(58)【調査した分野】(Int.Cl.,DB名)
吸入室に導入される冷媒を圧縮して吐出室から吐出する可変容量圧縮機の吐出容量を、前記吐出室からクランク室に導入する冷媒の流量を調整することにより変化させる可変容量圧縮機用制御弁において、
前記吐出室と前記クランク室とを連通させる主通路と、前記クランク室と前記吸入室とを連通させる副通路とが形成されたボディと、
前記主通路に設けられた主弁座と、
前記主弁座に着脱して主弁を開閉する主弁体と、
前記副通路に設けられた副弁座と、
前記副弁座に着脱して副弁を開閉する副弁体と、
所定の被感知圧力を受圧し、その被感知圧力の大きさに応じた前記主弁の開弁方向の駆動力を発生する感圧部と、
供給される電流量に応じた前記主弁の閉弁方向の駆動力を発生するソレノイドと、
を備え、
前記主弁の制御時には前記副弁の閉弁状態を保ち、前記主弁が閉じた後に前記副弁が開弁するように構成され、
前記主弁体の前記主弁座からのリフト量に対する前記主弁の開口面積の変化よりも、前記副弁体の前記副弁座からのリフト量に対する前記副弁の開口面積の変化のほうが大きくなる特性を有し、
前記副弁体に前記主弁座が一体に設けられ、
前記主弁が閉じた後に前記主弁座が動くと同時に前記副弁が開く特性を有することを特徴とする可変容量圧縮機用制御弁。
前記副弁体に対し、前記吐出室の圧力と前記クランク室の圧力との差圧、および前記吐出室の圧力と前記吸入室の圧力との差圧の少なくとも一方が前記副弁の閉弁方向に作用するように構成されていることを特徴とする請求項1または2に記載の可変容量圧縮機用制御弁。
吸入室に導入される冷媒を圧縮して吐出室から吐出する可変容量圧縮機の吐出容量を、クランク室から前記吸入室へ導出する冷媒の流量を調整することにより変化させる可変容量圧縮機用制御弁において、
前記吐出室と前記クランク室とを連通させる主通路と、前記クランク室と前記吸入室とを連通させる副通路とが形成されたボディと、
前記主通路に設けられた主弁座と、
前記主弁座に着脱して主弁を開閉する主弁体と、
前記副通路に設けられた副弁座と、
前記副弁座に着脱して副弁を開閉する副弁体と、
所定の被感知圧力を受圧し、その被感知圧力の大きさに応じた前記副弁の閉弁方向の駆動力を発生する感圧部と、
供給される電流量に応じた前記副弁の開弁方向の駆動力を発生するソレノイドと、
を備え、
前記副弁の制御時には前記主弁の閉弁状態を保ち、前記副弁が閉じた後に前記主弁が開弁するように構成され、
前記主弁体の前記主弁座からのリフト量に対する前記主弁の開口面積の変化よりも、前記副弁体の前記副弁座からのリフト量に対する前記副弁の開口面積の変化のほうが大きくなる特性を有し、
前記副弁体に前記主弁座が一体に設けられ、
前記主弁が閉じた後に前記主弁座が動くと同時に前記副弁が開く特性を有することを特徴とする可変容量圧縮機用制御弁。
【発明を実施するための形態】
【0014】
以下、本発明の実施形態を、図面を参照して詳細に説明する。なお、以下の説明においては便宜上、図示の状態を基準に各構造の位置関係を上下と表現することがある。
【0015】
[第1実施形態]
図1は、第1実施形態に係る制御弁の構成を示す断面図である。
制御弁1は、自動車用空調装置の冷凍サイクルに設置される図示しない可変容量圧縮機(単に「圧縮機」という)の吐出容量を制御する電磁弁として構成されている。この圧縮機は、冷凍サイクルを流れる冷媒を圧縮して高温・高圧のガス冷媒にして吐出する。そのガス冷媒は凝縮器(外部熱交換器)にて凝縮され、さらに膨張装置により断熱膨張されて低温・低圧の霧状の冷媒となる。この低温・低圧の冷媒が蒸発器にて蒸発し、その蒸発潜熱により車室内空気を冷却する。蒸発器で蒸発された冷媒は、再び圧縮機へと戻されて冷凍サイクルを循環する。圧縮機は、自動車のエンジンによって回転駆動される回転軸を有し、その回転軸に取り付けられた揺動板に圧縮用のピストンが連結されている。その揺動板の角度を変化させてピストンのストロークを変えることにより、冷媒の吐出量が調整される。制御弁1は、その圧縮機の吐出室からクランク室へ導入する冷媒流量を制御することで揺動板の角度、ひいてはその圧縮機の吐出容量を変化させる。
【0016】
制御弁1は、圧縮機の吸入圧力Ps(「被感知圧力」に該当する)を設定圧力に保つように、吐出室からクランク室に導入する冷媒流量を制御するいわゆるPs感知弁として構成されている。制御弁1は、弁本体2とソレノイド3とを一体に組み付けて構成される。弁本体2は、圧縮機の運転時に吐出冷媒の一部をクランク室へ導入するための冷媒通路を開閉する主弁と、圧縮機の起動時にクランク室の冷媒を吸入室へ逃がすいわゆるブリード弁として機能する副弁とを含む。ソレノイド3は、主弁を開閉方向に駆動してその開度を調整し、クランク室へ導入する冷媒流量を制御する。弁本体2は、段付円筒状のボディ5、ボディ5内に設けられた主弁および副弁、主弁の開度を調整するためにソレノイド力に対抗する力を発生するパワーエレメント6等を備えている。パワーエレメント6は、「感圧部」として機能する。
【0017】
ボディ5には、その上端側からポート12,14,16,18が設けられている。このうち、ポート12はボディ5の上端開口部に設けられ、ポート14,16,18はボディ5の側部に設けられている。ポート12,18は吸入室に連通する「吸入室連通ポート」として機能し、ポート14は吐出室に連通する「吐出室連通ポート」として機能し、ポート16はクランク室に連通する「クランク室連通ポート」として機能する。ボディ5の上端開口部には端部部材13が固定されている。端部部材13の外周面には、ポート12を形成するための複数の連通溝15が設けられている。ボディ5の下端部はソレノイド3の上端部に連結されている。
【0018】
ボディ5内には、ポート14とポート16とを連通させる主通路と、ポート16とポート18とを連通させる副通路とが形成されている。主通路には小口径の主弁が設けられ、副通路には大口径の副弁が設けられている。副弁は主弁よりも下方、つまり主弁よりもソレノイド3に近い側に同軸状に配置されている。すなわち、制御弁1は図示のように、一端側からパワーエレメント6、主弁、副弁、ソレノイド3が順に配置される構成を有する。主通路には主弁孔20と主弁座22が設けられている。副通路には副弁孔32と副弁座34が設けられている。
【0019】
ポート12は、ボディ5の上部に区画された圧力室23と吸入室とを連通させ、圧力室23に吸入圧力Psの冷媒を導入する。パワーエレメント6は、圧力室23に配置されている。ポート14は、吐出室から吐出圧力Pdの冷媒を導入する。ポート16は、圧縮機の定常動作時に主弁を経由したクランク圧力Pcの冷媒をクランク室へ向けて導出する一方、圧縮機の起動時にはクランク室から排出されたクランク圧力Pcの冷媒を導入する。このとき導入された冷媒は、副弁に導かれる。ポート18は、圧縮機の定常動作時に吸入圧力Psの冷媒を導入する一方、圧縮機の起動時には副弁を経由した吸入圧力Psの冷媒を吸入室へ向けて導出する。
【0020】
主弁孔20と副弁孔32とは同軸状に形成され、主弁孔20と副弁孔32との間の圧力室24がポート16と連通している。ポート14と圧力室23との間にはガイド孔25(「第1ガイド孔」として機能する)が設けられている。ポート14とポート16との間にはガイド孔26(「第2ガイド孔」として機能する)が設けられている。ポート16とポート18との間にはガイド孔27(「第3ガイド孔」として機能する)が設けられている。これらのガイド孔には、段付円筒状の副弁体36が挿通されている。ガイド孔26は、ガイド孔25,27よりも若干大きくされており、副弁体36は、その一端側および他端側においてガイド孔25,27に摺動可能に支持されている。すなわち、副弁体36は、ボディによる2点支持がなされている。ソレノイド3の上面に副弁座34が形成されている。副弁体36が副弁座34に着脱して副弁を開閉する。
【0021】
副弁体36の上部の縮径部に主弁孔20が設けられ、その下端開口部に主弁座22が形成されている。一方、ボディ5の軸線に沿って長尺状の作動ロッド38が設けられている。作動ロッド38は、その上半部が副弁体36に挿通され、下半部がソレノイド3に挿通されている。作動ロッド38は、その上端部が副弁体36の上端部に摺動可能に支持され、その先端部にてパワーエレメント6と作動連結可能に接続される。作動ロッド38の下端部は、ソレノイド3の後述するプランジャ50に接続されている。また、作動ロッド38の中間部が拡径され、主弁体30を形成している。主弁体30は、圧力室24にて主弁座22に着脱することにより主弁を開閉し、吐出室からクランク室へ流れる冷媒流量を調整する。作動ロッド38は、主弁体30および副弁体36に対してソレノイド力を直接伝達する。
【0022】
副弁体36が副弁座34に着座して副弁を閉じることにより、圧力室24とポート18との連通状態が遮断され、クランク室から吸入室への冷媒のリリーフが遮断される。また、副弁体36が副弁座34から離間して副弁を開くことにより、圧力室24とポート18とが連通し、クランク室から吸入室への冷媒のリリーフが許容される。副弁体36の上部および中間部には、それぞれ内外を連通する連通孔35,37が設けられている。連通孔35はポート14と主弁孔20とを連通させ、連通孔37はポート16と圧力室24とを連通させる。
【0023】
副弁体36とボディ5との間には、副弁体36を副弁の閉弁方向に付勢するスプリング44(「付勢部材」として機能する)が介装されている。パワーエレメント6は、吸入圧力Psを感知して変位するベローズ45(「感圧部材」として機能する)を含み、そのベローズ45の変位によりソレノイド力に対抗する力を発生させる。この対抗力は、作動ロッド38を介して主弁体30にも伝達される。
【0024】
一方、ソレノイド3は、段付円筒状のコア46と、コア46の下端開口部を封止するように組み付けられた有底円筒状のスリーブ48と、スリーブ48に収容されてコア46と軸線方向に対向配置された円筒状のプランジャ50と、コア46およびスリーブ48に外挿された円筒状のボビン52と、ボビン52に巻回され、通電により磁気回路を生成する電磁コイル54と、電磁コイル54を外方から覆うように設けられ、ヨークとしても機能する円筒状のケース56と、ケース56の下端開口部を封止するように設けられた端部部材58とを備える。なお、本実施形態においては、ボディ5、コア46、ケース56および端部部材58が制御弁1全体のボディを形成している。プランジャ50とコア46との間には、プランジャ50をコア46から離間する方向に付勢するスプリング47(「付勢部材」として機能する)が介装されている。
【0025】
弁本体2とソレノイド3とは、ボディ5の下端部がコア46の上端開口部に圧入されることにより固定されている。コア46と副弁体36との間に圧力室24が形成されている。一方、コア46の中央を軸線方向に貫通するように、作動ロッド38が挿通されている。作動ロッド38の下端部がプランジャ50の上半部に圧入され、作動ロッド38とプランジャ50とが同軸状に接続されている。
【0026】
作動ロッド38は、プランジャ50により下方から支持され、主弁体30、副弁体36およびパワーエレメント6と作動連結可能に構成されている。作動ロッド38は、コア46とプランジャ50との吸引力であるソレノイド力を、主弁体30又は副弁体36に適宜伝達する。一方、作動ロッド38には、パワーエレメント6の伸縮作動による駆動力(「感圧駆動力」ともいう)がソレノイド力と対抗するように負荷される。すなわち、主弁の制御状態においては、ソレノイド力と感圧駆動力とにより調整された力が主弁体30に作用し、主弁の開度を適切に制御する。主弁の閉時には、ソレノイド力の大きさに応じて作動ロッド38がボディ5に対して相対変位し、副弁体36を押し上げて副弁を開弁させる。それによりブリード機能を発揮させる。
【0027】
コア46の上端部にはリング状の軸支部材60が圧入されており、作動ロッド38は、その軸支部材60によって軸線方向に摺動可能に支持されている。軸支部材60の外周面の所定箇所には、軸線に平行な連通溝が形成されている。圧力室24のクランク圧力Pcは、その連通溝、作動ロッド38とコア46との間隙により形成される連通路62を通ってスリーブ48の内部にも導かれる。
【0028】
連通路62は、スリーブ48内をオイルダンパ室とするためのオリフィスとして機能する。すなわち、本実施形態では、制御弁1の製造工程において、圧縮機の潤滑用として冷媒に含まれるオイルと同種のオイルを予めスリーブ48内に入れておく。本実施形態では、軸支部材60に設けられた連通溝が、スリーブ48へのオイルの出入りに対して抵抗となる絞り通路として機能する。このような構成により、スリーブ48をオイルダンパ室として機能させることができ、そのスリーブ48に配置されたプランジャ50の微小振動などが抑制される。その結果、そのような微小振動による騒音の発生が防止または抑制される。なお、変形例においては、連通路62が、スリーブ48へのオイルの出入りに対して抵抗となる絞り通路として機能するようにしてもよい。すなわち、軸支部材60に設けられた連通溝および連通路62の少なくとも一方が、絞り通路として機能するようにすればよい。なお、スプリング47が、コア46とプランジャ50とを両者を互いに離間させる方向に付勢するオフばねとして機能する。
【0029】
スリーブ48は非磁性材料からなる。プランジャ50の側面には軸線に平行な複数の連通溝66が設けられ、プランジャ50の下端面には半径方向に延びて内外を連通する複数の連通溝68が設けられている。このような構成により、図示のようにプランジャ50が下死点に位置しても、クランク圧力Pcがプランジャ50とスリーブ48との間隙を通って背圧室70に導かれるようになっている。
【0030】
ボビン52からは電磁コイル54につながる一対の接続端子72が延出し、それぞれ端部部材58を貫通して外部に引き出されている。同図には説明の便宜上、その一対の片方のみが表示されている。端部部材58は、ケース56に内包されるソレノイド3内の構造物全体を下方から封止するように取り付けられている。端部部材58は、耐食性を有する樹脂材のモールド成形(射出成形)により形成され、その樹脂材がケース56と電磁コイル54との間隙にも満たされている。このように樹脂材がケース56と電磁コイル54との間隙に樹脂材を満たすことで、電磁コイル54で発生した熱をケース56に伝達しやすくし、その放熱性能を高めている。端部部材58からは接続端子72の先端部が引き出されており、図示しない外部電源に接続される。
【0031】
図2は、
図1の上半部に対応する部分拡大断面図である。
ボディ5は、第1ボディ81と第2ボディ82とを組み付けて構成されている。第1ボディ81は、外径が上方に向かって段階的に小さくなる段付円筒状をなし、その内方に形成されたガイド孔27にて副弁体36の下半部を摺動可能に支持している。第2ボディ82は、段付円筒状をなし、その下半部が第1ボディ81の上半部に内挿されるように固定されている。ボディ5は、第1ボディ81と第2ボディ82との連結により、ソレノイド3の側からパワーエレメント6の側に向けて外径が小さくなるように構成され、図示しない圧縮機の取付穴への挿入容易性が高められている。
【0032】
第2ボディ82の下方側部には、内外を連通する連通孔83が設けられている。第1ボディ81と第2ボディ82とのオーバラップ部にポート14が形成されている。パワーエレメント6は、第2ボディ82の上半部に収容されるように設けられている。第2ボディ82の下半部の内径がやや縮径されることによりガイド孔25,26が形成されている。ガイド孔26の摺動面には、シール用のOリング28(「シール部材」として機能する)が設けられている。これにより、ポート14から導入された高圧の冷媒が、副弁体36とガイド孔26との間隙を通ってポート16へ漏洩することが防止されている。
【0033】
主弁体30の上面90は、主弁座22に着脱して主弁を開閉する「着脱部」として機能するとともに、主弁座22に着座した状態で副弁体36を上方(副弁の開弁方向)に押圧する「係合部」としても機能する。一方、副弁体36の中間部の上面92は、第2ボディ82の下面に係止されることで副弁体36の上方への変位が規制される「係止部」として機能する。作動ロッド38の上端部94は、副弁体36の上端部に摺動可能に挿通され、圧力室23を他の圧力室から隔離する隔壁としても機能している。
【0034】
このような構成により、ソレノイド3が非通電のときには、スプリング47(
図1参照)の付勢力により作動ロッド38が押し下げられる。その結果、図示のように、主弁体30が主弁座22から離間し、主弁が全開状態となる。副弁体36は、スプリング44の付勢力により副弁の閉弁状態を維持するが、副弁体36が副弁座34に着座することによりその下方への変位が規制されている。本実施形態では、副弁の閉弁状態において上面92が第2ボディ82の下面から所定間隔L1をあけて離間するように副弁体36の形状および大きさが設定されている。
【0035】
パワーエレメント6は、ベローズ45の上端開口部を第1ストッパ84(「ベース部材」に該当する)により閉止し、下端開口部を第2ストッパ86(「ベース部材」に該当する)により閉止して構成されている。第1ストッパ84は段付円柱状をなし、ベローズ45の内方にて軸線方向に延在する。第2ストッパ86は円板状をなし、その上面中央部が第1ストッパ84の下端面と対向配置される。ベローズ45の内部は密閉された基準圧力室Sとなっており、第1ストッパ84と第2ストッパ86との間に、ベローズ45を伸長方向に付勢するスプリング88が介装されている。基準圧力室Sは、本実施形態では真空状態とされている。第1ストッパ84は、端部部材13と一体成形されている。したがって、第1ストッパ84は、ボディ5に対して固定された状態となる。ベローズ45は、圧力室23の吸入圧力Psと基準圧力室Sの基準圧力との差圧に応じて軸線方向(主弁の開閉方向)に伸長または収縮する。ただし、その差圧が大きくなってもベローズ45が所定量収縮すると、第2ストッパ86が第1ストッパ84に当接して係止されるため、その収縮は規制される。
【0036】
以上の構成において、主弁体30と主弁座22とにより主弁が構成され、その主弁の開度によって吐出室からクランク室へ導入される冷媒流量が調整される。また、副弁体36と副弁座34とにより副弁が構成され、その副弁の開閉によりクランク室から吸入室への冷媒の導出が許容または遮断される。すなわち、制御弁1は、主弁と副弁のいずれか一方を開弁させることにより冷媒の流れを切り替える三方弁としても機能する。
【0037】
本実施形態においては、副弁体36の副弁における有効受圧径A(シール部径)と、副弁体36のガイド孔27との摺動部の有効受圧径B(シール部径)とが等しく設定されている。このため、副弁体36に作用するクランク圧力Pcおよび吸入圧力Psの影響の大部分がキャンセルされる。また、副弁体36のガイド孔25との摺動部の有効受圧径C(シール部径)と、副弁体36のガイド孔26との摺動部の有効受圧径D(シール部径)とが等しく設定されている。このため、副弁体36に作用する吐出圧力Pdの影響はキャンセルされる。
【0038】
すなわち、副弁体36を大きく形成した部分については、クランク圧力Pcおよび吸入圧力Psの影響がキャンセルされる。一方、副弁体36の上半部である小径部には、クランク圧力Pcと吸入圧力Psとの差圧(Pc−Ps)が副弁の開弁方向に作用するが、この差圧は比較的小さいため、スプリング44による副弁の閉弁方向の付勢力よりも大きくはならない。その結果、副弁体36を大きく構成したにもかかわらず、圧縮機の制御時には副弁の閉弁状態を安定に保持することができ、圧縮機の起動時にはソレノイド3の起動により副弁を速やかに開弁させることができる。言い換えれば、副弁体36を大きく形成する部分についてクランク圧力Pcおよび吸入圧力Psの影響をキャンセルするため、この部分の大きさを変更しても、差圧(Pc−Ps)により副弁体36が受ける荷重は大きくならない。このため、副弁体36の大きさを自由に設定することが可能となる。また、主弁体30の主弁における有効受圧径E(シール部径)と、主弁体30の摺動部の有効受圧径F(シール部径)とが等しく設定されている。これにより、主弁体30に作用する吐出圧力Pdの影響がキャンセルされ、主弁の制御時に主弁体30の挙動を安定に保つことができる。
なお、変形例においては、副弁体36の下端開口部の外径を小さくして段差形状にするなどして、有効受圧径Dと有効受圧径Eとの差(D−E)による有効受圧面積と、有効受圧径Bと有効受圧径Aとの差(B−A)による有効受圧面積とを等しくしてもよい。それにより、副弁体36に作用する差圧(Pc−Ps)による影響をキャンセルしてもよい。あるいは、有効受圧径Cによる有効受圧面積(有効受圧径Fによる有効受圧面積を含む中実部分の面積)と、有効受圧径Bと有効受圧径Aとの差(B−A)による有効受圧面積とを等しくしてもよい。それにより、主弁体30と副弁体36とが一体になったときに作用する吸入圧力Psの影響をキャンセルしてもよい。
【0039】
このような構成において、制御弁1の安定した制御状態においては、圧力室23の吸入圧力Psが所定の設定圧力Psetとなるよう主弁が自律的に動作する。この設定圧力Psetは、基本的にはスプリング44,47,88のばね荷重およびベローズ45の荷重によって予め調整され、蒸発器内の温度と吸入圧力Psとの関係から、蒸発器の凍結を防止できる圧力値として設定される。設定圧力Psetは、ソレノイド3への供給電流(設定電流)を変えることにより変化させることができる。本実施形態では、制御弁1の組み付けが概ね完了した状態で端部部材13の圧入量を再調整することで、スプリングの設定荷重を微調整することができ、設定圧力Psetを正確に調整することができる。
【0040】
一方、制御弁1の起動時においては、ソレノイド3への通電により作動ロッド38を副弁体36に対して相対変位させることにより、主弁体30を主弁座22に着座させて主弁を閉じ、その主弁体30を介して副弁体36に開弁方向の駆動力を与えることができる。それにより、副弁体36を副弁座34からリフトさせて副弁を開くことができる。すなわち、制御弁1は、ソレノイド3の駆動力を用いて副弁を強制的に開弁させるための「強制開弁機構」を有する。なお、この構成は、副弁体36とガイド孔25,26,27との摺動部への異物の噛み込みにより副弁体36がロックした場合に、それを解除するロック解除機構(連動機構、押圧機構)としても機能する。
【0041】
次に、制御弁の動作について説明する。
図3および
図4は、制御弁の動作を表す図であり、
図2に対応する。既に説明した
図2は、制御弁の最小容量運転状態を示している。
図3は、制御弁のブリード機能を動作させたときの状態を示している。
図4は、比較的安定した制御状態を示している。以下においては、
図1に基づき、適宜
図2〜
図4を参照しつつ説明する。
【0042】
制御弁1においてソレノイド3が非通電のとき、つまり自動車用空調装置が動作していないときには、コア46とプランジャ50との間に吸引力が作用しない。一方、吸入圧力Psは比較的高い状態にある。このため、
図2に示すように、ベローズ45が縮小し、パワーエレメント6は実質的に機能しない。また、スプリング47の付勢力により作動ロッド38が押し下げられ、主弁体30が主弁座22から離間して主弁が全開状態となる。一方、スプリング44の付勢力により副弁体36が副弁座34に着座した状態を保ち、副弁は閉弁状態を保持する。
【0043】
一方、自動車用空調装置の起動時など、ソレノイド3の電磁コイル54に制御電流が供給されると、
図3に示すように、ソレノイド力により作動ロッド38が上方に駆動され、主弁が閉じられ、副弁が開かれる。すなわち、まず作動ロッド38が副弁体36に対して相対変位することにより、主弁体30が主弁座22に着座して主弁を閉じる。続いて、主弁体30を主弁座22に着座させたまま、作動ロッド38がボディ5に対してさらに相対変位することにより、副弁体36が副弁座34から離間して副弁を開弁させる。ただし、副弁体36の上面92がボディ5に係止されることにより、副弁体36のリフト量(つまり副弁の開度)は規制される。なお、起動時は通常、吸入圧力Psが比較的高いため、ベローズ45が縮小状態を維持し、副弁の開弁状態が維持される。
【0044】
すなわち、ソレノイド3に起動電流が供給されると、主弁が閉じてクランク室への吐出冷媒の導入を規制するとともに副弁が開いてクランク室内の冷媒を吸入室に速やかにリリーフさせる。その結果、圧縮機を速やかに起動させることができる。なお、例えば車両が低温環境下におかれた場合のように、吸入圧力Psが低く、ベローズ45が伸長した状態においても、ソレノイド3に大きな電流を供給することで副弁を開弁させることができ、圧縮機を速やかに起動させることができる。
【0045】
なお、このような制御弁1の起動時に、仮に副弁体36の摺動部への異物の噛み込みにより副弁体36が開弁方向にロックしていたとしても、ソレノイド力により副弁体36を押圧することによりそのロックを解除させることができる。また、仮に副弁体36の摺動部への異物の噛み込みにより副弁体36が閉弁方向にロックしたとしても、制御弁1の起動により吸入圧力Psが低下し、ベローズ45が伸長すると、第2ストッパ86が副弁体36の上端面に当接してこれを下方に押圧することによりそのロックを解除させることができる。
【0046】
そして、ソレノイド3に供給される電流値が所定値に設定された制御状態にあるときには、
図4に示すように、吸入圧力Psが比較的低いためにベローズ45が伸長し、作動ロッド38と作動連結される。これにより、主弁体30が動作して主弁の開度を調整する。このとき、主弁体30は、スプリング47による開弁方向の力と、ソレノイド3による閉弁方向のソレノイド力と、吸入圧力Psに応じて動作するパワーエレメント6によるソレノイド力に対抗する力とがバランスした弁リフト位置にて停止する。なお、主弁の制御状態においては、スプリング44の付勢力により副弁体36が副弁座34に着座した状態を保つため、副弁の閉弁状態が維持される。
【0047】
そして、たとえば冷凍負荷が大きくなり吸入圧力Psが設定圧力Psetよりも高くなると、ベローズ45が縮小するため、主弁体30が相対的に上方(閉弁方向)へ変位する。その結果、主弁の弁開度が小さくなり、圧縮機は吐出容量を増やすよう動作する。その結果、吸入圧力Psが低下する方向に変化する。逆に、冷凍負荷が小さくなって吸入圧力Psが設定圧力Psetよりも低くなると、ベローズ45が伸長する。その結果、パワーエレメント6による付勢力がソレノイド力に対抗する方向に作用する。この結果、主弁体30への閉弁方向の力が低減されて主弁の弁開度が大きくなり、圧縮機は吐出容量を減らすよう動作する。その結果、吸入圧力Psが設定圧力Psetに維持される。
【0048】
このような定常制御が行われている間にエンジンの負荷が大きくなり、空調装置への負荷を低減させたい場合、制御弁1においてソレノイド3がオンからオフに切り替えられる。そうすると、コア46とプランジャ50との間に吸引力が作用しなくなるため、スプリング47の付勢力により主弁体30が主弁座22から離間し、主弁が全開状態となる。このとき、副弁体36は副弁座34に着座しているため、副弁は閉弁状態となる。圧縮機の吐出室からポート16に導入された吐出圧力Pdの冷媒は、全開状態の主弁を通過し、ポート14からクランク室へと流れることになる。したがって、クランク圧力Pcが高くなり、圧縮機は最小容量運転を行うようになる。
【0049】
図5は、制御弁の弁開度特性を表す図である。同図の横軸は作動ロッド38の変位を示し、縦軸は主弁および副弁の弁開度(開口面積)を示している。作動ロッド38の変位は、主弁体30の主弁座22からのリフト量および副弁体36の副弁座34からのリフト量に対応している。図中の実線が主弁を示し、一点鎖線が副弁を示している。
【0050】
図2に示したようにソレノイド3がオフされて作動ロッド38が下死点にあるときに、主弁体30のリフト量が最大となり、
図3に示したようにソレノイド3がオフからオンにされて作動ロッド38が上死点にあるときに副弁体36のリフト量が最大となる。作動ロッド38の変位の中間点には、主弁体30と副弁体36のリフト量がともにゼロ、つまり主弁と副弁が同時に閉弁状態となる全閉ポイントが存在する。作動ロッド38がその全閉ポイントを基準に下方へ変位すると、副弁が閉じられたまま主弁の開度が徐々に大きくなる。逆に、作動ロッド38がその全閉ポイントを基準に上方へ変位すると、主弁が閉じられたまま副弁の開度が徐々に大きくなる。作動ロッド38が上方へ変位する過程で主弁が閉じると同時に副弁が開き始める。また、作動ロッド38が下方へ変位する過程で副弁が閉じると同時に主弁が開き始めるようになる。
【0051】
ただし、本実施形態では、副弁体36の副弁におけるシール部径が、主弁体30の主弁におけるシール部径よりも相当大きいため、主弁よりも副弁のほうが、弁体リフト量−弁開度(開口面積)の弁開度特性の傾きが大きくなる。すなわち、副弁体36のリフト量(作動ロッド38の変位)に対して副弁の開口面積を大きく変化させることができるため、副弁開時に大きな流量を得ることができる。その結果、圧縮機の起動性を向上させることができる。特に、圧縮機の起動時においては差圧(Pc−Ps)が小さい状態で液冷媒を抜かなければならないため、副弁の開度は大きいほうが望ましく、本実施形態の構成はその点でメリットがある。一方、主弁体30のリフト量(作動ロッド38の変位)に対して主弁の開口面積を相対的に細かく調整できるため、主弁の弁開度特性を安定に保つことができるとともに、圧縮機の容量制御を高精度に維持することができる。
【0052】
以上に説明したように、本実施形態では、副弁座34が主弁体30に形成されるのではなく、ボディ5の一部に形成される。このため、主弁体30の大きさに関わりなく、副弁孔32および副弁体36の大きさを設定することができる。すなわち、主弁の大きさに関わりなく副弁の大きさを設定することができる。特に、副弁体36をパワーエレメント6よりもソレノイド3に近い側、つまりボディ5の外径が大きくなる側に設けることにより、副弁体36を十分に大きくすることができる。本実施形態では上述のように、副弁の弁開度特性の傾きが主弁のそれより相当大きくなるようにしたため、副弁開時に大きな流量が得られ、ブリード機能を高めることができる。また、副弁体36に主弁座22を一体に設けたことで、部品点数を削減することができる。さらに、主弁座22(弁座形成部)と副弁体36が一体となることで、主弁が閉じた後に主弁座22が動くと同時に、その主弁座22と一体である副弁体36が動いて副弁が開くため、主弁の閉じるタイミングと副弁の開くタイミングとを個別に調整する必要がなくなり、部品の選定や調整部位が削減でき、組み立て性が飛躍的に向上する。
【0053】
[第2実施形態]
図6は、第2実施形態に係る制御弁の上半部に対応する部分拡大断面図である。以下では第1実施形態との相異点を中心に説明する。なお、同図において第1実施形態とほぼ同様の構成部分については同一の符号を付している。
【0054】
制御弁201は、弁本体202とソレノイド203とを一体に組み付けて構成される。ボディ205は単一の部材からなり、その上端開口部にアジャスト部材213が螺着されている。ポート12は、ボディ205の上部において側方に開口している。ポート14には環状のストレーナ17が取り付けられている。ストレーナ17は、ボディ205の内部へのごみ等の侵入を抑制するためのフィルタを含む。作動ロッド238の上端部は、パワーエレメント206の内方にまで延在している。副弁体236の上端部は圧力室23には露出しておらず、吐出圧力Pdを受圧する。
【0055】
一方、ソレノイド203は、コア246、スリーブ248と、プランジャ250、ボビン52、電磁コイル54、ケース256、および端部部材58とを備える。なお、本実施形態においては、ボディ205、ケース256および端部部材58が制御弁201全体のボディを形成している。プランジャ250の上部には、作動ロッド238の下端部が挿通されている。プランジャ250とコア246との間にスプリングは設けられていない。一方、副弁体236と作動ロッド238との間に、プランジャ250をコア246から離間する方向に付勢するためのスプリング247(「付勢部材」として機能する)が介装されている。
【0056】
弁本体202とソレノイド203とは、ボディ205の下端部がケース256の上端部に圧入されることにより固定されている。コア246の上面には弁座部材260が嵌着されており、その弁座部材260の上面が副弁座34を形成している。弁座部材260は、非磁性の環状部材であり、本実施形態ではPTFE(ポリテトラフルオロエチレン)からなるが、ゴム等の弾性体であってもよい。弁座部材260は、コア246に対して嵌着されてもよいし、焼き付けられてもよい。
【0057】
図7は、
図6の上半部に対応する部分拡大断面図である。
ボディ205のガイド孔25は、作動ロッド238の上部262を摺動可能に支持する。作動ロッド238における主弁体30の下方には、ばね受け部材240が設けられている。副弁体236とばね受け部材240との間にスプリング247が介装されている。スプリング247は、副弁体236を開弁方向に付勢する。本実施形態では、第1実施形態のように作動ロッド238とプランジャ250とを固定していないが、スプリング247の反力により作動ロッド238がプランジャ250の側に付勢されるため、作動ロッド238とプランジャ250との当接状態を常に維持することができる。言い換えれば、作動ロッド238をプランジャ250に圧入する必要のない構成とされている。
【0058】
副弁体236は、ガイド孔26およびガイド孔27に摺動可能に挿通されている。すなわち、副弁体236は、ボディによる2点支持がなされている。副弁体236のガイド孔26との対向面には、シール用のOリング228(「シール部材」として機能する)が設けられている。これにより、ポート14から導入された冷媒が、副弁体236とガイド孔26との間隙を通ってポート16へ漏洩することが防止されている。
【0059】
パワーエレメント206は、ベース部材284とベローズ245を含んで構成される。ベース部材284は、金属材をプレス成形して有底円筒状に構成されており、その下端開口部に半径方向外向きに延出するフランジ部286を有する。ベローズ245は、蛇腹状の本体の上端部が閉止され、下端開口部がフランジ部286の上面に気密に溶接されている。ベローズ45は、ベース部材284の本体を軸芯として伸縮する。ベローズ245は、フランジ部286とは反対側端部がアジャスト部材213に支持されている。フランジ部286とボディ205との間には、ベローズ245を縮小方向に付勢するスプリング290(「付勢部材」として機能する)が介装されている。
【0060】
すなわち、パワーエレメント206は、アジャスト部材213とボディ205との間に弾性的に支持されている。アジャスト部材213のボディ205への螺入量を調整することにより、パワーエレメント206の設定荷重(スプリング88の設定荷重)を調整できるようにされている。なお、ベース部材284の本体は、ベローズ245の内方をその底部近傍まで延在し、その上底部がベローズ245の底部に近接配置される。作動ロッド238の上端部は、そのベース部材284の本体に挿通されている。
【0061】
本実施形態においても、主弁体30の主弁における有効受圧径E(シール部径)と、作動ロッド238の摺動部の有効受圧径F(シール部径)とが等しく設定されている。これにより、主弁体30に作用する吐出圧力Pdの影響がキャンセルされ、主弁の制御が安定化される。一方、副弁体236の上端部がポート14に開放されているため、副弁体236には、吐出圧力Pdとクランク圧力Pcとの差圧(Pd−Pc)が副弁の閉弁方向に作用する。主弁の制御時には、この差圧(Pd−Pc)により副弁体236が副弁座34に押し付けられるため、副弁の閉弁状態が安定に保持される。つまり、主弁の制御が安定に維持される。
【0062】
一方、圧縮機の起動時には差圧(Pd−Pc)が小さいため、ソレノイド203の駆動力により副弁を速やかに開くことができる。副弁体236が一旦リフトを開始すると、上述のように副弁の開口面積が速やかに大きくなるため、ブリード機能を有効に発揮することができる。本実施形態の制御弁201によっても
図5に示した弁開度特性を実現することができる。
【0063】
また、本実施形態では、磁性体からなるコア246に対して非磁性の弁座部材260を設け、その弁座部材260に副弁体236を着脱させる構成としたため、第1実施形態と比較して副弁のシール性が向上している。すなわち、ポート14を介して導入される冷媒には金属粉等の異物が含まれることがある。圧縮機のピストン等にて摩耗して発生した金属粉が冷媒とともに吐出されるためである。このような異物は、コア等の磁気回路を構成する部材の表面に引き寄せられ易い。このため、第1実施形態のようにコア自体に弁座(副弁座)が形成される構成では、その弁座に異物が付着・滞留し、弁部のシール性を低下させる虞がある。
【0064】
この点につき、本実施形態では、コア246に非磁性の弁座部材260を設け、その弁座部材260に副弁座34を形成したため、そのような異物の付着を防止又は抑制することができる。その結果、副弁体236と副弁座34との間のシール性を良好に維持することができる。なお、弁座部材260を弾性又は可撓性を有する部材にて構成することにより、仮に僅かな異物が付着したとしても、副弁体236が着座したときの弁座部材260の撓みにより、シール性を維持することはできる。
【0065】
すなわち、本実施形態のようにソレノイドの磁気回路を形成する磁性部材に弁座を設ける構成においては、その磁性部材の一部に非磁性体を装着するなどして「非磁性部」を設け、その非磁性部に弁座を形成すると同様の作用効果を得ることができる。「非磁性部」は弾性部材又は可撓性部材からなるのが好ましい。なお、そのような弁座に着脱する弁体の着脱部を弾性部材又は可撓性部材にて構成してもよい。このような技術思想は、副弁に限らず、主弁にも適用することができる。また、単一の弁を有する制御弁についても適用することができる。
【0066】
[第3実施形態]
図8は、第3実施形態に係る制御弁の上半部に対応する部分拡大断面図である。本実施形態の制御弁は、副弁と主弁との位置関係が第2実施形態と異なる。このため、以下では第2実施形態との相異点を中心に説明する。なお、同図において第2実施形態とほぼ同様の構成部分については同一の符号を付している。
【0067】
制御弁301は、弁本体302とソレノイド303とを一体に組み付けて構成される。ボディ305の上端開口部には、アジャスト部材313が螺着されている。ポート12は、アジャスト部材313を貫通するように設けられている。ポート12とポート14との間にポート16が設けられている。ボディ305の上部には、ガイド孔327(「第3ガイド孔」として機能する)が設けられている。ガイド孔26は、ガイド孔25,327よりも若干大きくされている。
【0068】
副弁体336は、段付円筒状をなし、ガイド孔327,25,26に挿通されている。すなわち、副弁体336は、ボディによる2点支持がなされている。ボディ305においてポート14とポート16とを離隔する隔壁の上面に副弁座34が形成されている。副弁体336は、ガイド孔327の下方においてボディ305を内側の圧力室325と外側の圧力室326に区画する。圧力室325は、圧力室23を介してポート12に連通する。一方、圧力室326はポート16に連通する。副弁体36の中間部および下部には、それぞれ内外を連通する連通孔337,35が設けられている。連通孔337は、副弁孔32と圧力室23とを連通させる。
【0069】
副弁体336の下部に主弁孔20が設けられ、その下端開口部に主弁座22が形成されている。作動ロッド338は、その上半部が副弁体336を貫通してパワーエレメント206と作動連結可能に接続される。副弁体336のガイド孔26との対向面にはOリング228が設けられている。
【0070】
ボディ305とソレノイド303との間には、中間圧力室328が形成されている。副弁体336の下端部(主弁座22)が中間圧力室328に露出する。主弁体30は、中間圧力室328側から主弁座22に着脱して主弁を開閉する。一方、ボディ305には、中間圧力室328と圧力室326とを連通させる連通路350が設けられている。すなわち、ポート14から導入された吐出圧力Pdの冷媒は、主弁を経ることでクランク圧力Pcに減圧されて一旦中間圧力室328に導入され、連通路350および圧力室326を介してポート16へ導かれる。
【0071】
なお、同図には示されないが、コア346とプランジャ250との間にプランジャ250をコア346から離間する方向に付勢するスプリング47が介装されている(
図1,
図6参照)。パワーエレメント206と副弁体336との間にスプリング290が介装されている。本実施形態においては、ボディ305、ケース256および端部部材58が制御弁301全体のボディを形成している。
【0072】
このような構成により、ソレノイド303が非通電のときには図示のように、スプリング290の付勢力により副弁の閉弁状態が維持される。また、スプリング47(
図1参照)により作動ロッド338が下方へ押し下げられるため、主弁体30が主弁座22から離間し、主弁が全開状態となる。
【0073】
制御弁301の安定した制御状態においては、主弁体330は、ソレノイド力により押し上げられているが、副弁体336とは係合しないため、副弁が開かれることはない。主弁体330は、圧力室23の吸入圧力Psが所定の設定圧力Psetとなるように自律的に動作する。
【0074】
一方、制御弁301の起動時においては、ソレノイド303への通電により作動ロッド338が副弁体336に対して相対変位することにより、主弁体330が主弁座22に着座して主弁を閉じる。このとき、主弁を閉じたまま作動ロッド338をボディ305に対してさらに変位させることで、副弁体336を副弁座34からリフトさせて副弁を開くことができる。すなわち、制御弁301も、ソレノイド303の駆動力を用いて副弁を強制的に開弁させるための「強制開弁機構」を有する。なお、この構成は、副弁体336とガイド孔25,26,327との摺動部への異物の噛み込みにより副弁体36がロックした場合に、それを解除するロック解除機構(連動機構、押圧機構)としても機能する。また、制御弁301によっても
図5に示した弁開度特性を実現することができる。
【0075】
[第4実施形態]
図9は、第4実施形態に係る制御弁の上半部に対応する部分拡大断面図である。本実施形態の制御弁は、主弁体の受圧構成が第2実施形態と異なる。このため、以下では第2実施形態との相異点を中心に説明する。なお、同図において第2実施形態とほぼ同様の構成部分については同一の符号を付している。
【0076】
制御弁401は、弁本体402とソレノイド403とを一体に組み付けて構成される。ボディ405のポート16にもストレーナ17が設けられている。コア446の上端部がボディ405の内方にやや突出し、その上端開口部にリング状のガイド部材460が圧入されている。副弁体436は、コア446の上端面に着脱して副弁を開閉する。コア446には、ガイド部材460と軸支部材60とにより囲まれる圧力室462が形成され、その圧力室462とポート18とを連通させる連通孔448が形成されている。
【0077】
作動ロッド438は、第1ロッド440と第2ロッド442に分割されている。第1ロッド440はパワーエレメント206に連結され、第2ロッド442はプランジャ250(
図6参照)に連結される。第1ロッド440は、その下端部がガイド部材460に摺動可能に支持されている。第2ロッド442は、その上端部が軸支部材60に摺動可能に支持され、その先端が半球状に形成されている。第2ロッド442は、第1ロッド440の下端面に点接触する態様で作動連結される。圧力室462に吸入圧力Psが導入されるため、スリーブ248(
図6参照)の内方には吸入圧力Psが満たされ、第1ロッド440の下端面には吸入圧力Psが作用するようになる。主弁体30およびばね受け部材240は、第1ロッド440に設けられている。
【0078】
このような構成において、主弁体30の主弁における有効受圧径E(シール部径)と、第1ロッド440の上側摺動部の有効受圧径F(シール部径)と、第1ロッド440の下側摺動部の有効受圧径G(シール部径)とが等しく設定されている。これにより、主弁体30に作用する吐出圧力Pd、クランク圧力Pcおよび吸入圧力Psの影響がキャンセルされる。主弁体30には差圧(Pc−Ps)が作用しなくなり、主弁の制御時に主弁体30の挙動をより安定に保つことができる。なお、変形例においては、第1ロッド440と第2ロッド442とを一体に形成してもよい。
【0079】
以上、本発明の好適な実施形態について説明したが、本発明はその特定実施形態に限定されるものではなく、本発明の技術思想の範囲内で種々の変形が可能であることはいうまでもない。
【0080】
上記各実施形態では、制御弁として、被感知圧力として吸入圧力Psを感知して動作するいわゆるPs感知弁を示したが、クランク圧力Pcを感知して動作するいわゆるPc感知弁として構成してもよい。その場合、ポート12をクランク室に連通させる。
【0081】
上記実施形態では、パワーエレメント6を構成する感圧部材としてベローズ45,245を採用する例を示したが、ダイヤフラムを採用してもよい。その場合、その感圧部材として必要な動作ストロークを確保するために、複数のダイヤフラムを軸線方向に連結する構成としてもよい。
【0082】
上記各実施形態では、クランク室に連通するクランク室連通ポート(導入出ポート)として、単一のポート16を設ける例を示した。変形例においては、クランク室連通ポートを、主弁を経由した冷媒をクランク室へ導出する第1ポート(導出ポート)と、クランク室の冷媒を導入する第2ポート(導入ポート)とに分けて構成してもよい。
【0083】
上記実施形態では、スプリング44,47,247,290等に関し、付勢部材としてスプリング(コイルスプリング)を例示したが、ゴムや樹脂等の弾性材料、あるいは板ばね等の弾性機構を採用してもよいことは言うまでもない。
【0084】
上記実施形態では、可変容量圧縮機の吐出室からクランク室に導入する冷媒の流量又は圧力を調整するいわゆる入れ制御の制御弁を示したが、変形例においては、クランク室から吸入室へ導出する冷媒の流量又は圧力を調整するいわゆる抜き制御の制御弁として構成してもよい。抜き制御とする場合、例えば上記第1〜第4実施形態のいずれかの制御弁において、副弁の開弁領域を制御領域として使用するようソレノイド力を調整することが考えられる。すなわち、上記実施形態では入れ制御を行っていたため、
図5における全閉ポイントの左側、つまり主弁の開弁領域を制御領域として使用していた。抜き制御の場合には、
図5における全閉ポイントの右側、つまり副弁の開弁領域を制御領域として使用することになる。また、作動ロッドの長さ、プランジャの長さ、あるいは作動ロッドにおける主弁体の位置を調整することにより、
図5における全閉ポイントをより下死点側に変更し、作動ロッドの変位に対する副弁体の制御範囲を大きくしてもよい。それにより、副弁の開弁領域を制御領域とする抜き制御を実現してもよい。また、例えば他の形態の三方弁など、共用のボディに主弁と副弁とが設けられ、単一のソレノイドにより駆動される複合弁であれば、上記実施形態の構成を適用することができる。
【0085】
上記実施形態では、ベローズ45,245の内部の基準圧力室Sを真空状態としたが、大気を満たしたり、基準となる所定のガスを満たすなどしてもよい。あるいは、吐出圧力Pd、クランク圧力Pc、および吸入圧力Psのいずれかを満たすようにしてもよい。そして、パワーエレメント6,206が適宜ベローズの内外の圧力差を感知して作動する構成としてもよい。
【0086】
なお、本発明は上記実施形態や変形例に限定されるものではなく、要旨を逸脱しない範囲で構成要素を変形して具体化することができる。上記実施形態や変形例に開示されている複数の構成要素を適宜組み合わせることにより種々の発明を形成してもよい。また、上記実施形態や変形例に示される全構成要素からいくつかの構成要素を削除してもよい。