【実施例】
【0050】
[例1]
[ジエチルアミノシランの合成]
トリフルオロメタンスルホン酸50g(0.33mol)とトルエン100mlを、250mlのフラスコに添加した。窒素の保護下でフラスコを−40℃に冷却した。トリルシラン40.6g(0.33mol)をゆっくりと添加した。次いで、フラスコを−60℃に冷却した。トリエチルアミン33.5gをゆっくりと添加し、次いでジエチルアミン24gを添加した。添加後、フラスコの温度を室温まで徐々に温めた。2つの液層が形成された。分液漏斗を用いて上層を分離した。減圧蒸留により、ジエチルアミノシラン25gを得た。ジエチルアミノシランの沸点は、210mmHgにおいて40〜42℃であった。
【0051】
[例2]
[ジ−イソ−プロピルアミノシランの合成]
トリフルオロメタンスルホン酸50g(0.33mol)とペンタン80mlを、250mlのフラスコに添加した。窒素の保護下でフラスコを−40℃に冷却した。フェニルシラン35.6g(0.33mol)をゆっくりと添加した。次いで、フラスコを−60℃に冷却した。トリエチルアミン33.3g(0.33mol)をゆっくりと添加し、次いでペンタン15ml中ジ−イソ−プロピルアミン33.3g(0.33mol)の溶液を添加した。添加後、フラスコの温度を室温まで徐々に温めた。2つの液層が形成された。分液漏斗を用いて上層を分離した。蒸留により、溶媒と副生成物のベンゼンを除去した。減圧蒸留によりジ−イソ−プロピルアミノシラン30gを得た。ジ−イソ−プロピルアミノシランの沸点は、106mmHgにおいて55℃であった。
【0052】
[例3]
[シクロヘキシルジシリルアミン及び2,4−ジシクロヘキシル−2,4−ジアザ−1,3,5−トリシラペンタンの合成]
トリフルオロメタンスルホン酸62.5gとペンタン100mlを、500mlのフラスコに添加した。窒素の保護下でフラスコを−40℃に冷却した。フェニルシラン45gをゆっくりと添加した。次いで、フラスコを−60℃に冷却した。トリエチルアミン42gをゆっくりと添加し、次いでペンタン15ml中のシクロヘキシルアミン20.6gの溶液を添加した。添加後、フラスコの温度を室温まで徐々に温めた。2つの液層が形成された。分液漏斗を用いて上層を分離した。蒸留により溶媒と副生成物のベンゼンを除去した。減圧蒸留により、シクロヘキシルジシリルアミン15gを得た。シクロヘキシルジシリルアミンの沸点は、17mmHgにおいて54〜55℃であった。残りの高沸点部分は、96.6%の2,4−ジシクロヘキシル−2,4−ジアザ−1,3,5−トリシラペンタンを含有している。
【0053】
[例4]
[シクロヘキシルジシリルアミン及び2,4−ジ−tert−ブチル−2,4−ジアザ−1,3,5−トリシラペンタンの合成]
トリフルオロメタンスルホン酸50.0g(0.33mol)とペンタン100mlを、500mlのフラスコに添加した。窒素の保護下でフラスコを−40℃に冷却した。フェニルシラン35.6g(0.33mol)をゆっくりと添加した。次いで、フラスコを−60℃に冷却した。トリエチルアミン33.3gをゆっくりと添加し、次いでペンタン15ml中ビス−t−ブチルアミノシラン28.7g(0.165mol)の溶液を添加した。添加後、フラスコの温度を室温まで徐々に温めた。2つの液層が形成された。分液漏斗を用いて上層を分離した。蒸留により、溶媒と副生成物のベンゼンを除去した。減圧蒸留により、2,4−ジ−tert−ブチル−2,4−ジアザ−1,3,5−トリシラペンタン21gを得た。
【0054】
[例5]
[ジエチルアミノシラン前駆体を用いた炭窒化ケイ素膜の形成]
[一般的手順]
炭窒化ケイ素堆積物のための実験用前駆体を資格認定するのに用いられるLPCVD反応器においてアミノシラン前駆体を試験する。前駆体を脱ガスし、必要に応じて低圧マスフローコントローラ(MFC)を通じて反応器に計量供給する。化学物質の質量損失対流れ時間に対してMFC流量を較正する。明記されている場合には、アンモニアなどの追加の反応体、並びに窒素及びヘリウムなどの希釈剤も同様に、必要に応じて、較正されたMFCを通じて反応器に計量供給する。反応器を10−4Torr(0.013Pa)未満に排気することができるルーツブロワー/ドライポンプの組み合わせに連結する。堆積中においては、シリコンウェハの装填物を横切る温度は設定点の1℃以内にする。
【0055】
シリコンウェハを石英ボート上に装填して反応器に挿入する。反応器をポンプにより基準圧にして漏れをチェックする。系をガス流によってプロセス温度まで上げる。このガス流は、反応器が温まった時にシリコンウェハが酸化するのを防ぐために残留する酸素又は水分を希釈する。次いで、反応器を所定の時間安定化させ、すべてのウェハ表面を(付属の熱電対を用いてウェハに関する先の測定により決定されたのと)等しい温度にする。
【0056】
ガス及び蒸気を制御された圧力で所定の堆積時間にわたって反応器に注入する。次に、ガスを遮断し、反応器をポンプで基準圧にする。次いで、反応器が冷却された時に反応性のガス又は蒸気を除去するため、反応器をポンプでパージし、ポンプを弱めそしてポンプでパージする。反応器を大気圧に戻し、ウェハを取り出して室温に冷却する。次いで、堆積膜を、膜厚、膜の屈折率、膜応力(
図1)、赤外線吸光度(
図3に示される)、誘電率及び酸エッチ速度(表1)について測定する。
【0057】
堆積膜を形成する際、ジエチルアミノシラン(DEAS)10sccmを、NH
320sccm及びN220sccmとともに、1.3Torr(173.3Pa)で以って60分の堆積時間にわたり570℃で反応器に流した。
【0058】
平均の膜厚は69nmであり、屈折率は2.045であった。膜応力は、1.07×1010ダイン/cm2(1.07GPa)であることが測定された。
【0059】
赤外スペクトルはSi−C及びSi−Nの吸収が顕著であった。C−H又はC−Nの吸収はノイズ中にあり、
図3に示されるように、膜の組成は主として所望のSi
xC
yN
zの形態であることを示した。
【0060】
[例6]
[NH
3なしでN2を用いたジエチルアミノシラン前駆体による炭窒化ケイ素膜の形成]
プロセス条件を除いて例4の手順に従った。NH
3の代わりに窒素を用いた。本例においては、ジエチルアミノシラン(DEAS)10sccmを、N240sccmとともに、1.0Torr(133Pa)で以って、40分の堆積時間にわたり600℃で、反応器に流した。
【0061】
平均の膜厚は42nmであり、屈折率は2.288であった。膜応力は、1.34×1010ダイン/cm
2であることが測定された。これらの膜は、アンモニアを用いて得られたものと比較して、非常に高い応力及び低いエッチ速度を有する(エッチ速度については表1を参照)。このような膜の一致性は、分離構造体に関して100%であるとわかった。
【0062】
[例7]
[NH
3なしでN
2を用いたジイソプロピルアミノシラン前駆体による炭窒化ケイ素膜の形成]
前駆体を除いて例5の手順に従った。ジイソプロピルアミノシラン(DIPAS)10sccmを、He20sccm及びN220sccmとともに、1.0Torr(133Pa)で以って、70分の堆積時間にわたり570℃で反応器に流した。
【0063】
平均の膜厚は46nmであり、屈折率は2.056であった。膜応力は、1.07×1010ダイン/cm
2であることが測定された。驚くべきことに、ジイソプロピルアミノシランに関する屈折率及び応力は、例6の前駆体と同様であった。これらの結果は、このクラスの物質内で優れた応力値が達成され得ることを示している。
【0064】
[例8]
[NH
3なしでN
2を用いた対照標準としてのビス(三級ブチルアミノ)シラン前駆体による炭窒化ケイ素膜の形成]
前駆体を除いて例5の手順に従い、それを対照標準として用いた。BTBASは生成プロセスにおいて世界中で用いられている前駆体であり、性能特性が十分に一般に認められているので、代表的な比較用アミノシランとして選択した。
【0065】
ビス(三級ブチルアミノシラン)(BTBAS)10sccmを、He20sccm及びN
220sccmとともに、1.0Torr(133Pa)で以って70分の堆積時間にわたり、570℃で反応器に流した。これらの膜は、モノ−アミノシランと比較して、わずか20%の応力と10%未満のエッチ抵抗性とを有する(表1を参照)。
【0066】
ビス(三級ブチルアミノシラン)とジエチルアミノシランに関する応力データを用いて
図1を作成した。それはFSMシステムを用いた応力測定の結果を示している。ジエチルアミノシランに関する結果は予想外であった。即ち、適度なNH
3:DEAS比で高い応力を維持していることを含め、低NH
3:DEAS比での高い応力を達成した。
【0067】
ビス(三級ブチルアミノ)シラン及びジクロロシランなどの前駆体では、アンモニアのこの前駆体に対する比が減少するにつれ、生成される膜の応力が低下する。低NH
3:BTBAS比では、応力の結果は十分でない。これらの前駆体についてアンモニアを低減すると、ケイ素リッチな膜が生成し、これはシリコン基材に関してこれらの膜の熱膨張係数を低下させる。理論によって縛られることを意図するものではないが、堆積プロセスにおいてDEASに対するアンモニアの比を低減させると、Nに対するSiの原子比が増加し、それによってSiに対するCの原子比が増加する。明らかに、その場合には、Si−C結合によるSi−N結合の置換が幾つかあり、これらの結合により、同様の応力を有する膜が生成することになる。
【0068】
この例の第2の構成要素は膜硬さの測定であった。Hysitronシステムを用いた押込みによってそれを測定した。
図2は堆積膜の硬さを示すプロットである。ジエチルアミノシランが前駆体として用いられた場合、BTBAS堆積及び熱成長二酸化ケイ素と比較して、より硬い膜が得られた。より硬い膜は、化学機械研磨(CMP)操作において下地の層及びそれ自体を一層保護する。この性質もまた驚くべきことであった。
【0069】
[例9]
[窒化ケイ素及び炭窒化ケイ素膜のエッチ抵抗性]
本例においては、種々の窒化ケイ素及び炭窒化ケイ素膜のエッチング結果が、表1に示される。表1は、1%の(49%)HFにおける幾つかの前駆体からの膜のエッチング結果を示している。エッチ速度は、同時にエッチングされた熱成長二酸化ケイ素のエッチ速度に対して与えられている。膜のエッチ速度が低いほど、望ましくない二酸化ケイ素を除去するときに、幾何学的形状を維持し及び下地の層を保護するのに良好である。
【0070】
【表1】
【0071】
上記の表1から、DEASは、0:1〜2:1のNH
3:前駆体比において、優れた低エッチ速度を有することが示される。一方で、0:1のNH
3:BTBAS比でさえ、2:1のNH
3:DEASよりも高いエッチ速度を得た。優れた低エッチ速度が低NH
3:BTBAS比において示されるが、BTBASの応力レベルが、低NH
3:BTBASレベルでは十分でないことが思い起こされる。
【0072】
要約すると、式Si
xC
yN
zの炭窒化ケイ素誘電膜は、CVD及び他の堆積プロセスにより、記載されるクラスのアミノシランから生成することができる。SiH
3基の高い活性は、550℃程度の低い温度においてSi
xC
yN
z膜堆積物の生成を可能にするのに対し、Si
xC
yN
z膜を形成するための前駆体の多くが十分には機能しないと考えられる。
【0073】
また、ケイ素中心におけるアンモニアアミノ基転移反応に関する低い立体障害により、比較的低温で、これらの化合物がアンモニアと反応し、かつ窒素濃度が増加した膜を形成することが可能になると考えられる。エチル、イソプロピル、ブチルなどの配位子は、それらがβ−水素化物の脱離により揮発性副生成物になるので、優れた脱離基として作用する。後に残された炭素は、ケイ素と結合する。対照的に、これまでに報告されたメチル基を有するアミノシラン前駆体は、この解離経路を有していない。それらは窒素と結合したままであり、成長する膜中に組み込まれ、捕捉され得る。このような捕捉されたメチル基の存在は、赤外スペクトルにおいて容易に見分けられる(
図3を参照)。しかしながら、ここで、
図3においてC−Hピークが存在しないことは、膜中に捕捉された炭化水素が非常に低いレベルにすぎないかもしれないということを示している。