特許第6109380号(P6109380)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 大阪瓦斯株式会社の特許一覧

<>
  • 特許6109380-分散型電源システム 図000002
  • 特許6109380-分散型電源システム 図000003
  • 特許6109380-分散型電源システム 図000004
  • 特許6109380-分散型電源システム 図000005
  • 特許6109380-分散型電源システム 図000006
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6109380
(24)【登録日】2017年3月17日
(45)【発行日】2017年4月5日
(54)【発明の名称】分散型電源システム
(51)【国際特許分類】
   H02J 3/38 20060101AFI20170327BHJP
   H02J 3/32 20060101ALI20170327BHJP
【FI】
   H02J3/38 110
   H02J3/38 170
   H02J3/38 180
   H02J3/32
【請求項の数】5
【全頁数】14
(21)【出願番号】特願2016-89067(P2016-89067)
(22)【出願日】2016年4月27日
(62)【分割の表示】特願2012-179910(P2012-179910)の分割
【原出願日】2012年8月14日
(65)【公開番号】特開2016-158496(P2016-158496A)
(43)【公開日】2016年9月1日
【審査請求日】2016年4月27日
(73)【特許権者】
【識別番号】000000284
【氏名又は名称】大阪瓦斯株式会社
(74)【代理人】
【識別番号】110001818
【氏名又は名称】特許業務法人R&C
(72)【発明者】
【氏名】桝本 幸嗣
(72)【発明者】
【氏名】濱走 正美
(72)【発明者】
【氏名】東口 誠作
(72)【発明者】
【氏名】平井 一裕
【審査官】 竹下 翔平
(56)【参考文献】
【文献】 特開2002−374629(JP,A)
【文献】 特開2007−6595(JP,A)
【文献】 特開2000−69675(JP,A)
【文献】 特開平6−274233(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 3/00−7/12
7/34−13/00
(57)【特許請求の範囲】
【請求項1】
電力系統に接続される電力線と、前記電力線に対して第1接続箇所で接続される蓄電部を有する充放電装置と、前記電力線に対して第2接続箇所で接続される発電装置と、前記電力線に対して第3接続箇所で接続される第1電力消費装置とを備える分散型電源システムであって、
前記電力線に対して第4接続箇所で接続される第2電力消費装置を備え、
前記電力線に対する前記電力系統の接続箇所から見て下流側に向かって前記第1接続箇所と前記第3接続箇所前記第2接続箇所とがその並び順で設けられ、前記第4接続箇所は前記第3接続箇所よりも前記電力系統側に設けられ、
前記発電装置は、前記電力系統が停電状態にあるときは前記電力線における電力の潮流を前記第3接続箇所よりも前記電力系統側に向かわせないという条件下で発電電力を制御し、前記電力系統が非停電状態にあるときは前記電力線における電力の潮流を前記第4接続箇所よりも前記電力系統側の所定箇所よりも前記電力系統側に向かわせないという条件下で発電電力を制御するように構成され、
前記電力系統が停電状態にあるとき、前記充放電装置と前記発電装置と前記第1電力消費装置とは前記電力線を介して互いに電気的に接続され、並びに、前記第2電力消費装置は前記充放電装置と前記発電装置と前記第1電力消費装置とから電気的に切断され、
前記電力系統が非停電状態にあるとき、前記充放電装置と前記発電装置と前記第1電力消費装置と前記第2電力消費装置とは前記電力線を介して互いに電気的に接続される分散型電源システム。
【請求項2】
前記第2電力消費装置が前記電力線に対して接続される前記第4接続箇所は、前記充放電装置が前記電力線に対して接続される前記第1接続箇所よりも前記電力系統側にある請求項1に記載の分散型電源システム。
【請求項3】
前記電力系統が停電状態にあるか或いは非停電状態にあるかを判定可能な系統情報を検出する系統情報検出装置を備え、
前記発電装置は、前記系統情報検出装置から受け取った前記系統情報に基づいて前記電力系統が停電状態にあるか或いは非停電状態にあるかを判定する請求項1又は2に記載の分散型電源システム。
【請求項4】
前記発電装置は、前記第4接続箇所よりも前記電力系統側の前記所定箇所から前記電力系統側へ向かう電力の潮流を表す第1信号及び前記第3接続箇所から前記電力系統側へ向かう電力の潮流を表す第2信号を受け取り、前記系統情報検出装置から受け取った前記系統情報に基づいて前記電力系統が停電状態にあると判定したときは前記第2信号を参照して発電電力を制御し、前記電力系統が非停電状態にあると判定したときは前記第1信号を参照して発電電力を制御する請求項3に記載の分散型電源システム。
【請求項5】
前記電力系統が停電状態にあるか或いは非停電状態にあるかを判定可能な系統情報を検出する系統情報検出装置と、
前記第4接続箇所よりも前記電力系統側の前記所定箇所から前記電力系統側へ向かう電力の潮流を表す第1信号が入力される第1信号線、及び、前記第3接続箇所から前記電力系統側へ向かう電力の潮流を表す第2信号が入力される第2信号線が接続される切換器と、前記第1信号線を前記発電装置に接続する第1切換状態と前記第2信号線を前記発電装置に接続する第2切換状態との何れかに前記切換器を切り換える切換制御部とを有する切換装置を備え、
前記切換制御部は、前記系統情報検出装置から受け取った前記系統情報に基づいて、前記電力系統が非停電状態にあるときは前記切換器を前記第1切換状態に切り換え、前記電力系統が停電状態にあるときは前記切換器を前記第2切換状態に切り換える請求項1又は2に記載の分散型電源システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電力系統に接続される電力線と、前記電力線に対して第1接続箇所で接続される蓄電部を有する充放電装置と、前記電力線に対して第2接続箇所で接続される発電装置と、前記電力線に対して第3接続箇所で接続される第1電力消費装置とを備える分散型電源システムに関する。
【背景技術】
【0002】
特許文献1には、電力系統に接続される電力線と、その電力線に対して接続される発電装置、充放電装置及び電力消費装置とを備える分散型電源システムが記載されている。電力線において電力系統へ向かう側を上流側とし、電力系統から離れる側を下流側としたとき、この分散型電源システムでは、電力線の最上流側に電力系統が接続され、電力線の最下流側に電力消費装置が接続されている。そして、電力線の上流側から下流側に向かって、充放電装置と発電装置とが順に接続されている。更に、発電装置から上流側(即ち、電力系統側)に電力の潮流を向かわせないという条件下(所謂、逆潮流を禁止するという条件下)で発電装置の動作が制御されている。
【0003】
図5(a)は、比較例として示す、特許文献1と同様の構成の分散型電源システムである。図5(a)に示す分散型電源システムは、電力系統1に接続される電力線2と、電力線2に対して第1接続箇所P1で接続される充放電装置10と、電力線2に対して第2接続箇所P2で接続される発電装置11と、電力線2に対して第3接続箇所P3で接続される第1電力消費装置12とを備え、電力線2に対する電力系統1の接続箇所から見て下流側に向かって第1接続箇所P1と第3接続箇所P3第2接続箇所P2とがその並び順で設けられている。更に、第1接続箇所P1よりも電力系統1の側の第4接続箇所P4では、第2電力消費装置13が電力線2に対して接続されている。そして、発電装置11は、カレントトランスCT2の検出結果を参照して(即ち、電力線2上の第1接続箇所P1と第2接続箇所P2よりも上流側の第3接続箇所P3との間を流れる電流値に基づいて導出できる電力を参照して)、第3接続箇所P3よりも電力系統1の側に電力の潮流を向かわせないという条件下で最大の発電電力を電力線2に供給し、並びに、充放電装置10は、カレントトランスCT1の検出結果を参照して(即ち、第4接続箇所P4よりも電力系統1の側での電流値に基づいて導出できる電力を参照して)、第4接続箇所P4よりも電力系統1の側に電力の潮流を向かわせないという条件下で最大の放電電力を電力線2に供給している。
【0004】
図5(a)のように構成することで、電力系統1が非停電状態であれば、第1電力消費装置12に対しては電力系統1及び充放電装置10及び発電装置11の少なくとも何れか一つから電力を供給でき、第2電力消費装置13に対しては電力系統1及び充放電装置10の少なくとも何れか一つから電力を供給できる。また、電力系統1が停電状態になり、遮断器3が開放された場合であっても、第1電力消費装置12に対しては、充放電装置10及び発電装置11の少なくとも何れか一つから電力を供給できる。
従って、停電時であっても電力供給を安定して行う必要のある重要な電気機器は、図5(a)に示す第1電力消費装置12の位置に接続しておけばよい。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2011−188607号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
図5(a)に記載した構成の分散型電源システムは、例えば第1電力消費装置12に対する安定的な電力供給という目的は達成できるものの、発電装置11は、第3接続箇所P3よりも電力系統1の側に電力を供給できないため、発電装置11の発電電力を充放電装置10に充電させることや、第2電力消費装置13に供給することはできない。そのため、発電装置11の稼働率(発電出力の大きさ、発電時間の長さなど)が低くなるという点に課題がある。その結果、発電装置11の運転によるメリット(省エネルギー性、環境性、経済性)が限定的になる。また、このような非常時での運転が望まれる発電装置の導入メリットが限定的に考えられてしまう。
【0007】
発電装置11の稼働率を高くすることを目的とする場合、図5(b)に示す比較例のシステム構成を想定できる。図5(b)の分散型電源システムでは、図5(a)に記載した分散型電源システムにおいて、例えば相対的に重要度が低く、停電時に電力供給が行われなかった第2電力消費装置13にも発電装置11から常時電力が供給されることになるため、発電装置11の稼働率は高くなる。
しかし、電力系統1が停電状態になると、電力系統1からの電力供給を受けることができず、その結果、充放電装置10及び発電装置11の少なくとも何れか一つが第1電力消費装置12及び第2電力消費装置13の消費電力を全て供給しなければならないため、発電装置11及び充放電装置10が過負荷状態になり、例えば発電装置11が正常に発電運転できなくなってしまう。
【0008】
本発明は、上記の課題に鑑みてなされたものであり、その目的は、発電装置の稼働率を高めつつ発電装置及び充放電装置の過負荷を避けることができる分散型電源システムを提供する点にある。
【課題を解決するための手段】
【0009】
上記目的を達成するための本発明に係る分散型電源システムの特徴構成は、電力系統に接続される電力線と、前記電力線に対して第1接続箇所で接続される蓄電部を有する充放電装置と、前記電力線に対して第2接続箇所で接続される発電装置と、前記電力線に対して第3接続箇所で接続される第1電力消費装置とを備える分散型電源システムであって、
前記電力線に対して第4接続箇所で接続される第2電力消費装置を備え、
前記電力線に対する前記電力系統の接続箇所から見て下流側に向かって前記第1接続箇所と前記第3接続箇所前記第2接続箇所とがその並び順で設けられ、前記第4接続箇所は前記第3接続箇所よりも前記電力系統側に設けられ、
前記発電装置は、前記電力系統が停電状態にあるときは前記電力線における電力の潮流を前記第3接続箇所よりも前記電力系統側に向かわせないという条件下で発電電力を制御し、前記電力系統が非停電状態にあるときは前記電力線における電力の潮流を前記第4接続箇所よりも前記電力系統側の所定箇所よりも前記電力系統側に向かわせないという条件下で発電電力を制御するように構成され、
前記電力系統が停電状態にあるとき、前記充放電装置と前記発電装置と前記第1電力消費装置とは前記電力線を介して互いに電気的に接続され、並びに、前記第2電力消費装置は前記充放電装置と前記発電装置と前記第1電力消費装置とから電気的に切断され、
前記電力系統が非停電状態にあるとき、前記充放電装置と前記発電装置と前記第1電力消費装置と前記第2電力消費装置とは前記電力線を介して互いに電気的に接続される点にある。
【0010】
上記特徴構成によれば、発電装置は、電力系統が停電状態にあるときは電力線における電力の潮流を第3接続箇所から電力系統側に向かわせないという条件下で発電電力を制御する。つまり、第3接続箇所を含んでそこよりも下流側の範囲、即ち、第3接続箇所を含んでそこよりも電力系統から離れる側の範囲の電力線に接続されている第1電力消費装置へ電力を継続して供給するために発電装置を活用できる。
加えて、発電装置は、電力系統が非停電状態にあるときは電力線における電力の潮流を第4接続箇所よりも電力系統側の所定箇所よりも電力系統側に向かわせないという条件下で発電電力を制御する。つまり、第4接続箇所を含んでそこよりも下流側の範囲、即ち、第4接続箇所を含んでそこよりも電力系統から離れる側の範囲の電力線に接続されている第1電力消費装置及び第2電力消費装置へ電力を供給するために、発電装置を有効に活用できる。
【0011】
更に、電力系統が非停電状態にあるとき、充放電装置と発電装置と第1電力消費装置と第2電力消費装置とは電力線を介して互いに電気的に接続されるので、第1電力消費装置に対しては電力系統と充放電装置と発電装置との少なくとも何れか一つから電力を供給でき、第2電力消費装置に対しては電力系統と充放電装置と発電装置との少なくとも何れか一つから電力を供給できる。
また、電力系統が停電状態にあるとき、充放電装置と発電装置と第1電力消費装置とは電力線を介して互いに電気的に接続されるので、第1電力消費装置に対しては充放電装置及び発電装置の少なくとも何れか一つから電力を供給できる。つまり、第1電力消費装置の消費電力を充放電装置及び発電装置で分担すればよいので、充放電装置及び発電装置が過負荷になることを回避できる。
【0012】
加えて、電力系統が非停電状態にあるときに発電装置から第2電力消費装置への電力供給を行う必要があったとしても、電力系統が停電状態にあるときは、第2電力消費装置が発電装置から電気的に切断されて、発電装置から第2電力消費装置への電力供給が不要になる。その結果、電力系統が停電状態にあるときは、充放電装置及び発電装置にとっての負荷を小さくすることができ、充放電装置から第1電力消費装置に対して相対的に長い時間電力を供給できる。よって、発電装置の単独運転を防止する機構が設けられていたとしても、電力系統が停電状態になると即座に発電装置の運転が停止されるのではなく、充放電装置が、電力系統から電力線への電力供給を擬似して電力線への電力供給を行い続けている限り、発電装置も運転し続けることができるようになる。
従って、発電装置の稼働率を高めつつ発電装置及び充放電装置の過負荷を避けることができる分散型電源システムを提供できる。
【0013】
本発明に係る分散型電源システムの別の特徴構成は、前記第2電力消費装置が前記電力線に対して接続される前記第4接続箇所は、前記充放電装置が前記電力線に対して接続される前記第1接続箇所よりも前記電力系統側にある点にある。
【0014】
上記特徴構成によれば、電力系統が非停電状態にあるとき、発電装置の発電電力を充放電装置に対しても供給できる。その結果、発電装置の稼働率を高めることができる。
【0015】
本発明に係る分散型電源システムの更に別の特徴構成は、前記電力系統が停電状態にあるか或いは非停電状態にあるかを判定可能な系統情報を検出する系統情報検出装置を備え、
前記発電装置は、前記系統情報検出装置から受け取った前記系統情報に基づいて前記電力系統が停電状態にあるか或いは非停電状態にあるかを判定する点にある。
【0016】
上記特徴構成によれば、発電装置は、電力系統が停電状態であるか或いは非停電状態にあるかに基づいて、電力線における電力の潮流を第3接続箇所よりも電力系統側の所定箇所から電力系統側に向かわせないという条件下で発電電力を制御するか、或いは、電力線における電力の潮流を第4接続箇所よりも電力系統側の所定箇所から電力系統側に向かわせないという条件下で発電電力を制御するかを自発的に切り換えることができる。
【0017】
本発明に係る分散型電源システムの更に別の特徴構成は、前記発電装置は、前記第4接続箇所よりも前記電力系統側の前記所定箇所から前記電力系統側へ向かう電力の潮流を表す第1信号及び前記第3接続箇所から前記電力系統側へ向かう電力の潮流を表す第2信号を受け取り、前記系統情報検出装置から受け取った前記系統情報に基づいて前記電力系統が停電状態にあると判定したときは前記第2信号を参照して発電電力を制御し、前記電力系統が非停電状態にあると判定したときは前記第1信号を参照して発電電力を制御する点にある。
【0018】
上記特徴構成によれば、発電装置は、電力系統が停電状態にあるか或いは非停電状態にあるかに基づいて、第3接続箇所から電力系統側へ向かう電力の潮流を表す第2信号を参照して電力線における電力の潮流を第3接続箇所よりも電力系統側の所定箇所から電力系統側に向かわせないという条件下で発電電力を制御するか、或いは、第4接続箇所よりも電力系統側の所定箇所から電力系統側へ向かう電力の潮流を表す第1信号を参照して電力線における電力の潮流を第4接続箇所よりも電力系統側の所定箇所から電力系統側に向かわせないという条件下で発電電力を制御するかを自発的に切り換えることができる。
【0019】
本発明に係る分散型電源システムの更に別の特徴構成は、前記電力系統が停電状態にあるか或いは非停電状態にあるかを判定可能な系統情報を検出する系統情報検出装置と、
前記第4接続箇所よりも前記電力系統側の前記所定箇所から前記電力系統側へ向かう電力の潮流を表す第1信号が入力される第1信号線、及び、前記第3接続箇所から前記電力系統側へ向かう電力の潮流を表す第2信号が入力される第2信号線が接続される切換器と、前記第1信号線を前記発電装置に接続する第1切換状態と前記第2信号線を前記発電装置に接続する第2切換状態との何れかに前記切換器を切り換える切換制御部とを有する切換装置を備え、
前記切換制御部は、前記系統情報検出装置から受け取った前記系統情報に基づいて、前記電力系統が非停電状態にあるときは前記切換器を前記第1切換状態に切り換え、前記電力系統が停電状態にあるときは前記切換器を前記第2切換状態に切り換える点にある。
【0020】
上記特徴構成によれば、切換装置が、電力系統が停電状態にあるか或いは非停電状態にあるかに基づいて、発電装置に対して第1信号が伝達されるか或いは第2信号が伝達されるかを切り換える。つまり、発電装置は、電力系統が停電状態にあるか或いは非停電状態にあるかの判定を行わなくても、自動的に電力系統が停電状態であるときは電力線における電力の潮流を第3接続箇所よりも電力系統側の所定箇所から電力系統側に向かわせないという条件下で発電電力を制御し、電力系統が非停電状態であるときは電力線における電力の潮流を第4接続箇所よりも電力系統側の所定箇所から電力系統側に向かわせないという条件下で発電電力を制御するように動作する。
【図面の簡単な説明】
【0021】
図1】第1実施形態の分散型電源システムの構成を説明する図である。
図2】第2実施形態の分散型電源システムの構成を説明する図である。
図3】第3実施形態の分散型電源システムの構成を説明する図である。
図4】第4実施形態の分散型電源システムの構成を説明する図である。
図5】比較例の分散型電源システムの構成を説明する図である。
【発明を実施するための形態】
【0022】
<第1実施形態>
以下に図面を参照して第1実施形態の分散型電源システムについて説明する。
図1は、第1実施形態の分散型電源システムの構成を説明する図である。図1に示すように、分散型電源システムは、電力系統1に接続される電力線2と、電力線2に対して第1接続箇所P1で接続される蓄電部10bを有する充放電装置10と、電力線2に対して第2接続箇所P2で接続される発電装置11と、電力線2に対して第3接続箇所P3で接続される第1電力消費装置12とを備え、電力線2に対する電力系統1の接続箇所から見て下流側に向かって第1接続箇所P1と第3接続箇所P3第2接続箇所P2とがその並び順で設けられている。更に、第1接続箇所P1よりも電力系統1の側の第4接続箇所P4では、第2電力消費装置13が電力線2に対して接続されている。尚、本実施形態において、電力線2において電力系統1に近づく側を上流側とし、電力線2において電力系統1から離れる側を下流側と記載する。
【0023】
本実施形態では、第1接続箇所P1よりも電力系統1の側の電力線2に遮断器3を設けている。また、遮断器3よりも電力系統1の側で、電力系統1が停電状態にあるか或いは非停電状態にあるかを判定可能な系統情報を検出する系統情報検出装置15を設けている。例えば、系統情報検出装置15は、電力線2での電力の電圧を系統情報として検出する装置である。この場合、遮断器3よりも電力系統1の側の電力線2の電圧が所定電圧未満であれば電力系統1が停電状態であると判定でき、所定電圧以上であれば電力系統1が非停電状態であると判定できる。ここで、系統情報検出装置15自身が、電力線2の電圧に基づいて電力系統1が停電状態であるか或いは非停電状態であるかを判定し、その判定結果を各装置に伝達するように構成してもよい。
【0024】
具体的には、発電装置11は、系統情報検出装置15から伝達された電力線2の電圧が所定電圧以上であれば、電力系統1が非停電状態であると判定できる。これに対して、発電装置11は、系統情報検出装置15から伝達された電力線2の電圧が所定電圧未満であれば、電力系統1が停電状態であると判定できる。
【0025】
遮断器3は、系統情報検出装置15の検出結果を参照して、電力系統1が非停電状態であれば、閉作動して電力系統1と第1接続箇所P1とを電気的に接続することで、電力系統1から供給される電力が第1接続箇所P1よりも下流側に供給されるようにする。また、遮断器3は、系統情報検出装置15の検出結果を参照して、電力系統1が停電状態であれば、開作動して電力系統1と第1接続箇所P1とを電気的に切断する。
【0026】
充放電装置10は、電気を蓄えることのできる蓄電部10bと、その蓄電部10bから電力線2への放電電力及び電力線2から蓄電部10bへの充電電力を制御可能な電力変換部10aとを備える。蓄電部10bは、蓄電池や電気二重層キャパシタなど、蓄電機能を有する各種機器で構成することができる。また、系統情報検出装置15の検出結果は充放電装置10へ伝達されるように構成されている。
【0027】
本実施形態において、各カレントトランスCT1、CT2の検出結果である第1信号、第2信号は、電力線2における電流値である。その結果、カレントトランスCT1、CT2の検出結果と、別途検出される電力線2の電力の電圧値とから、電力線2における電力を導出できる。具体的には、発電装置11は、カレントトランスCT1の検出結果である第1信号と電力線2の電力の電圧値とから、第4接続箇所P4よりも電力系統1の側の所定箇所よりも電力系統1の側へ向かう電力の潮流を知ることができ、及び、カレントトランスCT2の検出結果である第2信号と電力線2の電力の電圧値とから、第3接続箇所P3から電力系統1の側へ向かう電力の潮流を知ることができる。
【0028】
充放電装置10の電力変換部10aは、例えば、電力系統1からの買電料金が相対的に低い深夜時間帯に蓄電部10bへの充電を行い、電力系統1からの買電料金が相対的に高い他の時間帯に蓄電部10bからの放電を行うような動作形態や、第1電力消費装置12及び第2電力消費装置13の合計消費電力が相対的に小さい時間帯に蓄電部10bへの充電を行い、その合計消費電力が相対的に大きい時間帯に蓄電部10bからの放電を行うような動作形態などを採るように構成させることができる。このうち、充放電装置10の電力変換部10aが、第1電力消費装置12及び第2電力消費装置13の合計消費電力が相対的に小さい時間帯に蓄電部10bへの充電を行うように構成すると、充放電装置10へ充電するためにも発電装置11を運転して、その結果、発電装置11の稼働率を上げることができる。尚、発電装置11の発電電力を充放電装置10に充電できない場合、発電効率(即ち、エネルギー効率)がそれほど高くない火力発電所等から電力系統1へと供給された電力を充放電装置10に充電し、その電力を放電して電力消費装置12、13等へ供給しなければならない。つまり、発電装置11の稼働率は相対的に低くなり、且つ、充放電装置10も見かけ上、低いエネルギー効率(即ち、火力発電所の発電効率(約37%)×充電効率×放電効率)での運転をしなければならない。これに対して、発電装置11の発電電力を充放電装置10に充電できれば、発電装置11の稼働率を向上させることができると共に、発電装置11として、例えば熱と電気とを併せて発生する熱電併給装置を用いた場合であればエネルギー効率は約90%(発電効率(約35%)+排熱効率(約55%))となるため、充放電装置10も見かけ上、高いエネルギー効率(熱電併給装置の発電効率(約35%)×充電効率×放電効率+熱電併給装置の排熱効率(約55%))での運転を行うことができる。
【0029】
電力系統1が非停電状態にあるときは遮断器3が閉作動するため、充放電装置10と発電装置11と第1電力消費装置12と第2電力消費装置13とは電力線2を介して互いに電気的に接続される。このとき、第1電力消費装置12に対しては、電力系統1及び充放電装置10及び発電装置11の少なくとも何れか一つから電力が供給され、第2電力消費装置13に対しては、電力系統1及び充放電装置10の少なくとも何れか一つから電力が供給される。
電力系統1が停電状態にあるときは遮断器3が開作動するため、充放電装置10と発電装置11と第1電力消費装置12とは電力線2を介して互いに電気的に接続され、並びに、第2電力消費装置13は充放電装置10と発電装置11と第1電力消費装置12とから電気的に切断される。
【0030】
第1電力消費装置12は、電力系統1が停電状態であっても電力供給を行う必要がある重要な電気機器である。例えば、停電などの非常時にも点灯することが必要な照明装置や常時稼動させておくことが必要な情報機器などが、第1電力消費装置12として電力線2の第3接続箇所P3に接続されている。これに対して、第2電力消費装置13は、電力系統1が停電状態であれば電力供給が行われない電気機器である。例えば、停電などの非常時には電力供給が行われなくても構わない空調装置やそれほど重要度の高くない照明装置など、第1電力消費装置12に比べて重要度の低い電気機器が、第2電力消費装置13として電力線2の第4接続箇所P4に接続されている。
尚、どのような電気機器を第1電力消費装置12及び第2電力消費装置13とするかは適宜設定可能である。
【0031】
発電装置11は、燃料電池や、エンジンの駆動力によって動作する発電機など、自身の発電電力を制御可能な装置を用いて構成できる。そして、発電装置11は、電力系統1が停電状態にあるときは電力線2における電力の潮流を第3接続箇所P3よりも電力系統1の側に向かわせないという条件下で発電電力を制御し(即ち、その条件下で最大の発電電力を電力線2に供給し)、電力系統1が非停電状態にあるときは電力線2における電力の潮流を第4接続箇所P4よりも電力系統1の側の所定箇所よりも電力系統1の側に向かわせないという条件下で発電電力を制御する(即ち、その条件下で最大の発電電力を電力線2に供給する)ように構成される。
【0032】
具体的には、発電装置11は、電力系統1が非停電状態にあるときは、カレントトランスCT1の検出結果(第1信号)を参照して、電力線2における電力の潮流を第4接続箇所P4よりも電力系統1の側の所定箇所から電力系統1側に向かわせないという条件下で発電電力を制御する。
【0033】
これに対して、発電装置11は、電力系統1が停電状態にあるときは、カレントトランスCT2の検出結果(第2信号)を参照して、電力線2における電力の潮流を第3接続箇所P3から電力系統1側に向かわせないという条件下で発電電力を制御する。つまり、発電装置11は、第1電力消費装置12の消費電力に相当する電力又はその消費電力以下の電力を電力線2へと供給する。
【0034】
以上のように、電力系統1が停電状態にあるときは、第3接続箇所P3において電力線2に接続されている第1電力消費装置12へ電力を継続して供給するために発電装置11を活用できる。加えて、電力系統1が非停電状態にあるときは、第4接続箇所P4を含んでそこよりも下流側の範囲の電力線2に接続されている第1電力消費装置12及び第2電力消費装置13へ電力を供給するために、発電装置11を有効に活用できる。
【0035】
また、電力系統が停電状態にあるとき、充放電装置10及び発電装置11が第1電力消費装置12にとっての電力供給源となり得る、即ち、第1電力消費装置12の消費電力を充放電装置10及び発電装置11で分担して供給できるので、充放電装置10及び発電装置11が過負荷になることを回避できる。加えて、電力系統1が停電状態にあるときは、第2電力消費装置13が発電装置11から電気的に切断されて、発電装置11から第2電力消費装置13への電力供給が不要になる。その結果、電力系統1が停電状態にあるときは、充放電装置10及び発電装置11にとっての負荷を小さくすることができ、充放電装置10から第1電力消費装置12に対して相対的に長い時間電力を供給できるようになる。よって、発電装置11の単独運転を防止する機構が設けられていたとしても、電力系統1が停電状態になると即座に発電装置11の運転が停止されるのではなく、充放電装置10が、電力系統1から電力線2への電力供給を擬似して電力線2への電力供給を行い続けている限り、発電装置11も運転し続けることができるようになる。
【0036】
<第2実施形態>
第2実施形態の分散型電源システムは、切換装置14を備えている点で第1実施形態の分散型電源システムと異なる。以下に第2実施形態の分散型電源システムについて説明するが、第1実施形態と同様の構成については説明を省略する。
【0037】
図2は、第2実施形態の分散型電源システムの構成を説明する図である。図示するように、第2実施形態の分散型電源システムは切換装置14を備えている。切換装置14は、第4接続箇所P4よりも電力系統1の側の所定箇所から電力系統1の側へ向かう電力の潮流を表す第1信号が入力される第1信号線4、及び、第3接続箇所P3から電力系統1の側へ向かう電力の潮流を表す第2信号が入力される第2信号線5とが接続される切換器14aと、第1信号線4を発電装置11に接続する第1切換状態と第2信号線5を発電装置11に接続する第2切換状態との何れかに切換器14aを切り換える切換制御部14bとを有する。そして、切換制御部14bは、電力系統1が非停電状態であるか或いは停電状態であるかを示す系統情報を系統情報検出装置15から受信して、電力系統1が非停電状態にあるときは切換器14aを第1切換状態に切り換え、電力系統1が停電状態にあるときは切換器14aを第2切換状態に切り換える。
【0038】
つまり、電力系統1が停電状態であるとき、切換制御部14bは系統情報検出装置15から伝達される系統情報に基づいて第2信号線5を発電装置11に接続する第2切換状態に切換器14aを切り換える。その結果、発電装置11にはカレントトランスCT2の検出結果が伝達され、発電装置11は、第3接続箇所P3よりも電力系統1の側に電力の潮流を向かわせないという条件下で発電電力を制御する。
これに対して、電力系統1が停電状態であるとき、切換制御部14bは系統情報検出装置15から伝達される系統情報に基づいて、第1信号線4を発電装置11に接続する第1切換状態に切換器14aを切り換える。その結果、発電装置11にはカレントトランスCT1の検出結果が伝達され、発電装置11は、第4接続箇所P4よりも電力系統1の側の所定箇所よりも電力系統1の側に電力の潮流を向かわせないという条件下で発電電力を制御する。
【0039】
このような切換装置14を設けることで、発電装置11は、電力系統1が停電状態にあるか或いは非停電状態にあるかの判定を行わなくても、自動的に電力系統1が停電状態であるときは電力線2における電力の潮流を第3接続箇所P3よりも電力系統1の側の所定箇所から電力系統1の側に向かわせないという条件下で発電電力を制御し、電力系統1が非停電状態であるときは電力線2における電力の潮流を第4接続箇所P4よりも電力系統1の側の所定箇所から電力系統1の側に向かわせないという条件下で発電電力を制御するように動作する。
【0040】
<第3実施形態>
第3実施形態の分散型電源システムは、電力線2に対する第2電力消費装置13の接続箇所が上記実施形態と異なっている。以下に第3実施形態の分散型電源システムの構成について説明するが、上記実施形態と同様の構成については説明を省略する。
【0041】
図3は、第3実施形態の分散型電源システムの構成を説明する図である。図示するように、第2電力消費装置13が電力線2に接続される第4接続箇所P4は、第1電力消費装置12が電力線2に接続される第3接続箇所P3及び発電装置11が電力線2に接続される第2接続箇所P2よりも電力系統1の側であり、且つ、充放電装置10が電力線2に接続される第1接続箇所P1よりも下流側(即ち、電力系統1から離れる側)に位置する。
【0042】
更に、第2電力消費装置13は、遮断器6を介して電力線2の第4接続箇所P4と接続されている。そして、この遮断器6は、上記遮断器3と同様に、系統情報検出装置15の検出結果を参照して、電力系統1が非停電状態であれば閉作動して第2電力消費装置13と電力線2とを電気的に接続することで、電力線2から第2電力消費装置13へと電力が供給されるようにする。また、遮断器6は、系統情報検出装置15の検出結果を参照して、電力系統1が停電状態であれば開作動して第2電力消費装置13と電力線2とを電気的に切断することで、電力線2から第2電力消費装置13へは電力が供給されないようにする。
【0043】
このように構成することで、電力系統1が非停電状態にあるとき、発電装置11は、カレントトランスCT1の検出結果を参照して、第1電力消費装置12の消費電力と第2電力消費装置13の消費電力との合計電力に相当する電力或いはその合計電力以下の電力を電力線2へと供給する。つまり、発電装置11の稼働率を高めることができる。尚、第1電力消費装置12での消費電力と第2電力消費装置13の消費電力との合計電力が発電装置11の発電電力を超える場合、発電装置11からはその合計電力以下の電力しか供給できないが、足りない分の電力は充放電装置10の放電電力と電力系統1から供給される電力との両方又は一方で賄うことができる。
これに対して、電力系統1が停電状態にあるとき、発電装置11は、カレントトランスCT2の検出結果を参照して、第1電力消費装置12の消費電力或いはその消費電力以下の電力を電力線2へと供給する。つまり、発電装置11が過負荷になることを回避できる。尚、この場合も第1電力消費装置12での消費電力が発電装置11の発電電力を超える場合、発電装置11からはその消費電力以下の電力しか供給できないが、足りない分の電力は充放電装置10の放電電力で賄うことができる。
【0044】
<第4実施形態>
第4実施形態の分散型電源システムは、カレントトランスCT1の検出位置が第3実施形態と異なっている。以下に第4実施形態の分散型電源システムに構成について説明するが第3実施形態と同様の構成については説明を省略する。
【0045】
図4は、第4実施形態の分散型電源システムの構成を説明する図である。本実施形態では、第2電力消費装置13が電力線2に接続される第4接続箇所P4は、第1電力消費装置12が電力線2に接続される第3接続箇所P3及び発電装置11が電力線2に接続される第2接続箇所P2よりも電力系統1の側であり、且つ、充放電装置10が電力線2に接続される第1接続箇所P1よりも下流側(即ち、電力系統1から離れる側)に位置する。更に、カレントトランスCT1の検出位置は、充放電装置10が電力線2に接続される第1接続箇所P1よりも電力系統1の側である。
【0046】
具体的には、発電装置11は、電力系統1が非停電状態であるとき、カレントトランスCT1の検出結果(第1信号)を参照して、電力線2における電力の潮流を第4接続箇所P4よりも電力系統1側の所定箇所(第1接続箇所P1)から電力系統1側に向かわせないという条件下で発電電力を制御する。つまり、発電装置11の発電電力を、充放電装置10の充電にも供給可能となる。
これに対して、発電装置11は、電力系統1が停電状態であるとき、カレントトランスCT2の検出結果(第2信号)を参照して、電力線2における電力の潮流を第3接続箇所P3から電力系統1側に向かわせないという条件下で発電電力を制御する。
【0047】
<別実施形態>
<1>
上記実施形態では、分散型電源システムの構成について幾つか例示したが、更に別の構成に変更してもよい。例えば、別の電力消費装置を追加で設けてもよい。
【0048】
<2>
上記実施形態では、系統情報検出装置15が、電力線2での電力の電圧を系統情報として検出する装置である場合を例示したが、他の構成の系統情報検出装置15を用いることもできる。例えば、電力系統1の交流電圧のゼロクロス点を系統情報として検出する装置を系統情報検出装置15として用いることができる。例えば、交流電圧の周波数が60Hzである場合、交流電圧の半周期毎、即ち約8msec毎にゼロクロス点が検出される。従って、系統情報検出装置15は、ゼロクロス点が検出された後、例えば9msec経過しても次のゼロクロス点が検出できないときは電力系統1が停電状態であると判定し、その判定結果を各装置に伝達する。また、系統情報検出装置15は、ゼロクロス点が検出された後、例えば9msec経過する前に次のゼロクロス点が検出できたときは電力系統1が非停電状態であると判定し、その判定結果を各装置に伝達してもよい。
【0049】
<3>
上記実施形態の図1及び図2において、系統情報検出装置15が、遮断器3の直ぐ上流側(電力系統1の側)で系統情報を検出するように構成してもよい。また、上記実施形態の図1図4において、充放電装置10が、遮断器3や遮断器3の直ぐ上流側(電力系統1の側)に設けた系統情報検出装置15を含む構成にしてもよい。
【0050】
<4>
上記実施形態において、図1図4に示した分散型電源システムのカレントトランスCT1の検出位置よりも電力系統1の側の電力線2に、太陽光発電装置などの自然エネルギー発電装置を接続してもよい。この場合、発電装置11が、カレントトランスCT1の検出位置よりも下流側(電力系統1から離れる側)での消費電力、即ち、自然エネルギー発電装置よりも下流側での消費電力をできるだけ賄うように動作すると、自然エネルギー発電装置の発電電力の余剰分が大きくなる。その結果、自然エネルギー発電装置から電力系統1へ売電できる電力を大きくすることができる
【産業上の利用可能性】
【0051】
本発明は、発電装置の稼働率を高めつつ発電装置及び充放電装置の過負荷を避けることができる分散型電源システムに利用できる。
【符号の説明】
【0052】
1 電力系統
2 電力線
4 第1信号線
5 第2信号線
10 充放電装置
10b 蓄電部
11 発電装置
12 第1電力消費装置
13 第2電力消費装置
14 切換装置
14a 切換器
14b 切換制御部
15 系統情報検出装置
P1 第1接続箇所
P2 第2接続箇所
P3 第3接続箇所
P4 第4接続箇所
図1
図2
図3
図4
図5