや4Hポリタイプなどの、多結晶SiCによって形成されていてもよい。グラフェン積層膜12は、グラフェンが複数積層された層状膜である。グラフェンとは、二次元蜂の巣格子の格子点にC原子を配置した、厚さ1原子層の炭素材料である。またグラフェン積層膜12は、層内の原子間の結合力よりも、層間の原子間の結合力の方が弱い特性を有している。よってグラフェン積層膜12は、各層に垂直な方向に最も分離し易いという、へき開する性質を有している。半導体層13は、例えば、化合物半導体(例:6H−SiC、4H−SiC、GaN、AlN)の単結晶によって形成されていてもよい。また例えば、単元素半導体(例:Si、C)の単結晶によって形成されていてもよい。また、半導体層13を形成する半導体の単結晶の方が、支持基板11を形成する多結晶SiCに比して、結晶欠陥密度が低くされている。
【0015】
グラフェン積層膜12が成膜された支持基板11と、半導体層13とは、別途に作製される。そして、常温接合、プラズマ接合、水酸基接合などの各種の接合法によって半導体層13をグラフェン積層膜12に貼り合わせることによって、貼り合わせ基板10が形成される。支持基板11の厚さT11は、後工程加工に耐えることができる機械的強度が得られるように定めればよい。厚さT11は、例えば、支持基板11の直径が100mmである場合には、100μm程度であってもよい。グラフェン積層膜12の厚さT12は、後述する分離工程を実施できるように定めればよい。半導体層13の厚さT13は、例えば、ウェハー表面に沿った方向にトランジスタ等の素子を形成する横型デバイスを製造する場合には、5μm以上であってもよい。また、ウェハー表面に垂直な方向に素子を形成する縦型デバイスを製造する場合には、厚さT13は数十μmであってもよい。
【0016】
実施例1では、例として、半導体層13が6Hポリタイプの単結晶SiCで形成されており、支持基板11が6Hポリタイプの多結晶SiCで形成されている場合を、以下に説明する。
【0017】
<半導体装置の製造方法>
実施例1に係る半導体装置の製造方法の製造方法は、成膜工程と、貼り合わせ工程と、分離工程と、を備えている。成膜工程は、グラフェン積層膜12を支持基板11の表面の少なくとも一部に形成する工程である。貼り合わせ工程は、SiC単結晶で形成された半導体層13を、グラフェン積層膜12の表面に貼り合わせる工程である。分離工程は、グラフェン積層膜12のへき開面を起点として、支持基板11に貼り合わせてある半導体層13を支持基板11から分離する工程である。分離工程は、各種のデバイスが半導体層13に形成された後に行われても良い。
【0018】
<成膜工程>
成膜工程を説明する。成膜工程では、SiC表面分解法によって、支持基板11の表面の一部にグラフェン積層膜12が成膜される。図2に、支持基板11表面の部分拡大図を示す。支持基板11は多結晶SiCで形成されているため、図2に示すように、様々な面方位を有する結晶粒が表出している。またSiC表面分解法を用いる場合には、六方晶のSiC結晶の特定の面に、グラフェン積層膜12が選択的に形成されやすくなる。SiC結晶の特定の面とは、(0001)面に対するオフセット角度が所定角度(例えば10°程度)の範囲内である面である。従って、例えば図2においてハッチングをかけた結晶粒21が、前述の特定の面を有している場合には、結晶粒21の表面に選択的にグラフェン積層膜12を形成させることができる。よって、支持基板11の表面にグラフェン積層膜12を点在させることが可能となる。なお、特定の面を有さない結晶粒(図2においてハッチングをかけていない結晶粒)の表面には、成膜工程によって、へき開性を有さない炭素層が成膜される場合がある。
【0019】
支持基板11の表面をグラフェン積層膜12が占める面積割合が大きくなるほど、支持基板11と半導体層13との接着力を弱めることができる。グラフェン積層膜12が占める面積割合は、例えば、30〜70%の範囲であってもよい。また、グラフェン積層膜12が形成される結晶粒の平均粒子径によっても、支持基板11と半導体層13との接着力を制御することが可能である。グラフェン積層膜12が形成される結晶粒の平均粒子径は、例えば、数百μmであってもよい。また、これらの結晶粒の平均粒子径は、貼り合わせ基板10から切り出されるチップのチップサイズに応じて定められるとしてもよい。例えば、これらの結晶粒の平均粒子径を、チップの一辺の長さの半分以下にするとしてもよい。
【0020】
SiC表面分解法による、グラフェン積層膜12の形成方法を説明する。支持基板11の表面を洗浄した後に、真空炉(不図示)内に支持基板11を載置する。そして、真空度10−4〜10−6(Torr)、1350〜1500℃で、支持基板11を加熱する。支持基板11を真空中で加熱することにより、前述した特定の面を有するSiC結晶粒の表面では、Si原子が昇華して、残存したC原子によって自己組織的にグラフェンが形成される。
【0021】
グラフェンが成長するメカニズムを、図3および図4の模式図を用いて説明する。図3は、グラフェンの成長前の状態を示す図である。図4は、グラフェンの成長後の状態を示す図である。ハッチングされた大きな丸印はSi原子を示しており、ハッチングされていない小さな丸印はC原子を示している。図3の支持基板11では、SiCバイレイヤーL1からL6までの6層が存在している。SiCバイレイヤーとは、六角形格子構造のC原子からなる1層のC原子層と、六角形格子構造のSi原子からなる1層のSi原子層とが積層して形成されている層である。SiCバイレイヤーL1は、支持基板11の表面に表出している。SiCバイレイヤーL2ないしL6は、支持基板11のバルクを形成している。なお、SiCバイレイヤーL6の下層にはさらに多数のSiCバイレイヤーが存在するが、図3および図4では図示を省略している。
【0022】
図3の支持基板11を真空中で加熱開始すると、SiCバイレイヤーL1ないしL3の3層分のSi原子が昇華する。そして残存したC原子によって、自己組織的にグラフェンが形成される。これにより図4に示すように、Si原子層SL1の上に、1層分のグラフェンG1が形成される。グラフェンG1のC原子の数密度は、Si原子層SL1のSi原子の数密度の3倍である。よって、グラフェン積層膜12の六角形格子構造の方が、Si原子層SL1の六角形格子構造よりも格子定数が小さい。
【0023】
以降、真空中でのアニールが続行されると、上記のグラフェン形成のメカニズムに基づき、複数層のグラフェンが形成され、積層していく。これにより、グラフェンが複数積層されたグラフェン積層膜12が形成される。
【0024】
グラフェン積層膜12の形成工程では、支持基板11の加熱時間を長くするほどグラフェンの積層数を多くすることができる。グラフェンの積層数が多くなるほど、グラフェン積層膜12がへき開しやすくなるため、支持基板11と半導体層13との接着力を弱くすることができる。よって、グラフェンの積層数は、支持基板11と半導体層13との接着力の要求値に基づいて決定すればよい。例えば、グラフェン積層膜12のグラフェンの積層数は1〜5層の範囲内であってもよい。
【0025】
<貼り合わせ工程>
貼り合わせ工程を説明する。例として、常温接合を行う場合を説明する。半導体層13と支持基板11を、不図示の常温接合装置のチャンバーにセットする。チャンバー内を真空状態にした上で、半導体層13の裏面およびグラフェン積層膜12の接合面に、イオンビームを照射する。これにより、材料表面の酸化膜や吸着層を除去して結合手を表出させることで、表面を活性化させることができる。その後、半導体層13の裏面とグラフェン積層膜12の接合面とを接触させることで、両層を接合させることができる。接合時の圧力は、10〜50MPaの範囲内であってもよい。これにより、貼り合わせ基板10が完成する。貼り合わせ基板10は、通常の半導体装置でハンドリングするための厚みや強度を備えている。よって、貼り合わせ基板10に対して、フォトリソグラフィやエッチング等の既知の各種の半導体プロセスを実施することができ、半導体層13の表面に各種のデバイスを形成することができる。
【0026】
<分離工程>
分離工程を説明する。分離工程では、第1のステップとして、貼り合わせ基板10を複数に分割する。貼り合わせ基板10の分割方法の例としては、ダイシングによりチップを切り出す方法が挙げられる。
【0027】
第2のステップとして、分割後の貼り合わせ基板10に対して、半導体層13と支持基板11とを分離させる方向の力を加える。これにより、グラフェン積層膜12を形成する複数層のグラフェンを互いに分離させることで、グラフェン積層膜12をへき開させることができる。よって、支持基板11に貼り合わせてある半導体層13を、支持基板11から分離することができる。
【0028】
<実施例1の効果>
グラフェン積層膜12を介さずに、支持基板11と半導体層13とを直接に貼り合わせた場合には、研磨などによって支持基板11を除去する必要がある。支持基板11がSiC結晶で形成されている場合には、SiCは難削性の材料であるため、除去が困難である。本明細書に記載されている半導体装置の製造方法では、支持基板11と半導体層13との間に介在するグラフェン積層膜12をへき開させることで、半導体層13を支持基板11から分離させることができる。これにより、研磨等の必要性を無くすことができるため、支持基板11の除去容易性を高めることが可能となる。
【0029】
グラフェン積層膜12はへき開する性質を有するため、グラフェン積層膜12が支持基板11表面に成膜されている面積が大きくなるほど、支持基板11と半導体層13との接着力が弱くなる。実施例1に記載されている半導体装置の製造方法では、支持基板11に多結晶SiCを用いているため、支持基板11表面にグラフェン積層膜12を点在させるように成膜することができる。よって、支持基板11表面の全面にグラフェン積層膜12を成膜する場合に比して、半導体層13と支持基板11との接着力を高めることができる。また分離工程では、貼り合わせ基板10を複数に分割した後に、半導体層13と支持基板11とを分離する。貼り合わせ基板10を分割することによって、半導体層13と支持基板11との接合面積を減少させることができる。よって、半導体層13と支持基板11との接着力の絶対値を、支持基板11の分割前に比して小さくすることができるため、分割前に比して半導体層13を支持基板11から分離しやすくすることができる。以上より、貼り合わせ基板10の分割前の状態においては、半導体層13と支持基板11との間に十分な接着力を発生させることができるため、貼り合わせ基板10に各種の半導体プロセスを実施する場合に、半導体層13と支持基板11とが剥離してしまう事態を防止できる。また、貼り合わせ基板10の分割後の状態においては、半導体層13と支持基板11との接着力を低下させることができるため、支持基板11の除去容易性を高めることが可能となる。
【0030】
支持基板11は、半導体層13を補強するための基板であり、高い結晶性が要求されない。よって支持基板11には、半導体層13を形成する単結晶SiCよりも結晶欠陥が多いSiC結晶を使用することができる。結晶欠陥が多いSiC結晶は、結晶欠陥が少ないSiC結晶よりも成長速度を高めることができ、安価に製造することができるため、支持基板11の製造コストを低減することが可能となる。また、半導体層13と支持基板11に同一材料であるSiC結晶を用いることで、熱膨張率を同等にすることができるため、貼り合わせ後に剥離が発生してしまう事態を防止することができる。
【0031】
図5に、グラフェン積層膜12が成膜されたSiC結晶粒の、一部断面拡大図を示す。図5に示す結晶粒は、表面F2を備えている。表面F2の、SiC結晶の(0001)面に対するオフセット角度は、角度αである。また、角度αは、前述した所定角度の範囲内である。図5に示すように、表面F2には、(0001)面の面方位を備える面F1がステップ状に断続的に表出している。面F1上には、面F1に対して垂直な方向D1に、グラフェン積層膜12が成膜されている。ここで、面F2に対して垂直な方向を方向D2とすると、方向D1は方向D2に対して角度αだけ傾いている。また、支持基板11の表面には様々な面方位を有する結晶粒が表出しているため、上述した角度αは、グラフェン積層膜12が成膜されている結晶粒の各々ごとに異なる値となる。これにより、グラフェン積層膜12がへき開しやすい方向である方向D1を、グラフェン積層膜12が成膜されている結晶粒ごとに異ならせることができる。よって、貼り合わせ基板10の全体を考えた場合に、半導体層13と支持基板11との間に、あらゆる方向の剥離力に対する十分な接着力を発生させることが可能となる。
【実施例2】
【0032】
<貼り合わせ基板の構成>
実施例1では、支持基板11が多結晶SiCで形成されている形態を説明した。実施例2は、支持基板11が単結晶SiCで形成されている形態を説明する。実施例2では、例として、支持基板11が6Hポリタイプの単結晶SiCで形成されており、支持基板11の主表面の面方位が(0001)面である場合を説明する。なお、実施例2に係る貼り合わせ基板10のその他の構成は、実施例1の貼り合わせ基板10の構成と同様であるため、ここでは説明を省略する。
【0033】
<半導体装置の製造方法>
支持基板11は6Hポリタイプの単結晶SiCで形成されており、その主表面が(0001)面とされている。また、SiC表面分解法によって成膜されるグラフェン積層膜は、六方晶のSiC結晶の(0001)面に成膜されやすい特性を有している。よって成膜工程では、支持基板11の表面の全面にグラフェン積層膜12が成膜される。なお、成膜されるグラフェン積層膜12は、多結晶状態である。次に貼り合わせ工程において、半導体層13の裏面とグラフェン積層膜12の接合面とが貼り合わされる。なお、成膜工程および貼り合わせ工程の内容は、実施例1で説明済みであるため、ここでは説明を省略する。
【0034】
支持基板11表面の全面にグラフェン積層膜12が成膜されているため、実施例1で説明したような支持基板11表面の一部にグラフェン積層膜12が成膜されている場合に比して、半導体層13と支持基板11との接着力を低減させることができる。よって分離工程では、貼り合わせ基板10を分割しない状態で、半導体層13と支持基板11とを分離させることができる。
【0035】
<実施例2の効果>
実施例2の貼り合わせ基板10では、貼り合わせ基板10を分割しない状態で、半導体層13を支持基板11から分離させることができるため、分離後の支持基板11を再利用することが可能となる。また、グラフェン積層膜12は、厚さ1原子層のグラフェンが数層〜数十層分積層した膜であるため、非常に薄い。よって、グラフェン積層膜12を支持基板11に繰り返し成膜しても、支持基板11の厚さの減少量は無視できるほど小さいため、支持基板11を繰り返して再利用することができる。
【0036】
以上、本発明の実施例について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
【0037】
<変形例>
本実施形態では、支持基板11に6HポリタイプのSiC結晶を用いる場合を説明したが、この形態に限られない。SiC表面分解法によってグラフェン積層膜を成膜できるSiC結晶であれば、何れのポリタイプのSiC結晶を支持基板11に用いてもよい。例えば、4HポリタイプのSiC結晶を支持基板11に用いることも可能である。
【0038】
実施例2において、支持基板11は、複数のポリタイプ(例:4H−SiC、6H−SiC、3C−SiCなど)が混合している結晶構造のSiCによって形成されていてもよい。複数のポリタイプが混合している結晶構造のSiCでは、グラフェンが成膜される結晶構造を有する面と、グラフェンが成膜されない結晶構造を有する面が、支持基板11の主表面に混在して表出している場合がある。よって、単一ポリタイプの結晶構造のSiCにグラフェン積層膜12を成膜する場合に比して、グラフェン積層膜12が成膜される面積割合を低くすることができる。これにより、単一のポリタイプの結晶構造のSiCを用いる場合に比して、半導体層13と支持基板11との接着力を高めることができる。また、複数のポリタイプが混合している結晶構造のSiCは、厳密な温度制御を行うことなく成長させることができるため、単一ポリタイプの結晶構造のSiCよりも成長速度を高めることができる。よって、支持基板を製造するコストを低減させることが可能となる。また、複数のポリタイプが混合している結晶構造のSiCでは、マイクロパイプが表面に表出する場合がある。この場合、SiCの表面に各種の層を成膜することで、表面のマイクロパイプを埋め込んで平坦化することにより、マイクロパイプの影響を小さくすることが可能である。
【0039】
貼り合わせ工程において、グラフェン積層膜12に貼り合わされる半導体層13は、1種類に限られない。例えば、グラフェン積層膜12の接合面を複数のエリアに分割し、各エリアに異なる半導体層13を貼り合わせるとしてもよい。
【0040】
本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
【符号の説明】
【0041】
10:貼り合わせ基板、11:支持基板、12:グラフェン積層膜、13:半導体層、21:結晶粒
図1
図2
図3
図4
図5