(58)【調査した分野】(Int.Cl.,DB名)
前記最確全体実績を決定するステップは、前記実際の係員の最確全体実績として、最良の合計確率TPの値を伴う前記仮想の係員のうちの1人を選択することを含む、請求項1に記載の方法。
前記架電者傾向は、製品またはサービスAの購入あるいは購入なし、製品またはサービスBの購入あるいは購入なし、製品またはサービスCの購入あるいは購入なし、1回の購入あたりの収益、1回の通話あたりの収益生成単位(RGU)、処理時間の群から選択される1つである、請求項10に記載の方法。
前記最確全体実績を決定するステップは、前記実際の係員の最確全体実績として、最良の合計確率TPの値を伴う前記仮想の係員のうちの1人を選択することを含む、請求項13に記載のシステム。
前記架電者傾向は、製品またはサービスAの購入あるいは購入なし、製品またはサービスBの購入あるいは購入なし、製品またはサービスCの購入あるいは購入なし、1回の購入あたりの収益、1回の通話あたりの収益生成単位(RGU)、処理時間の群から選択される1つである、請求項22に記載のシステム。
【発明の概要】
【課題を解決するための手段】
【0011】
実施形態では、1つ以上のコンピュータによって、一組のスキルの中のそれぞれのスキルkに対する以前の実際の係員実績データから、実際の係員実績の分布を決定または取得または受信することと、1つ以上のコンピュータによって、それぞれのスキルkに対する最低実績から最高実績に及ぶ、それぞれの仮想の係員実績AP
iを伴う一組の仮想の係員を決定することと、1つ以上のコンピュータによって、一組の仮想の係員の各々について、一組の仮想の係員のうちの各仮想の係員の合計確率を取得するために、実際の係員実績の分布とそれぞれの仮想の係員実績APiを伴う一組の仮想の係員とを使用して、一組のスキルのそれぞれにおけるそれぞれの実際の係員の実際の結果を考慮した事後分布を計算することと、1つ以上のコンピュータによって、それぞれの仮想の係員のそれぞれの合計確率を取得するために、一組の仮想の係員の中の複数の仮想の係員に対して事後分布を計算するステップを繰り返すことと、1つ以上のコンピュータによって、より良い合計確率TPの値を伴う前記仮想の係員のうちの1人を、実際の係員の最確全体実績として決定することとを含む、方法が提供される。
【0012】
実施形態では、係員実績は、売上または売上なし、1回の通話あたりの収益、1回の通話あたりの収益生成単位(RGU)、および処理時間の群から選択される1つである。
【0013】
実施形態では、係員スキルkは、製品またはサービスAの売上、製品またはサービスBの売上、および製品Cに対するサービスアドバイスの提供の群から選択される2つ以上を含む。
【0014】
実施形態では、最確全体実績を決定するステップは、最良の合計確率TPの値を伴う仮想の係員のうちの1人を、実際の係員の最確全体実績として、選択することを含む。
【0015】
実施形態では、一組の仮想の係員は、少なくとも10人の仮想の係員を含む。実施形態では、一組の仮想の係員は、少なくとも50人の仮想の係員を含む。実施形態では、一組の仮想の係員は、少なくとも100人の仮想の係員を含む。
【0016】
実施形態では、実際の係員実績は、2項式であり、実際の係員実績の分布は、少なくともその一方の端で切断される。
【0017】
実施形態では、事後分布を計算するステップは、1つ以上のコンピュータによって、一組の仮想の係員の中の各仮想の係員iについて、第1のスキルkおよびそれぞれの仮想の係員iの仮想の係員実績AP
iに対して、そのスキルkにおいてそれぞれの実際の係員が取得したN回の通話でSの売上を、それぞれの仮想の係員iが取得するであろうという証拠の確率POE
ikを計算することと、仮想の係員のAP
iを、仮想の係員iに対する各スキルkのPOE
ikによって乗算することを含む、1つ以上のコンピュータによって、仮想の係員iの合計確率TP
iを計算することとを含む。
【0018】
実施形態では、本方法はさらに、1つ以上のコンピュータによって、複数の係員・架電者ペアの各々に対する評価を取得するために、所望の結果に対してペア様式で、多要素パターンマッチングアルゴリズムにおいて、係員の人口統計データまたは心理学データと、架電者の人口統計データまたは心理学データとを使用することと、1つ以上のコンピュータによって、係員・架電者ペアのうちの1つを選択するために、パターンマッチングアルゴリズムの結果とそれぞれの係員のそれぞれの最確全体実績とを組み合わせることとを含み得る。
【0019】
実施形態では、1つ以上のコンピュータによって、一組の架電者パーティションの中のそれぞれの架電者パーティションに対する以前の実際の架電者傾向データから、実際の架電者傾向の分布を決定または取得または受信することと、1つ以上のコンピュータによって、最低傾向から最高傾向に及ぶ、それぞれの仮定架電者傾向CP
iを伴う一組の仮定架電者を決定することと、1つ以上のコンピュータによって、一組の仮定架電者の各々について、一組のそれぞれの仮定架電者のうちの各仮定架電者の合計確率を取得するために、実際の架電者傾向の分布およびそれぞれの仮定架電者傾向CP
iを伴う一組の仮定架電者を使用して、複数の架電者パーティションの中のそれぞれの実際の架電者の実際の結果を考慮した事後分布を計算することと、1つ以上のコンピュータによって、それぞれの仮定架電者のそれぞれの合計確率を取得するために、一組の仮定架電者の中の複数の架電者に対して事後分布を計算するステップを繰り返すことと、1つ以上のコンピュータによって、より良い合計確率TPの値を伴う仮定架電者のうちの1人を、実際の架電者の最確全体傾向として決定することとを含む、方法が提供される。
【0020】
実施形態では、架電者傾向は、製品またはサービスAの購入あるいは購入なし、製品またはサービスBの購入あるいは購入なし、製品またはサービスCの購入あるいは購入なし、1回の通話あたりの収益生成単位(RGU)、および処理時間の群から選択される1つである。
【0021】
実施形態では、パーティションは、少なくとも部分的に、人口統計データ、市外局番、郵便番号、NPANXX、VTN、地理的地域、フリーダイヤル、および転送番号の群から選択される1つ以上に基づく。
【0022】
実施形態では、事後分布を計算するステップは、1つ以上のコンピュータによって、一組の仮定架電者の中の各仮定架電者iについて、第1のパーティションおよびそれぞれの仮定架電者iの仮定架電者傾向CP
iに対して、それぞれの仮定架電者iが、そのパーティションにおけるそれぞれの実際の架電者が有したSの売上を有するであろうという証拠の確率POE
ikを計算することと、1つ以上のコンピュータによって、仮定架電者iの合計確率TP
iを計算することであって、TP
iを計算することは、仮定架電者のCP
iを、仮定架電者iに対する各パーティションkのPOE
ikによって乗算することを含む、こととを含む。
【0023】
実施形態では、実行されると、1つ以上のコンピュータによって、一組のスキルの中のそれぞれのスキルkに対する以前の実際の係員実績データから、実際の係員実績の分布を決定または取得または受信するステップ、1つ以上のコンピュータによって、それぞれのスキルkに対する最低実績から最高実績に及ぶ、それぞれの仮想の係員実績AP
iを伴う一組の仮想の係員を決定するステップ、1つ以上のコンピュータによって、一組の仮想の係員の各々について、一組の仮想の係員のうちの各仮想の係員の合計確率を取得するために、実際の係員実績の分布とそれぞれの仮想の係員実績APiを伴う一組の仮想の係員とを使用して、一組のスキルのそれぞれにおけるそれぞれの実際の係員の実際の結果を考慮した事後分布を計算するステップ、1つ以上のコンピュータによって、それぞれの仮想の係員のそれぞれの合計確率を取得するために、一組の仮想の係員の中の複数の仮想の係員に対して事後分布を計算するステップを繰り返すステップ、および1つ以上のコンピュータによって、より良い合計確率TPの値を伴う仮想の係員のうちの1人を、実際の係員の最確全体実績として決定するステップの実施を引き起こす、プログラムコードで構成されている1つ以上のコンピュータを備えているシステムが開示される。
【0024】
実施形態では、実行されると、1つ以上のコンピュータによって、一組の架電者パーティションの中のそれぞれの架電者パーティションに対する以前の実際の架電者傾向データから、実際の架電者傾向の分布を決定または取得または受信するステップ、1つ以上のコンピュータによって、最低傾向から最高傾向に及ぶ、それぞれの仮定架電者傾向CP
iを伴う一組の仮定架電者を決定するステップ、1つ以上のコンピュータによって、一組の仮定架電者の各々について、一組のそれぞれの仮定架電者のうちの各仮定架電者の合計確率を取得するために、実際の架電者傾向の分布およびそれぞれの仮定架電者傾向CP
iを伴う一組の仮定架電者を使用して、複数の架電者パーティションの中のそれぞれの実際の架電者の実際の結果を考慮した事後分布を計算するステップ、1つ以上のコンピュータによって、それぞれの仮定架電者のそれぞれの合計確率を取得するために、一組の仮定架電者の中の複数の架電者に対して事後分布を計算するステップを繰り返すステップ、1つ以上のコンピュータによって、より良い合計確率TPの値を伴う仮定架電者のうちの1人を、実際の架電者の最確全体傾向として決定するステップの実施を引き起こす、プログラムコードで構成されている1つ以上のコンピュータを備えているシステムが開示される。
【0025】
実施形態では、1つ以上のコンピュータによって実行されると、1つ以上のコンピュータによって、一組のスキルの中のそれぞれのスキルkに対する以前の実際の係員実績データから、実際の係員実績の分布を決定または取得または受信するステップ、1つ以上のコンピュータによって、それぞれのスキルkに対する最低実績から最高実績に及ぶ、それぞれの仮想の係員実績AP
iを伴う一組の仮想の係員を決定するステップ、1つ以上のコンピュータによって、一組の仮想の係員のうちの各仮想の係員の合計確率を取得するために、実際の係員実績の分布とそれぞれの仮想の係員実績APiを伴う一組の仮想の係員とを使用して、一組のスキルのそれぞれにおけるそれぞれの実際の係員の実際の結果を考慮した事後分布を計算するステップ、1つ以上のコンピュータによって、それぞれの仮想の係員のそれぞれの合計確率を取得するために、一組の仮想の係員の中の複数の仮想の係員に対して事後分布を計算するステップを繰り返すステップ、および1つ以上のコンピュータによって、より良い合計確率TPの値を伴う仮想の係員のうちの1人を、実際の係員の最確全体実績として決定するステップの実施を引き起こす、コンピュータ読み取り可能なプログラムコードで構成されている非一過性のコンピュータ読み取り可能な媒体を備えているプログラム製品が開示される。
【0026】
実施形態では、1つ以上のコンピュータによって実行されると、1つ以上のコンピュータによって、一組の架電者パーティションの中のそれぞれの架電者パーティションに対する以前の実際の架電者傾向データから、実際の架電者傾向の分布を決定または取得または受信するステップ、1つ以上のコンピュータによって、最低傾向から最高傾向に及ぶ、それぞれの仮定架電者傾向CP
iを伴う一組の仮定架電者を決定するステップ、1つ以上のコンピュータによって、一組のそれぞれの仮定架電者のうちの各仮定架電者の合計確率を取得するために、実際の架電者傾向の分布およびそれぞれの仮定架電者傾向CP
iを伴う一組の仮定架電者を使用して、複数の架電者パーティションの中のそれぞれの実際の架電者の実際の結果を考慮した事後分布を計算するステップ、1つ以上のコンピュータによって、それぞれの仮定架電者のそれぞれの合計確率を取得するために、一組の仮定架電者の中の複数の架電者に対して事後分布を計算するステップを繰り返すステップ、および1つ以上のコンピュータによって、より良い合計確率TPの値を伴う仮定架電者のうちの1人を、実際の架電者の最確全体傾向として決定するステップの実施を引き起こす、コンピュータ読み取り可能なプログラムコードで構成されている非一過性のコンピュータ読み取り可能な媒体を備えている、プログラム製品が開示される。
【0027】
実施例は、架電者と係員とをマッチングするための異なるプロセスに広く提供することができる。例えば、例示的なプロセスまたはモデルは、従来の待ち行列経路指定、実績ベースのマッチング(例えば、実績に基づいて一組の係員をランク付けし、実績ランキングまたは得点に基づいて、優先的に架電者を係員にマッチングする)、架電者を係員にマッチングするための適応パターンマッチングアルゴリズムまたはコンピュータモデル(例えば、架電者に関連付けられる架電者データを、一組の係員に関連付けられる係員データと比較する)、親近性データマッチング、それらの組み合わせ等を含み得る。したがって、本方法は、結果変数の所望の最適化のために(例えば、費用、収益、顧客満足度等を最適化するために)架電者、係員、および/または架電者・係員ペアの得点またはランキングを出力するように動作し得る。一実施例では、異なるモデルが、架電者を係員にマッチングするために使用され、ある様式で例示的な乗算器プロセスと組み合わせられ、例えば、直線的に重み付けされ、異なる実績結果変数(例えば、費用、収益、顧客満足度等)のために組み合わせられ得る。
【0028】
別の側面によると、コンピュータ読み取り可能な媒体および装置が、本明細書で説明される種々のプロセスに従って架電者を係員にマッピングおよび経路指定するために提供される。本明細書で説明される技術の多くは、ハードウェア、ファームウェア、ソフトウェア、またはそれらの組み合わせで実装され得る。一実施例では、本技術は、プロセッサ、プロセッサによって読み取り可能な記憶媒体(揮発性および不揮発性メモリおよび/または記憶要素を含む)、および好適な入出力デバイスをそれぞれ含む、プログラム可能なコンピュータ上で実行されるコンピュータプログラムで実装される。プログラムコードは、説明される機能を果たすように、および出力情報を生成するように、入力デバイスを使用して入力されるデータに適用される。出力情報は、1つ以上の出力デバイスに適用される。また、各プログラムは、好ましくは、コンピュータシステムと通信するように、高レベルプロシージャまたはオブジェクト指向プログラミング言語で実装される。しかしながら、プログラムは、所望であれば、アセンブリまたは機械言語で実装することができる。いずれにしても、言語は、コンパイラ型またはインタープリタ型言語であり得る。
本明細書は、例えば、以下を提供する。
(項目1)
1つ以上のコンピュータによって、一組のスキルの中のそれぞれのスキルkに対する以前の実際の係員実績データから、実際の係員実績の分布を決定または取得または受信することと、
上記1つ以上のコンピュータによって、それぞれのスキルkに対する最低実績から最高実績に及ぶ、それぞれの仮想の係員実績APiを伴う一組の仮想の係員を決定することと、
上記1つ以上のコンピュータによって、上記一組の仮想の係員の各々について、上記一組の仮想の係員のうちの各仮想の係員の合計確率を取得するために、実際の係員実績の上記分布とそれぞれの仮想の係員実績APiを伴う上記一組の仮想の係員とを使用して、上記一組のスキルのそれぞれにおけるそれぞれの実際の係員の実際の結果を考慮した事後分布を計算することと、
上記1つ以上のコンピュータによって、それぞれの仮想の係員のそれぞれの合計確率を取得するために、上記一組の仮想の係員の中の複数の上記仮想の係員に対して上記事後分布を計算するステップを繰り返すことと、
上記1つ以上のコンピュータによって、上記実際の係員の最確全体実績として、より良い合計確率TPの値を伴う上記仮想の係員のうちの1人を決定することと、
を含む、方法。
(項目2)
上記係員実績は、売上または売上なし、1回の通話あたりの収益、1回の通話あたりの収益生成単位(RGU)、処理時間、および顧客満足度の群から選択される1つである、項目1に記載の方法。
(項目3)
上記係員スキルkは、製品またはサービスAの売上、製品またはサービスBの売上、および製品Cに対するサービスアドバイスの提供から選択される、2つ以上を含む、項目1に記載の方法。
(項目4)
上記最確全体実績を決定するステップは、上記実際の係員の最確全体実績として、最良の合計確率TPの値を伴う上記仮想の係員のうちの1人を選択することを含む、項目1に記載の方法。
(項目5)
上記一組の仮想の係員は、少なくとも10人の仮想の係員を含む、項目1に記載の方法。
(項目6)
上記一組の仮想の係員は、少なくとも50人の仮想の係員を含む、項目1に記載の方法。
(項目7)
上記一組の仮想の係員は、少なくとも100人の仮想の係員を含む、項目1に記載の方法。
(項目8)
上記実際の係員実績は、2項式であり、実際の係員実績の分布は、少なくともその一方の端で切断されている、項目1に記載の方法。
(項目9)
上記事後分布を計算することは、
上記1つ以上のコンピュータによって、上記一組の仮想の係員の中の各仮想の係員iについて、第1のスキルkおよびそれぞれの仮想の係員iの上記仮想の係員実績APiに対して、そのスキルkにおいてそれぞれの実際の係員が取得したN回の通話でSの売上を、それぞれの仮想の係員iが取得するであろうという証拠の確率POEikを計算することと、
上記1つ以上のコンピュータによって、上記仮想の係員iの合計確率TPiを計算することであって、上記TPiを計算することは、上記仮想の係員のAPiを上記仮想の係員iに対する各スキルkの上記POEikによって乗算することを含む、ことと
を含む、項目1に記載の方法。
(項目10)
上記1つ以上のコンピュータによって、複数の係員・架電者ペアの各々に対する評価を取得するために、所望の結果に対してペア様式で、多要素パターンマッチングアルゴリズムにおいて、上記係員の人口統計データまたは心理学データと、架電者の人口統計データまたは心理学データとを使用することと、
上記1つ以上のコンピュータによって、上記係員・架電者ペアのうちの1つを選択するために、上記パターンマッチングアルゴリズムの結果とそれぞれの係員のそれぞれの最確全体実績とを組み合わせることと、
をさらに含む、項目1に記載の方法。
(項目11)
1つ以上のコンピュータによって、一組の架電者パーティションの中のそれぞれの架電者パーティションに対する以前の実際の架電者傾向データから、実際の架電者傾向の分布を決定または取得または受信することと、
上記1つ以上のコンピュータによって、最低傾向から最高傾向に及ぶ、それぞれの仮定架電者傾向CPiを伴う一組の仮定架電者を決定することと、
上記1つ以上のコンピュータによって、上記一組の仮定架電者の各々について、上記一組のそれぞれの仮定架電者のうちの各仮定架電者の合計確率を取得するために、実際の架電者傾向の上記分布およびそれぞれの仮定架電者傾向CPiを伴う上記一組の仮定架電者を使用して、複数の上記架電者パーティションの中のそれぞれの実際の架電者の実際の結果を考慮した事後分布を計算することと、
上記1つ以上のコンピュータによって、それぞれの仮定架電者のそれぞれの合計確率を取得するために、上記一組の仮定架電者の中の複数の上記架電者に対して上記事後分布を計算するステップを繰り返すことと、
上記1つ以上のコンピュータによって、上記実際の架電者の最確全体傾向として、より良い合計確率TPの値を伴う上記仮定架電者のうちの1人を決定することと、
を含む、方法。
(項目12)
上記架電者傾向は、製品またはサービスAの購入あるいは購入なし、製品またはサービスBの購入あるいは購入なし、製品またはサービスCの購入あるいは購入なし、1回の購入あたりの収益、1回の通話あたりの収益生成単位(RGU)、および処理時間の群から選択される1つである、項目11に記載の方法。
(項目13)
上記パーティションは、少なくとも部分的に、人口統計データ、市外局番、郵便番号、NPANXX、VTN、地理的地域、フリーダイヤル、および転送番号の群から選択される1つ以上に基づく、項目11に記載の方法。
(項目14)
上記事後分布を計算することは、
上記1つ以上のコンピュータによって、上記一組の仮定架電者の中の各仮定架電者iについて、第1のパーティションおよびそれぞれの仮定架電者iの上記仮定架電者傾向CPiに対して、それぞれの仮定架電者iが、そのパーティションにおけるそれぞれの実際の架電者が有したSの売上を有するであろうという証拠の確率POEikを計算することと、
上記1つ以上のコンピュータによって、上記仮定架電者iの合計確率TPiを計算することであって、上記TPiを計算することは、上記仮定架電者のCPiを、上記仮定架電者iに対する各パーティションkの上記POEikによって乗算することを含む、ことと
を含む、項目11に記載の方法。
(項目15)
プログラムコードで構成されている1つ以上のコンピュータを備えているシステムであって、
上記プログラムコードは、実行されると、
上記1つ以上のコンピュータによって、一組のスキルの中のそれぞれのスキルkに対する以前の実際の係員実績データから、実際の係員実績の分布を決定または取得または受信するステップと、
上記1つ以上のコンピュータによって、上記それぞれのスキルkに対する最低実績から最高実績に及ぶ、それぞれの仮想の係員実績APiを伴う一組の仮想の係員を決定するステップと、
上記1つ以上のコンピュータによって、上記一組の仮想の係員の各々について、上記一組の仮想の係員のうちの各仮想の係員の合計確率を取得するために、実際の係員実績の上記分布とそれぞれの仮想の係員実績APiを伴う上記一組の仮想の係員とを使用して、上記一組のスキルのそれぞれにおけるそれぞれの実際の係員の実際の結果を考慮した事後分布を計算するステップと、
上記1つ以上のコンピュータによって、それぞれの仮想の係員のそれぞれの合計確率を取得するために、上記一組の仮想の係員の中の複数の上記仮想の係員に対して上記事後分布を計算するステップを繰り返すステップと、
上記1つ以上のコンピュータによって、上記実際の係員の最確全体実績として、より良い合計確率TPの値を伴う上記仮想の係員のうちの1人を決定するステップと
の実施を引き起こす、システム。
(項目16)
上記係員実績は、売上または売上なし、1回の通話あたりの収益、1回の通話あたりの収益生成単位(RGU)、および処理時間の群から選択される1つである、項目15に記載のシステム。
(項目17)
上記係員スキルkは、製品またはサービスAの売上、製品またはサービスBの売上、および製品Cに対するサービスアドバイスの提供の群から選択される2つ以上を含む、項目15に記載のシステム。
(項目18)
上記最確全体実績を決定するステップは、上記実際の係員の最確全体実績として、最良の合計確率TPの値を伴う上記仮想の係員のうちの1人を選択することを含む、項目15に記載のシステム。
(項目19)
上記一組の仮想の係員は、少なくとも10人の仮想の係員を含む、項目15に記載のシステム。
(項目20)
上記一組の仮想の係員は、少なくとも50人の仮想の係員を含む、項目15に記載のシステム。
(項目21)
上記一組の仮想の係員は、少なくとも100人の仮想の係員を含む、項目15に記載のシステム。
(項目22)
上記実際の係員実績は、2項式であり、実際の係員実績の分布は、少なくともその一方の端で切断されている、項目15に記載のシステム。
(項目23)
上記事後分布を計算するステップは、
上記1つ以上のコンピュータによって、上記一組の仮想の係員の中の各仮想の係員iについて、第1のスキルkおよびそれぞれの仮想の係員iの上記仮想の係員実績APiに対して、そのスキルkにおけるそれぞれの実際の係員が取得したN回の通話でSの売上を、それぞれの仮想の係員iが取得するであろうという証拠の確率POEikを計算することと、
上記1つ以上のコンピュータによって、上記仮想の係員iの合計確率TPiを計算することであって、上記TPiを計算することは、上記仮想の係員のAPiを、上記仮想の係員iに対する各スキルkの上記POEikによって乗算することを含む、ことと
を含む、項目15に記載のシステム。
(項目24)
上記1つ以上のコンピュータによって、複数の係員・架電者ペアの各々に対する評価を取得するために、所望の結果に対してペア様式で、多要素パターンマッチングアルゴリズムにおいて、上記係員の人口統計データまたは心理学データと、架電者の人口統計データまたは心理学データとを使用するステップと、
上記1つ以上のコンピュータによって、上記係員・架電者ペアのうちの1つを選択するために、上記パターンマッチングアルゴリズムの結果とそれぞれの係員のそれぞれの最確全体実績とを組み合わせるステップと
を行うためのプログラムコードで構成されている上記1つ以上のコンピュータをさらに備えている、項目15に記載のシステム。
(項目25)
プログラムコードで構成されている1つ以上のコンピュータを備えているシステムであって、
上記プログラムコードは、実行されると、
1つ以上のコンピュータによって、一組の架電者パーティションの中のそれぞれの架電者パーティションに対する以前の実際の架電者傾向データから、実際の架電者傾向の分布を決定または取得または受信するステップと、
上記1つ以上のコンピュータによって、最低傾向から最高傾向に及ぶ、それぞれの仮定架電者傾向CPiを伴う一組の仮定架電者を決定するステップと、
上記1つ以上のコンピュータによって、上記一組の仮定架電者の各々について、上記一組のそれぞれの仮定架電者のうちの各仮定架電者の合計確率を取得するために、実際の架電者傾向の上記分布およびそれぞれの仮定架電者傾向CPiを伴う上記一組の仮定架電者を使用して、複数の上記架電者パーティションの中のそれぞれの実際の架電者の実際の結果を考慮した事後分布を計算するステップと、
上記1つ以上のコンピュータによって、それぞれの仮定架電者のそれぞれの合計確率を取得するために、上記一組の仮定架電者の中の複数の上記架電者に対して上記事後分布を計算するステップを繰り返すステップと、
上記1つ以上のコンピュータによって、上記実際の架電者の最確全体傾向として、より良い合計確率TPの値を伴う上記仮定架電者のうちの1人を決定するステップと
の実施を引き起こす、システム。
(項目26)
上記架電者傾向は、製品またはサービスAの購入あるいは購入なし、製品またはサービスBの購入あるいは購入なし、製品またはサービスCの購入あるいは購入なし、1回の購入あたりの収益、1回の通話あたりの収益生成単位(RGU)、および処理時間の群から選択される1つである、項目25に記載のシステム。
(項目27)
上記パーティションは、少なくとも部分的に、人口統計データ、市外局番、郵便番号、NPANXX、VTN、地理的地域、フリーダイヤル、および転送番号の群から選択される1つ以上に基づく、項目25に記載のシステム。
(項目28)
上記事後分布を計算するステップは、
上記1つ以上のコンピュータによって、上記一組の仮定架電者の中の各仮定架電者iについて、第1のパーティションおよびそれぞれの仮定架電者iの上記仮定架電者傾向CPiに対して、それぞれの仮定架電者iが、そのパーティションにおけるそれぞれの実際の架電者が有したSの売上を有するであろうという証拠の確率POEikを計算することと、
上記1つ以上のコンピュータによって、上記仮定架電者iの合計確率TPiを計算することであって、上記TPiを計算することは、上記仮定架電者のCPiを、上記仮定架電者iに対する各パーティションkの上記POEikによって乗算することを含む、ことと
を含む、項目25に記載のシステム。
【発明を実施するための形態】
【0030】
以下の説明は、当業者が本発明を作製して使用することを可能にするように提示され、特定の用途およびそれらの要件の関連で提供される。実施形態への種々の修正は、当業者に容易と明白となり、本明細書で定義される一般原理は、本発明の精神および範囲から逸脱することなく、他の実施形態および用途に適用され得る。また、以下の説明では、多数の詳細が説明の目的で記載される。しかしながら、当業者であれば、これらの具体的詳細を使用することなく、本発明が実践され得ることを認識するであろう。他の場合において、周知の構造およびデバイスが、不必要な詳細を伴って本発明の説明を曖昧にしないために、ブロック図で示されている。したがって、本発明は、示される実施形態に限定されることを目的としていないが、本明細書で開示される原理および特徴と一致する最も広い範囲を与えられる。
【0031】
本発明は、特定の実施例および例証的な図の観点で説明されるが、当業者であれば、本発明は、説明される実施例または図に限定されないことを認識するであろう。当業者であれば、適宜に、ハードウェア、ソフトウェア、ファームウェア、またはそれらの組み合わせを使用して、種々の実施形態の動作が実装され得ることを認識するであろう。例えば、ソフトウェア、ファームウェア、またはハードワイヤード論理の制御下でプロセッサまたは他のデジタル回路を使用して、いくつかのプロセスを実行することができる。(本明細書での「論理」という用語は、記載された機能を実行するために当業者によって認識されるような、固定ハードウェア、プログラマブル論理、および/またはそれらの組み合わせを指す。)ソフトウェアおよびファームウェアは、コンピュータ読み取り可能な記憶媒体上に記憶することができる。当業者に周知であるように、アナログ回路網を使用して、いくつかの他のプロセスを実装することができる。加えて、メモリまたは他の記憶装置、ならびに通信構成要素が、本発明の実施形態で採用され得る。
【0032】
本発明のある側面によると、類似ランキングまたは所望の結果変数に対する相対的確率に基づいて、架電者を電話ルーティングセンター内の係員にマッチングするためのシステムおよび方法が提供される。一実施例では、例示的な確率乗算器プロセスは、所望の結果変数の相対的確率に基づいて、最高係員を最高架電者に、最低係員を最低架電者に等、マッチングすることを含む。例えば、係員は、売上、顧客満足度、費用等の結果変数に対する実績に基づいて採点されるか、またはランク付けされ得る。加えて、架電者は、購入に対する傾向または統計的可能性等(利用可能な架電者データ、例えば、電話番号、市外局番、郵便番号、人口統計データ、使用される電話の種類、履歴データ等に基づき得る)の結果変数について、採点されるか、またはランク付けされることができる。次いで、架電者および係員は、それぞれのランクまたはパーセンタイルランクに従ってマッチングされることができる(例えば、最高ランキング係員が最高ランキング架電者とマッチングされ、第2の最高ランクの係員が第2の最高架電者とマッチングされる等)。
【0033】
例示的な確率乗算器プロセスは、異なる確率を乗算する固有の幾何学的関係、例えば、20%または10%売上率の係員を30%購入顧客とマッチングする(6%または3%可能性をもたらす)のではなく、30%売上率の係員をその同一の顧客とマッチングすること(9%の全可能性を生じる)を利用する。全ての係員および架電者にわたって使用されるとき、本プロセスは、ランダムマッチングプロセスよりも高い、売上等の特定の結果変数の全体的予測された可能性をもたらす。
【0034】
一実施例では、架電者を係員にマッチングするために係員および架電者の相対的ランクを使用することに加えて、係員および/または架電者人口統計データを使用するパターンマッチングアルゴリズムが使用され得る。例えば、係員および架電者は、適応相関アルゴリズム等のパターンマッチングアルゴリズムを介して、人口統計データに基づいてマッチングされ得る。確率乗算器アルゴリズムおよびパターンマッチングアルゴリズムからの架電者・係員マッチングは、組み合わせることができ、例えば、架電者を係員に経路指定するための最終マッチングを決定するように、重みを伴って、または伴わずに、線形的に組み合わせることができる。
【0035】
最初に、架電者を対応可能な係員にマッチングするための例示的な通話ルーティングシステムおよび方法が説明される。この説明は、結果変数、例えば、売上、顧客満足度、等に基づいて、架電者および係員をランク付けするか、または順序付けし、相対的ランキングに基づいて係員を架電者にマッチングするための例示的なシステムおよび方法によって従われる。例えば、特定の結果変数に対する最高ランキング係員を、特定の結果変数に対する最高ランキング架電者とマッチングすること、最低ランキング係員を最低ランキング架電者とマッチングすること等である。
【0036】
図1は、典型的なコンタクトセンター運営100の一般設定を示す、略図である。ネットワーククラウド101は、着信架電者を受信するように、または発信架電者に行われる連絡を支援するように設計される、特定または地域電気通信ネットワークを示す。ネットワーククラウド101は、電話番号またはEメールアドレス等の単一の連絡先アドレス、または複数の連絡先アドレスを含み得る。中央ルータ102は、コールセンター103の間で連絡を経路指定するのに役立つように設計される、コンタクトルーティングハードウェアおよびソフトウェアを示す。中央ルータ102は、単一のコンタクトセンターのみが展開される場合には必要とされなくてもよい。複数のコンタクトセンターが展開される場合、連絡を特定のコンタクトセンター103用の別のルータに経路指定するために、より多くのルータが必要とされ得る。コンタクトセンターレベル103で、コンタクトセンタールータ104は、個々の電話または他の電気通信機器105を用いて連絡を係員105に経路指定するであろう。典型的には、コンタクトセンター103に複数の係員105が存在する。
【0037】
図2は、(
図1のコンタクトセンタールータ104に含まれ得る)例示的なコンタクトセンタールーティングシステム200を図示する。大まかに言えば、ルーティングシステム200は、一実施例では、特定の結果変数に対する係員実績および架電者傾向(例えば、統計的可能性または尤度)に基づく確率乗算器プロセスに少なくとも部分的に基づいて、架電者と係員とをマッチングするように動作可能である。ルーティングシステム200はさらに、架電者データおよび/または係員データのみを使用して、または確率乗算器プロセスと組み合わせて、パターンマッチングアルゴリズムに基づいて架電者をマッチングするように動作可能であり得る。ルーティングシステム200は、通信サーバ202と、架電者を受信して係員にマッチングする(時として架電者を係員に「マッピングする」と称される)ためのルーティングエンジン204とを含み得る。
【0038】
一実施例では、以下でさらに詳細に説明されるように、ルーティングエンジン204は、対応可能な係員の実績データ、および保留中の架電者からの結果変数に対する架電者傾向を決定するか、または取り出すように動作可能である。実績データおよび架電者傾向データは、各々に対するパーセンタイルランクに変換され、それぞれ、パーセンタイルランクの最も近い一致に基づいて架電者を係員にマッチングするために使用され得、それによって、例えば、高い実績の係員が、購入に対する傾向が最も高い架電者とマッチングされる。
【0039】
係員データは、係員グレードまたはランキング、係員履歴データ、係員人口統計データ、係員心理学データ、および係員についての他のビジネス関連データ(本願では個々または集合的に「係員データ」と称される)を含み得る。係員および架電者人口統計データは、性別、人種、年齢、教育、アクセント、収入、国籍、民族性、市外局番、郵便番号、婚姻関係、仕事の状態、および信用度の得点のうちのいずれかを含み得る。係員および架電者心理学データは、内向性、社交性、財政的成功の所望、ならびに映画およびテレビの選好のうちのいずれかを含むことができる。さらに、市外局番等のあるデータは、例えば、特定の結果変数に対する架電者の傾向を決定するために例示的なプロセスによって使用され得る、架電者の推定収入レベル、教育レベル、民族性、宗教等に関する統計データを提供し得ることに留意されたい。
【0040】
加えて、いくつかの実施例では、ルーティングエンジン204は、加えて、以前の架電者・係員マッチングの実績または結果に基づいて経時的に適応し得る、パターンマッチングアルゴリズムおよび/またはコンピュータモデルをさらに含み得る。追加のパターンマッチングアルゴリズムは、経路指定を決定するように、種々の様式で確率乗算器プロセスと組み合わせられ得る。一実施例では、パターンマッチングアルゴリズムは、当技術分野で公知であるような適応パターンマッチングエンジンに基づくニューラルネットワーク、例えば、その全体で参照することにより本明細書に組み込まれる、M.Riedmiller,H.Braun:“A Direct Adaptive Method for Faster backpropagation Learning:The RPROP Algorithm,”Proc.of the IEEE IntI.Cont’.on Neural Networks 1993によって説明されるような弾性逆伝搬(RProp)アルゴリズムを含み得る。コンタクトルーティングシステムおよび/またはルーティングエンジン204に含まれ得る、種々の他の例示的な係員実績およびパターンマッチングアルゴリズムならびにコンピュータモデルシステムおよびプロセスが、例えば、両方ともそれらの全体で参照することにより本明細書に組み込まれる、2008年1月28日出願の米国特許出願第12/021,251号、および2008年8月29日出願の米国特許出願第12/202,091号で説明されている。当然ながら、パターンマッチングアルゴリズムおよび方法に基づく他の実施が、単独で、または本明細書で説明されるものと組み合わせて使用され得ることが認識されるであろう。
【0041】
ルーティングシステム200はさらに、着信架電者の架電者データ、架電者・係員ペアに関するデータ、架電者・係員ペアの結果、係員の係員データ、係員の履歴実績データ等を回収するためのコレクタ206等の他の構成要素を含み得る。さらに、ルーティングシステム200は、ルーティングシステム200の性能および動作のレポートを生成するための報告エンジン208を含み得る。種々の他のサーバ、構成要素、および機能性が、ルーティングシステム200に含むために可能である。さらに、単一のハードウェアデバイスとして示されているが、種々の構成要素が相互から遠隔に位置し得ることが理解されるであろう(例えば、通信サーバ202およびルーティングエンジン204は、共通ハードウェア/サーバシステムに含まれる必要も、共通の場所に含まれる必要もない)。加えて、種々の他の構成要素および機能性がルーティングシステム200に含まれ得るが、本明細書では明確にするために省略されている。
【0042】
図3は、例示的なルーティングエンジン204のさらなる詳細を図示する。ルーティングエンジン204は、単独で、または他のマッピングエンジンと組み合わせて使用するために、その中に1つ以上のマッピングエンジンを含み得る、主要マッピングエンジン304を含む。いくつかの実施例では、ルーティングエンジン204は、専ら、または部分的に、特定の結果変数の傾向または可能性に関連付けられる、係員に関連付けられる実績データ、および架電者データに基づいて、架電者を経路指定し得る。他の実施例では、ルーティングエンジン204はさらに、専ら、または部分的に、例えば、実績ベースのデータ、人口統計データ、心理学データ、電話の種類/電話番号、BTNデータ、および他のビジネス関連データを含み得る、種々の架電者データおよび係員データを比較することに基づいて、経路指定の決定を行い得る。加えて、親近性データベース(図示せず)が使用され得、そのような情報は、経路指定の決定を行うため、またはそれに影響を及ぼすために、ルーティングエンジン204および/またはマッピングエンジン304によって受信され得る。データベース312は、ローカルまたは遠隔データベース、第三者サービス等を含み得る(加えて、マッピングエンジン304は、特定のマッピングプロセスのために適用可能である場合、データベース314から係員データを受信し得る)。
【0043】
一実施例では、相対的係員実績は、(収益生成、費用、顧客満足度、それらの組み合わせ等の)特定の結果変数に対する実績に基づいて、一組の係員をランク付けするか、または採点することによって決定され得る。さらに、相対的係員実績は、相対的パーセンタイルランキングに変換され得る。処理エンジン320−1は、例えば、1つ以上の結果変数に対する相対的係員実績データを決定または受信し得る。加えて、処理エンジン320−1は、(購入に対する傾向、通話の長さ、満足すること、それらの組み合わせ等の)特定の結果変数に対する架電者の傾向を受信または決定し得る。架電者の傾向は、利用可能な架電者データから決定され得る。次いで、係員の相対的実績データおよび架電者の傾向データは、対応するランキングに基づいて架電者と係員とをマッチングするために使用され得る。いくつかの実施例では、実績および傾向データは、架電者および係員に対する相対的パーセンタイルランキングに変換され、最も近いそれぞれのパーセンタイルに基づいて、架電者と係員とをマッチングする。
【0044】
処理エンジン320−2は、一実施例では、架電者に関する利用可能な架電者データを、一組の係員に関連付けられる係員データと比較し、各架電者・係員ペアの好適性得点を決定するように動作する、1つ以上のパターンマッチングアルゴリズムを含む。処理エンジン320−2は、種々のデータベース(例えば、312および314)から架電者データおよび係員データを受信し、例えば、架電者・係員ペア得点、または架電者・係員ペアのランキングを出力し得る。パターンマッチングアルゴリズムは、ニューラルネットワークアルゴリズム、一般アルゴリズム、または他の適応アルゴリズム等の相関アルゴリズムを含み得る。
【0045】
加えて、処理エンジンは、架電者および/または係員に関連付けられる親近性データを受信するように動作する、1つ以上の親近性マッチングアルゴリズムを含み得る。親近性データおよび/または親近性マッチングアルゴリズムは、単独で、または本明細書で議論される他のプロセスまたはモデルと組み合わせて使用され得る。
【0046】
ルーティングエンジン204はさらに、架電者を係員にマッピングするための複数の処理エンジン320−1および320−2のうちの1つ以上を選択し、および/または重み付けするための選択論理(図示せず)を含み得る。例えば、選択論理は、既知または利用可能である架電者データの種類および量を決定し、適切な処理エンジン320−1、320−2、またはそれらの組み合わせを選択するための規則を含み得る。選択論理は、全体的または部分的に、ルーティングエンジン204、マッピングエンジン304に含まれ得るか、または両方に遠隔であり得る。
【0047】
さらに、350で
図3に示されるように、通話履歴データ(例えば、架電者・係員ペアデータ、および費用、収益、顧客満足度等に関する結果を含む)が、処理エンジン320−1および320−2を再訓練または修正するために使用され得る。例えば、係員実績データは、係員を再びランク付けするように、履歴結果に基づいて周期的に(例えば、毎日)更新され得る。さらに、架電者に関する履歴情報は、特定の結果変数の架電者傾向に関する情報を更新するために使用され得る。
【0048】
いくつかの実施例では、ルーティングエンジン204または主要マッピングエンジン304はさらに、架電者および係員の保留またはアイドル時間を記憶またはアクセスし、架電者(および/または係員)の保留時間または待ち行列の順番に基づいて、架電者を係員にマッチングするように動作し得る、従来の待ち行列ベースのルーティングプロセスを含み得る。さらに、架電者が過剰に長く係員を待って保留されていないことを確実にするように、種々の機能または時間制限が架電者に適用され得る。例えば、架電者の時間制限(架電者に関係する所定の値または機能に基づくかどうかに関わらない)を超えた場合、架電者を次の対応可能な係員に経路指定することができる。
【0049】
加えて、例示的なシステムおよび方法の種々の側面の調整を可能にする、例えば、架電者データの異なるモデル、程度、および種類の数の調整を可能にする、インターフェースがユーザに提供され得る。さらに、インターフェースは、異なる程度または種類に使用される特定のモデルの調整を可能にし得、例えば、特定のモデルの最適化または重み付けを調整すること、特定の程度または種類の架電者データに対するモデルを変更すること等を可能にする。インターフェースは、リアルタイムで、または所定の時間に、異なる要因を調整するためのスライダまたはセレクタを含み得る。加えて、インターフェースは、ユーザがある方法をオンおよびオフにすることを可能にし得、変更の推定効果を表示し得る。例えば、インターフェースは、ルーティングシステムの側面を変更することによって、費用、収益生成、または顧客満足度のうちの1つ以上の推定変化を表示し得る。結果変数を推定するための種々の推定方法およびアルゴリズムは、例えば、その全体で参照することにより本明細書に組み込まれる、2008年7月28日出願の同時係属米国仮特許出願第611084,201号で説明される。一実施例では、推定値は、同一(または類似)の一組の係員の過去の期間を評価し、係員/架電者ペアの分布を構築することを含む。各ペアを使用して、実績ベースのマッチング、パターンマッチングアルゴリズム等を介して、期待成功率が計算され、(例えば、売上、費用、顧客満足度等のうちの1つ以上に関して)現在の実績を推定するために、現在の情報に適用されることができる。したがって、履歴通話データおよび係員情報を取り込むことにより、本システムは、処理方法のバランスの変更または重み付けの推定を計算することができる。実績が時間とともに変化する可能性が高いであろうため、履歴情報に対する比較の時間(例えば、時刻、曜日等)が重要であり得ることに留意されたい。
【0050】
図4Aは、概して、架電者と係員とをマッチングするための例示的な確率乗算器プロセスを図示し、
図4Bは、(例えば、待ち行列ベース等の)ランダムマッチングプロセスを図示する。これらの例証的実施例は、マッチングされる5人の係員および5人の架電者が存在することを仮定する。係員は、所望の結果変数の実績に基づいてランク付けすることができる。例えば、係員は、履歴売上率データに基づいて販売を完了する統計的可能性に基づいて、採点され、順序付けられ得る。加えて、架電者は、所望の結果変数、例えば、製品またはサービスを購入する傾向または尤度に基づいて、採点され、順序付けられることができる。架電者は、例えば、架電者が購入に対する統計的または履歴的可能性を決定するために使用される、人口統計データ、郵便番号、市外局番、使用される電話の種類等を含む、既知または利用可能な架電者データに基づいて、ランク付けおよび順序付けされ得る。
【0051】
次いで、係員および架電者は、ランキングに基づいて互にマッチングされ、最高ランクの係員は、最高ランクの架電者にマッチングされ、第2の最高ランクの係員は、第2の最高ランクの架電者にマッチングされる等。最高を最高に、最低を最低にマッチングすることにより、
図4Bに示されるように架電者を係員にランダムにマッチングすることと比較して、マッチングペアの積の増加をもたらす。例えば、(例えば、過去の係員実績に基づく)係員A1−A5の例証的な売上率、および(例えば、人口統計データ、架電者データ等の架電者データに基づく)架電者C1−C5が購入に対する可能性を使用して、
図4Aに示されるマッチングの積は、
(0.09*0.21)+(0.07*0.12)+(0.06*0.04)+(0.05*0.03)+(0.02*0.02)0.0316
である。
【0052】
対照的に、ランダムマッチングについては、
図4Bで図示されるように、同一の割合を使用して、積は、
(0.09*0.12)+(0.07*0.02)+(0.06*0.21)+(0.05*0.03)+(0.02*0.04)0.0271
である。
【0053】
したがって、最高ランキング係員を最高ランキング架電者と、最低ランキング係員を最低ランキング架電者とマッチングすることにより、全体的な積、したがって、所望の結果変数(例えば、売上)を最適化する可能性を増加させる。
【0054】
図5Aは、保留中の架電者を、手の空く係員にマッチングするための例示的なプロセスを概略的に図示する。この実施例では、勤務時間中の全ての係員A1−A5、または架電者C1−C5の合理的な保留時間内に手が空き得る全ての係員が、以前に説明されたように採点されるか、またはランク付けされる。加えて、架電者C1−C5は、以前に説明されたように採点されるか、またはランク付けされる。係員、例えば、係員A2の手が空くと、本プロセスは、架電者C2が係員A2と同一(または類似)のランクであることを決定し、架電者C2がA2にマッチングされる。次いで、保留中の残りの架電者は、次の係員の手が空くと、マッチングのために再ランク付けされ得る。加えて、新しい架電者が保留にされると、架電者をリアルタイムで再ランク付けされることができる。例示的なプロセスは、複数の空いている係員に対して同様に動作し、(着信および発信コールセンターの両方に対して)架電者の手が空く。
【0055】
大抵の場合において、係員および架電者の数は等しくないであろうと認識されるであろう。したがって、架電者(および/または係員)は、ランク付けされ、架電者の相対的パーセンタイルランキングに変換されることができる(例えば、正規化ランキング、または最高ランクの架電者を100番目のパーセンタイルとして、最低ランクの架電者を0番目のパーセンタイルとして設定する)。係員は、同様に、相対的パーセンタイルランキングに変換され得る。係員の手が空くと、係員は、係員の相対的パーセンタイルランクに対して最も近い相対的パーセンタイルランクを有する架電者にマッチングされ得る。他の実施例では、係員の手が空くと、係員は、各係員・架電者ペアのZ得点を計算するように、保留中の架電者の少なくとも一部分のランキングと比較されることができる。最高Z得点は、相対的パーセンタイルランキングの最小差に対応し得る。さらに、ここで、Z得点は、同様にZ得点を出力し得る、パターンマッチングアルゴリズム等の他のアルゴリズムとマッチングを組み合わせるために使用され得る。
【0056】
図5Bは、係員の手が空き、複数の架電者が保留中であるときに、架電者と係員とをマッチングするための例示的な方法を概略的に図示する。この実施例では、架電者(およびいくつかの実施例では係員)は、実績のサブグループにグループ化される。例えば、架電者実績の範囲が、複数のサブグループに分けられ得、架電者が、各グループ内でバケットされ得る。実績別の架電者の上位20%は、図示されるようにC1
1−C1
Nとしてともにグループ化され得、その後に次の20%が続く等。係員は、例えば、A2の手が空くと、適切なサブグループからの架電者は、この実施例では、C2
1−C2
Nからの架電者にマッチングされる。サブグループ内で、架電者は、待ち行列の順番、最良適合、パターンマッチングアルゴリズム、等によって選択され得る。架電者を経路指定すべき適切なサブグループは、例えば、係員ランキングまたは得点に基づいて決定され得る。
【0057】
一実施例では、結果変数Oに対するコールセンター実績を最適化することが所望されると仮定されたい。Oは、売上率、顧客満足度、第1通話解決、または他の変数のうちの1つ以上を含むことができる。さらに、ログインしているN
A人の係員、および待ち行列の中のN
c人の架電者が存在するある時を仮定されたい。係員は、Oを生成することにおいて、
【0059】
の実績を有し、
ある性質Pによって分割される架電者が、以下のOに対して、
【0062】
例えば、Oが売上率であり、Pが架電者の市外局番である場合、A
Oは、各係員の売上率であり、C
Oは、特定の市外局番内の架電者に対する売上率である。(一組のログインした係員に関する)パーセンタイルランク付けされた係員の実績および(ある瞬間での待ち行列の中の一組の架電者に関する)パーセンタイルランク付けされた架電者の傾向を、以下のように計算する。
【0064】
ここで、pr(a,B)は、範囲[0,100]に調整された、一組の値Bに関する値aのランクを返すパーセンタイルランク関数である。
【0065】
k番目の係員が対応可能になるときに、全ての係員が待機中であると仮定されたい。次いで、待ち行列の中のどの架電者に係員が接続されるべきであるかを決定するために、新たに手が空いたk番目の係員のパーセンタイルランクと待ち行列の中の架電者のパーセンタイルランクとの間の差
【0068】
組{D
J}の最小要素を指示するjの値は、k番目の係員に接続する待ち行列の構成員を与える。Z得点もまた、D
jから導出されることができる。これは、最高値の係員・架電者ペアが組の最良適合であり、それらが同一のスケールを有するので、このアルゴリズムからの出力が、他のアルゴリズムからのZ得点出力と組み合わせられることができるという利点を有する。
【0070】
ここで、μおよびσは、Tの平均および標準偏差であり、Tは、
【0073】
2つの変数の場合について説明される上記の実施例およびアルゴリズムは、2つの変数の場合に制限されないが、所望の結果に単調に関係する2つより多くの変数の場合まで明確に拡張できることが、当業者によって認識されるであろう。さらに、コールセンター実績の増加は、当業者によって理解および検討されるように、より多くの変数に関して増加することを示されることができる。
【0074】
図6Aは、x軸およびy軸に沿った係員実績対架電者傾向、およびz軸に沿った売上の確率の例示的な3次元プロットを図示する。この実施例では、係員実績および架電者傾向は、xおよびyの線形関数として定義される。例えば、一般性を失うことなく、xε[0,1]およびyε[0,1]、係員傾向は、
a=ca+ma x
であり、ここpで、「ca」および「ma」は、係員実績線形関数の切片および勾配を表す(本明細書のある場合において、複数文字が単一の変数を表し、例えば、「ca」および「ma」は、各々が単一の変数であり、乗算演算子を示す他の文字によってオフセットされる)。同様に、架電者傾向については、
c=cc+mc y
であり、「cc」および「mc」は、架電者傾向線形関数の切片および勾配を表す。aおよびcの積の乗算モデル売上確率pは、
p=a c
である。
【0075】
表面600として
図6Aで図式的に図示される、売上の確率の表面の平均高さdは、
【0078】
表面高さの対角線「pdiag」の平均高さn(単一の変数)を決定することは、架電者に対して類似パーセンタイルランキング係員を乗算することに対応し、
【0080】
であり、ここで、λは、線に沿って積分することができるように対角線関数をパラメータ化する。
【0081】
表面600上の対角線上の影付き帯602によって図示されるような、対応する割合による確率マッチングに従った実績または売上率のブーストb、または潜在的な増加は、
【0083】
のように計算されることができ、ここで、確率によるマッチングの理論的最大ブーストは、この例証的実施例について、1/3である。したがって、対角線上の影付き帯602の上または付近で架電者を係員にマッチングすることは、売上の確率を増加させる。
【0084】
図6Bは、(実績の均一な分布とは対照的に)係員実績および架電者傾向に対する架電者および係員の正規分布の例示的な分析およびプロットを図示する。係員実績および架電者傾向の同一の定義を仮定すると、係員の実績および架電者の傾向にわたって通話頻度の分布を表すために、2次元ガウス関数が使用されることができる。
【0086】
次いで、売上率は、aおよびcの関数によって表すことができ、Aおよびσは、それぞれ、ガウス構成要素の大きさおよび標準偏差を与える。ガウスが{0.5,0.5}を中心とすると仮定して、確率は、
【0091】
のように、売上率から直接決定されることができる。
【0092】
これを[0,1]にわたってxに関して積分することは、対角上で生じる通話係員ペアの売上率
【0095】
ランダムなクライアント係員ペアの売上率は、
【0097】
のように計算することができ、これは、
【0099】
に展開され、アルゴリズムのブーストは、
【0101】
として計算されることができ、これは、売上のブースト
【0104】
したがって、
図6Aの正規分布と同様に、対角線上の影付き帯602の上または付近で架電者を係員にマッチングすることは、売上の確率を増加させる。当然ながら、架電者実績および係員傾向の例示的な関数、仮定、および分布は、例証的であり、例えば、履歴データ、フィードバック等に基づいて変化するであろうと理解されるであろう。さらに、追加の考慮および変数が、一般的プロセスに組み込まれ得る。また、上記の実施例では、売上を最適化すべき変数として参照するが、同一の手順は、通話処理時間(例えば、費用)、または第1通話解決、または多くの他の変数等の最適化されるべき他の変数またはそれらの組み合わせに適用されることができることにも留意されたい。
【0105】
出願第12/490,949号と比較して先述の方程式のうちのいずれかに相違がある限り、出願第12/490,949号の方程式は、正しい方程式であり、優先する。
図7は、架電者を通話ルーティングセンター内の係員にマッチングするための例示的なプロセスを図示する。この実施例では、係員は、702で、売上または顧客満足度等の結果変数に関連付けられる実績特性に基づいてランク付けされる。いくつかの実施例では、係員実績が、ある期間にわたる履歴データから各係員について決定され得る。他の実施例では、本方法は、係員の係員実績データまたは係員ランキングを単に取り出すか、または受信し得る。
【0106】
一実施例では、係員は、収益の増加、費用の減少、または顧客満足度の増加等の最適な相互作用について格付けされる。格付けは、少なくとも10日の期間等の期間にわたって、最適な相互作用を達成する能力についてコンタクトセンター係員の実績を対照することによって達成されることができる。しかしながら、期間は、直前の連絡と同じくらい短いものから、係員の架電者との最初の相互作用と同じくらい長く延びた期間までであり得る。また、係員を格付けする方法は、特定の最適な相互作用に対して1からNの段階で、各係員をランク付けすることと同じくらい単純であり得、Nは、係員の総数である。格付けの方法はまた、費用について係員を格付けするために、各係員の平均連絡処理時間を決定すること、売上について係員を格付けするために、各係員によって生成される総売上収益または売上数を決定すること、または顧客満足度について係員を格付けするために、架電者との連絡の終了時に顧客調査を行うことを含むこともできる。しかしながら、先述の内容は、どのようにして係員が格付けされ得るかという実施例にすぎず、多くの他の方法が使用され得る。
【0107】
架電者は、704で、架電者データに基づく結果変数に基づいて、ランク付けされるか、または採点される。架電者は、既知または利用可能な架電者データに基づく特定の結果の予測された可能性に基づいて、ランク付けされるか、または採点され得る。架電者データの量および種類は、各架電者について変化し得るが、履歴結果に基づいて特定の結果の統計的可能性を決定するために使用されることができる。例えば、架電者について既知である唯一のデータは、特定の市外局番からの架電者との過去の相互作用に基づいて、特定の購入に対する傾向に関連付けられる、市外局番であり得る。いくつかの実施例では、架電者に関連付けられるデータが存在しない場合があり、そのような場合、データが既知ではない場合、特定の結果に対する平均傾向または統計的可能性が使用され得る。
【0108】
次いで、架電者および係員は、706で、それらのそれぞれのランキングに基づいてマッチングされる。例えば、説明されるように、より良い係員をより良い架電者にマッチングする等。加えて、等しくない数の架電者および係員に対処するために、いずれか一方または両方のランキングが調整または正規化されることができ、架電者および係員は、最も近いマッチングに基づいて経路指定される。例えば、係員のランクは、係員の数で除算され得、架電者についても同様であり、架電者は、最も近い一致に基づいて(またはある範囲内で)係員にマッチングされ得る。次いで、本プロセスは、708で、架電者を係員に経路指定するか、または経路指定を引き起こし得る。他の実施例では、本プロセスは、他のプロセスでマッチングを使用するか、または他の経路指定プロセスで重み付けするために使用し得る、他の装置またはプロセスにマッチングを伝え得る。
【0109】
図8は、架電者を通話ルーティングセンター内の係員にマッチングするための別の例示的なプロセスを図示する。この実施例では、係員は、702で、売上または顧客満足度等の結果変数に関連付けられる実績特性に基づいてランク付けされ、相対的パーセンタイルランキングに変換される。例えば、係員の未加工実績値は、相対的パーセンタイルランキングに変換されることができ、例えば、9%売上率は、85%実績ランキングに変換され得る。他の実施例では、未加工実績値は、標準得点またはZ得点に変換されることができる。
【0110】
架電者は、804で、架電者データに基づく結果変数に基づいてランク付けされるか、または採点され、相対的パーセンタイルランキングに変換される。係員と同様に、架電者の未加工予測値は、相対的パーセンタイルランキングに変換されることができ、例えば、20%の購入する傾向または尤度は、架電者の間で92%パーセンタイルランキングに変換され得る。他の実施例では、未加工値は、標準得点またはZ得点に変換されることができる。
【0111】
次いで、架電者および係員は、806で、それぞれの相対的パーセンタイルランキングに基づいてマッチングされる。例えば、架電者の相対的パーセンタイルランキングは、係員の相対的パーセンタイルランキングと比較されることができ、架電者は、対応可能な最も近い係員にマッチングされることができる。係員の手が空き、複数の架電者が保留中である実施例では、係員は、最も近い一致の架電者にマッチングされ得る。他の実施例では、架電者は、最良適合の係員の手が空くために所定の時間にわたって保留され、次いで、最も近い一致の係員にマッチングおよび経路指定され得る。
【0112】
架電者および係員をランク付けし、それらのそれぞれのランキングに基づいて架電者を係員にマッチングする種々の様式が想定されることが認識されるであろう。例えば、一般的に言えば、例示的なプロセスは、より高いランキング架電者が、より高いランキング係員に経路指定され、より低いランキング架電者が、よりランキング係員に経路指定されることをもたらす。
【0113】
図9は、確率乗算器プロセスおよびパターンマッチングアルゴリズムの両方に基づいて、架電者を通話ルーティングセンター内の係員にマッチングするための別の例示的なプロセスを図示する。本プロセスは、902で、結果変数に対する一組の係員の相対的係員実績を決定することと、904で、結果変数に対する一組の架電者の相対的架電者傾向を決定することとを含む。相対的係員実績および相対的架電者傾向はさらに、906で、相対的パーセンタイルランキングに正規化または変換され得る。
【0114】
対応可能な係員データおよび架電者データの一部分または全ては、908で、パターンマッチングアルゴリズムを通過させられ得る。一実施例では、マッチングアルゴリズムは、以前の架電者・係員ペア結果について訓練されるニューラルネットワークアルゴリズム等の適応パターンマッチングアルゴリズムを含む。
【0115】
マッチングアルゴリズムは、各架電者・係員ペアに対する架電者および/または係員に関連付けられる人口統計データを比較することと、所望の結果変数に対する架電者・係員ペアの好適性得点またはランキングを計算すること(または結果変数を重み付けすること)とを含み得る。さらに、Z得点が、各架電者・係員ペアおよび結果変数について決定されることができる。例えば、2009年8月29日出願の同時係属米国出願第12/202,091号は、架電者・係員ペアのZ得点を計算するための例示的なプロセスを説明し、その全体で参照することにより本明細書に組み込まれる。
【0116】
例示的なパターンマッチングアルゴリズムおよびコンピュータモデルは、ニューラルネットワークアルゴリズムまたは一般アルゴリズム等の相関アルゴリズムを含むことができる。一実施例では、その全体で参照することにより本明細書に組み込まれる、M.Riedmiller,H.Braun:“A Direct Adaptive Method for Faster backpropagation Learning:The RPROP Algorithm,”Proc.of the IEEE IntI.Cont’.on Neural Networks 1993によって説明されるように、弾性逆伝搬(RProp)アルゴリズムが使用され得る。アルゴリズムを概して訓練するか、または別様に精緻化するために、(最適な相互作用のために測定されるような)実際の連絡結果が、起こった各連絡の実際の係員および架電者データに対して比較される。次いで、パターンマッチングアルゴリズムは、ある架電者をある係員とマッチングすることが、どのようにして最適な相互作用の可能性を変化させるであろうかを習得するか、またはその習得を向上させることができる。このようにして、次いで、パターンマッチングアルゴリズムは、特定の一組の架電者データに関する架電者を、特定の一組の係員データの係員とマッチングすることの関連で、最適な相互作用の可能性を予測するために使用されることができる。好ましくは、パターンマッチングアルゴリズムは、コンタクトセンターが1日の営業を終えた後に毎晩、アルゴリズムを周期的に訓練する等、架電者相互作用についてのより多くの実際のデータがアルゴリズムに利用可能になるにつれて周期的に精緻化される。
【0117】
パターンマッチングアルゴリズムは、各係員および架電者マッチングに対する最適な相互作用の予測された可能性を反映する、コンピュータモデルを作成するために使用されることができる。例えば、コンピュータモデルは、全ての対応可能な架電者に対してマッチングされるような、コンタクトセンターにログインしている全ての係員に対する一組の最適な相互作用の予測された可能性を含み得る。代替として、コンピュータモデルは、これらの一部、または前述の組を含む組を含むことができる。例えば、コンタクトセンターにログインしている全ての係員を全ての対応可能な架電者とマッチングする代わりに、例示的な方法およびシステムは、全ての対応可能な係員を、全ての対応可能な架電者、またはさらに、係員あるいは架電者のより狭い一部とマッチングすることができる。コンピュータモデルはまた、係員および架電者の各マッチングの好適性得点を含むように、さらに精緻化されることもできる。
【0118】
他の実施例では、例示的なモデルまたは方法は、架電者および/または係員に関連付けられる親近性データを利用し得る。例えば、親近性データは、人口統計、心理学、または他のビジネス関連情報から独立している、個々の架電者の連絡結果(本願では「架電者親近性データ」と称される)に関係し得る。そのような架電者親近性データは、架電者の購入履歴、連絡時間履歴、または顧客満足度履歴を含むことができる。これらの履歴は、架電者の商品購入の一般履歴、係員との平均連絡時間、または平均顧客満足度の評定等、一般的であり得る。これらの履歴はまた、架電者の購入、連絡時間、または特定の係員に接続された時の顧客満足度等、係員特有でもあり得る。
【0119】
実施例として、ある架電者が連絡された最後のいくつかの場合において、架電者が製品またはサービスを購入することを選択したので、架電者は、購入する可能性が高い人として、それらの架電者親近性データによって識別され得る。次いで、この購入履歴は、架電者が最適な相互作用の可能性を増加させるために好適と見なされる係員と架電者が優先的にマッチングされるように、マッチングを適切に精緻化するために使用することができる。この実施形態を使用して、架電者の過去の購入行動を考慮すると、売上の可能性が依然としてあり得るので、コンタクトセンターは、架電者を、収益を生成するための高い等級を有さない、またはそうでなければ容認可能なマッチングではないであろう係員と優先的にマッチングすることができる。このマッチングのための方略は、そうでなければ架電者との連絡相互作用に専念させられであろう対応可能な他の係員を残すであろう。代替として、コンタクトセンターは、代わりに、架電者データおよび係員人口統計または心理学データを使用して生成されるマッチングが、何を示し得るかにかかわらず、架電者が収益を生成するための高い等級を伴う係員とマッチングされることを保証しようとし得る。
【0120】
一実施例では、説明された実施例によって開発される親近性データおよび親近性データベースは、架電者の連絡が種々の係員データにわたって追跡されるものであり得る。そのような分析は、例えば、類似する性別、人種、年齢の係員に、またはさらに、特定の係員とマッチングされる場合に、架電者が連絡に満足する可能性が最も高いことを示し得る。この実施例を使用して、本方法は、架電者を、容認可能な最適相互作用を生成したことが架電者親近性データから既知である特定の係員または種類の係員と優先的にマッチングすることができる。
【0121】
親近性データベースは、商用、クライアント、または公的に利用可能なデータベース源が、架電者についての情報を欠いているときに、架電者についての特に実用的な情報を提供することができる。このデータベース開発はまた、個々の架電者の連絡結果が、商用データベースが暗示し得るものとは異なり得るという結論を駆動し得るので、架電者について利用可能なデータがある場合でさえも、コンタクトルーティングおよび係員・架電者マッチングをさらに増進するために使用されることもできる。例として、例示的な方法が、架電者と係員とをマッチングするために、専ら商用データベースに依存する場合、それは、架電者が最適な顧客満足度を達成するために、同性の係員に最良適合されるであろうと予測し得る。しかしながら、架電者との以前の相互作用から開発された親近性データベース情報を含むことによって、例示的な方法は、架電者が、最適な顧客満足度を達成するように、異性の係員に最良適合されるであろうと、より正確に予測し得る。
【0122】
次いで、架電者は、906で決定される相対的ランキングの比較、および908でのパターンマッチングアルゴリズムに基づいて、910で係員にマッチングすることができる。例えば、両方のプロセスの結果が、最良適合の架電者・係員ペアを決定するように、例えば、線形または非線形結合を介して、組み合わせられ得る。
【0123】
次いで、係員への架電者の選択またはマッピングは、912で、架電者係員に経路指定させるためのルーティングエンジンまたはルータに渡され得る。ルーティングエンジンまたはルータは、架電者を係員にマッピングするシステムに対してローカルまたは遠隔にあり得る。追加の動作が行われ得、説明された動作は、それらが記述される順番で起こる必要はなく、いくつかの動作は、並行して行われ得ることに留意されたい。
【0124】
例示的な通話マッピングおよびルーティングシステムおよび方法は、例えば、それらの全体で参照することにより、全て本明細書に組み込まれる、2008年11月7日出願の「Routing Callers to Agents Based on Time Effect Data」と称された米国特許出願第12/267,471号、2009年6月24日出願の「Probability Multiplier Process for Call Center Routing」と題された第12/490,949号、および2008年11月6日出願の「Pooling Callers for Matching to Agents Based on Pattern Matching Algorithms」と題された第12/266,418号で説明されている。
【0125】
(ベイズ平均回帰:)コンタクトセンター内の係員への架電者のマッピングおよび経路指定を向上させるか、または最適化するために使用することができる、システムおよび方法が、本明細書で提供され、架電者のマッピングおよび経路指定は、実績ベースの経路指定技術、または独立変数として係員実績を使用するマッチングアルゴリズムを使用し得る。本発明の一側面では、システムおよび方法は、係員実績を測定および/または推定するベイズ平均回帰(BMR)技法とともに使用される。ベイズ平均回帰については、以下のテキスト、2010年11月19日のPeter D.Hoffによる、A FIRST COURSE IN BAYESIAN STATISTICAL METHODS,Sprinter texts in Statistics、2007年8月15日のWilliam M.Bolstadによる、INTRODUCTION TO BAYESIAN STATISTICS,2
ND Edition、2012年9月4日のPeter M.leeによるBAYESIAN STATISTICS:AN INTRODUCTIONを参照されたい。
【0126】
以下の実施例および説明は、概して、係員実績(AP)の観点で説明されるが、例えば、種々の異なる製品およびサービスを購入に対する架電者傾向を推定するために、類似の問題が存在し、同一の方法論が適用される。したがって、用語を繰り返すことを回避するために、実施例は、これが、同等に架電者傾向(CP)を指すことができると理解した上で、係員実績(AP)の観点で表されるであろう。
【0127】
例示的な通話マッピングおよびルーティングシステムは、3つの異なる数学的種類の標的データを利用することができる。2項式、例えば、売上/売上なしであるコンバージョン率(CR)、多項式、例えば、1回の通話につき販売されたRGUの数、および連続、例えば、1回の通話あたりの収益生成単位(RGU)および処理時間である。本明細書で説明される全ての技術は、3つ全ての種類のデータに適用されるが、当業者によって認識されるように、特にBMRの場合に使用される、数学的技法の差異を必要とする。再度、反復で議論を乱すことを回避するために、用語CRが全体を通して使用されるが、これは、2項式、多項式、または連続データの代理であると理解されるべきである。
【0128】
典型的には、通話ルーティングセンターは、利用可能なデータを考慮して可能な係員実績(AP)の最も正確な測定値に達することを希望する。単一のスキルにおいて大量の通話データを有するとき、計算は単純である(例えば、CR=売上数/通話数)が、比較的少ないデータがあるとき、および係員が、異なるCRを有し得る複数の「スキル」を処理するときに、問題が生じ得る。データが少ないと、未加工AP加重混合物であるAP値および平均APを採用することが、より正確であり得る。データなしの限界では、次いで、平均値のみを採用するであろう。逆に、多くのデータがあると、実際の係員のデータからAPを計算し、平均値を無視するであろう。しかし、平均値への回帰をどのようにして処理するか、および平均値への回帰を処理する数学的に最適な方法が何であるかに関して、疑問が生じる。以下で説明されるように、BMRは、平均値への回帰を処理する実施例である。
【0129】
一実施例でのベイズ分析は、ベイズ統計的方法の適応である方法を含み得る。ベイズ分析の本質的な考えは、以前の知識(「先行」)を現在の証拠またはデータと組み合わせることである。一実施例では、非常に高い実績から非常に低い実績までの確率の範囲を網羅する、一組の仮想の係員が使用される。「先行」は、ある実績の係員である確率、つまり、非常に悪いまたは非常に良いことの低い確率、平均であることのより高い確率である。次いで、実施例は、仮想の係員の各々が、実際の係員がしたように行ったであろう尤度を調査する。「先行」確率を、各仮想の係員に対する証拠の確率で乗算することにより、先行と証拠確率との最も高い積を伴う仮想の係員を見出すことができる。実際の係員は、最も高い積を伴う、この仮想の係員である可能性が最も高い。
【0130】
例示的なアルゴリズムか、以下のように実行され得る。
【0131】
1.全体(すなわち、スキルにわたる)APの分布を推定する。ある制約、例えば、実施形態では、0<=CR<=1であるCRに一致し得る分布、例えば、この先行知識を組み込む、切断正規分布があり得る。分布のモーメントが、以前のAPデータまたは他のソースから推定され得る。例示的な分布は、0.1で頂点を伴う釣鐘曲線であり得、分布曲線は、0および1で切断されている。そのような例示的な分布曲線は、ほとんどの係員が、100回の通話のうちの10回の売上、例えば、0.1で分布の頂点を有することを反映し得る。
【0132】
2.係員実績の可能な範囲に及ぶ実績を伴う一組の多数の仮想の係員を構築する。実践では、可能な最低の実績(おそらくゼロ)から可能な最高の実績100、例えば、全通話での売上に及ぶ実績を伴う、多数、例えば、5001人の仮想の係員を生成し得る。実施形態では、仮想の係員の実績は、均等に離間され得る(例えば、0、0.02、0.04、・・・、99.96、99.98、100)。他の実施形態では、実績は、均等に離間されなくてもよい。各仮想の係員、例えば、i番目の係員について、2つの数量、つまり、上記のステップ1の全体APの分布から決定されるような、そのような係員である確率(例えば、PA
i)、および仮想の係員の均等に離間した実績から取得される、その仮想の係員の実績(例えば、F
i)が分かる。
【0133】
3.所与のスキルkの実際の実績データ(例えば、そのスキルkにおいて実際の係員が取得した、N回の通話でのSの売上)を伴う各実際の係員について、以下を行う。
a.各仮想の係員について、かつ各スキル内で、実際の係員データから、証拠の確率、例えば、観察された結果の尤度を計算する。すなわち、F
iという実績を与えられた仮想の係員iについては、そのような仮想の係員が、その所与のスキルにおける実際の係員が得たN回の通話でSの売上を得るであろう確率が、いくらであるかを計算する。これを、証拠の確率(その係員に対する観察された結果の尤度)POE
i,kと呼び、i番目の仮想の係員に対するk番目のスキルにおける証拠の確率である。本方法が行われ、本システムは、スキルの各々を通して、例えば、洗濯機の販売、乾燥機の販売、掃除機の販売等を通してループする。
【0134】
b.仮想の係員iに対する合計確率TP
iを計算する。TP
iは、その仮想の係員×各スキルにおける証拠の確率である(先行)確率であり、すなわち、s個のスキルがある場合、TP
i=PA
i×POE
i,1×POE
i,2×、・・・、×POE
i,sである。
c.上記のステップ2で設定されるような可能な実績の範囲に及ぶ、全ての仮想の係員に対して、3aおよび3bを繰り返す。これらのうちの1つは、TPの最高値を有し、その仮想の係員の実績は、ステップで生成されるアレイで調べることができる。
【0135】
実施形態では、これは、実際の係員の最確真全体実績である。
【0136】
この方法は、APを推定するために各係員についての利用可能なデータを組み合わせる方法を提供し、実際、APを推定するために各係員について利用可能な全てのデータを組み合わせる理論的に最適な方法であり得る。
【0137】
図11を参照すると、方法プロセスの実施形態が、実際の係員の最確全体実績を計算するように図示されている。実施形態では、本方法は、ブロック1100によって表される、1つ以上のコンピュータによって、一組のスキルの中のそれぞれのスキルkに対する以前の実際の係員実績データから、実際の係員実績の分布を決定または取得または受信する動作を含む。実施形態では、係員実績は、売上または売上なし、1回の通話あたりの収益、1回の通話あたりの収益生成単位(RGU)、および処理時間の群から選択される1つである。実施形態では、実際の係員実績は、2項式であり、実際の係員実績の分布は、少なくともその一方の端で切断される。
【0138】
ブロック1110は、1つ以上のコンピュータによって、それぞれのスキルkに対する最低実績から最高実績に及ぶ、それぞれの仮想の係員実績AP
iを伴う一組の仮想の係員を決定する動作を表す。実施形態では、一組の仮想の係員は、少なくとも10人の仮想の係員を含む。実施形態では、一組の仮想の係員は、少なくとも50人の仮想の係員を含む。実施形態では、一組の仮想の係員は、少なくとも100人の仮想の係員を含む。
【0139】
ブロック1120は、1つ以上のコンピュータによって、一組の仮想の係員の各々について、一組の仮想の係員のうちの各仮想の係員の合計確率を取得するために、実際の係員実績の分布とそれぞれの仮想の係員実績APiを伴う一組の仮想の係員とを使用して、一組のスキルのそれぞれにおけるそれぞれの実際の係員の実際の結果を考慮した事後分布を計算する動作を表す。実施形態では、事後分布を計算することは、1つ以上のコンピュータによって、一組の仮想の係員の中の各仮想の係員iについて、第1のスキルkおよびそれぞれの仮想の係員iの仮想の係員実績AP
iに対して、そのスキルkにおいてそれぞれの実際の係員が取得したN回の通話で、それぞれの仮想の係員iがSの売上を取得するであろうという証拠POE
ikの確率を計算することと、仮想の係員のAP
iを、仮想の係員iに対する各スキルkのPOE
ikによって乗算することを含む、1つ以上のコンピュータによって、仮想の係員iの合計確率TP
iを計算することとを含み得る。
【0140】
ブロック1130は、1つ以上のコンピュータによって、それぞれの仮想の係員のそれぞれの合計確率を取得するために、一組の仮想の係員の中の複数の仮想の係員に対して事後分布を計算するステップを繰り返す動作を表す。
【0141】
ブロック1140は、1つ以上のコンピュータによって、実際の係員の最確全体実績として、より良い合計確率TPの値を伴う仮想の係員のうちの1人を決定する動作を表す。実施形態では、最確全体実績を決定するステップは、実際の係員の最確全体実績として、最良の合計確率TPの値を伴う仮想の係員のうちの1人を選択するステップを含む。
【0142】
実施形態では、本方法は、任意の他の係員・架電者マッチングアルゴリズムと組み合わせて使用され得る。例えば、本方法はさらに、1つ以上のコンピュータによって、複数の係員・架電者ペアの各々に対する評価を取得するために、所望の結果に対してペア様式で、多要素パターンマッチングアルゴリズムにおいて、係員の人口統計データまたは心理学データと、架電者の人口統計データまたは心理学データとを使用するステップと、1つ以上のコンピュータによって、係員・架電者ペアのうちの1つを選択するために、パターンマッチングアルゴリズムの結果とそれぞれの係員のそれぞれの最確全体実績とを組み合わせるステップとを含み得る。
【0143】
図12を参照すると、方法プロセスの実施形態が、実際の架電者の最確全体実績を計算するように図示されている。実施形態では、本方法は、ブロック1200によって表される、1つ以上のコンピュータによって、一組の架電者パーティションの中のそれぞれの架電者パーティションに対する以前の実際の架電者傾向データから、実際の架電者傾向の分布を決定または取得または受信する動作を含む。実施形態では、架電者傾向は、いくつか例を挙げると、製品またはサービスAの購入あるいは購入なし、製品またはサービスBの購入あるいは購入なし、製品またはサービスCの購入あるいは購入なし、継続登録の確保、1回の購入あたりの収益、1回の通話あたりの収益生成単位(RGU)、処理時間、および顧客満足度の群から選択される1つである。
【0144】
ブロック1210は、1つ以上のコンピュータによって、最低傾向から最高傾向に及ぶ、それぞれの仮定架電者傾向CP
iを伴う一組の仮定架電者を決定する動作を表す。
【0145】
ブロック1220は、1つ以上のコンピュータによって、一組の仮定架電者の各々について、一組のそれぞれの仮定架電者のうちの各仮定架電者の合計確率を取得するために、実際の架電者傾向の分布とそれぞれの仮定架電者傾向CP
iを伴う一組の仮定架電者とを使用して、複数の架電者パーティションの中のそれぞれの実際の架電者の実際の結果を考慮した事後分布を計算する動作を表す。実施形態では、パーティションは、少なくとも部分的に、人口統計データ、市外局番、郵便番号、NPANXX、VTN、地理的地域、フリーダイヤル、および転送番号の群から選択される1つ以上に基づく。実施形態では、事後分布を計算するステップは、1つ以上のコンピュータによって、一組の仮定架電者の中の各仮定架電者iについて、第1のパーティションおよびそれぞれの仮定架電者iの仮定架電者傾向CP
iに対して、それぞれの仮定架電者iが、そのパーティションにおけるそれぞれの実際の架電者が有したSの売上を有するであろうという証拠POE
ikの確率を計算するステップと、仮定架電者のCP
iを、仮定架電者iに対する各パーティションkのPOE
ikによって乗算するステップを含む、1つ以上のコンピュータによって、仮定架電者iの合計確率TP
iを計算するステップとを含み得る。
【0146】
ブロック1230は、1つ以上のコンピュータによって、それぞれの仮定架電者のそれぞれの合計確率を取得するために、一組の仮定架電者の中の複数の架電者に対して事後分布を計算するステップを繰り返す動作を表す。
【0147】
ブロック1240は、1つ以上のコンピュータによって、実際の架電者の最確全体傾向として、より良い合計確率TPの値を伴う仮定架電者のうちの1人を決定する動作を表す。
【0148】
前述のように、実施形態では、本方法は、任意の他の係員・架電者マッチングアルゴリズムと組み合わせて使用され得る。例えば、実施形態はさらに、1つ以上のコンピュータによって、複数の係員・架電者ペアの各々に対する評価を取得するために、所望の結果に対してペア様式で、多要素パターンマッチングアルゴリズムにおいて、係員の人口統計データまたは心理学データと、架電者の人口統計データまたは心理学データとを使用するステップと、1つ以上のコンピュータによって、係員・架電者ペアのうちの1つを選択するために、パターンマッチングアルゴリズムの結果と、それぞれの架電者のそれぞれの最確全体実績とを組み合わせるステップとを含み得る。
【0149】
本明細書で説明される技法の多くは、ハードウェアまたはソフトウェア、あるいは2つの組み合わせで実装され得る。好ましくは、本技法は、プロセッサ、プロセッサによって読み取り可能な記憶媒体(揮発性および不揮発性メモリおよび/または記憶要素を含む)、および好適な入出力デバイスをそれぞれ含む、プログラム可能なコンピュータ上で実行されるコンピュータプログラムで実装される。プログラムコードは、説明される機能を果たすように、および出力情報を生成するように、入力デバイスを使用して入力されるデータに適用される。出力情報は、1つ以上の出力デバイスに適用される。また、各プログラムは、好ましくは、コンピュータシステムと通信するように、高レベルプロシージャまたはオブジェクト指向プログラミング言語で実装される。しかしながら、プログラムは、所望であれば、アセンブリまたは機械言語で実装することができる。いずれにしても、言語は、コンパイラ型またはインタープリタ型言語であり得る。
【0150】
それぞれのそのようなコンピュータプログラムは、好ましくは、記憶媒体またはデバイスが、説明されるプロシージャを行うようにコンピュータによって読み取られるときに、コンピュータを構成および操作するための汎用または特殊用途プログラム可能コンピュータによって読み取り可能な記憶媒体またはデバイス(例えば、CD−ROM、ハードディスク、または磁気ディスケット)上に記憶される。本システムはまた、コンピュータプログラムを用いて構成される、コンピュータ読み取り可能な記憶媒体として実装され得、そのように構成される記憶媒体は、特定の事前定義された様式でコンピュータを動作させる。
【0151】
図10は、本発明の実施形態で処理機能性を実装するために採用され得る、典型的なコンピュータシステム1000を図示する。この種類のコンピュータシステムは、例えば、クライアントおよびサーバで使用され得る。当業者であれば、他のコンピュータシステムまたはアーキテクチャを使用して、どのようにして本発明を実装するかも認識するであろう。コンピュータシステム1000は、例えば、所与の用途または環境に望ましく、または適切であり得るような、デスクトップ、ラップトップ、またはノートブックコンピュータ、ハンドヘルドコンピュータデバイス(PDA、携帯電話、パームトップ等)、メインフレーム、サーバ、クライアント、または任意の他の種類の特殊用途あるいは汎用コンピュータデバイスを表し得る。コンピュータシステム1000は、プロセッサ1004等の1つ以上のプロセッサを含むことができる。プロセッサ1004は、例えば、マイクロプロセッサ、マイクロコントローラ、または他の制御論理等の汎用または特殊用途処理エンジンを使用して、実装することができる。この実施例では、プロセッサ1004は、バス1002または他の通信媒体に接続される。
【0152】
コンピュータシステム1000はまた、情報およびプロセッサ1004によって実行される命令を記憶するために、ランダムアクセスメモリ(RAM)または他のダイナミックメモリ等のメインメモリ1008を含むこともできる。メインメモリ1008はまた、プロセッサ1004によって実行される命令の実行中に一時的変数または他の中間情報を記憶するために使用され得る。コンピュータシステム1000は、同様に、プロセッサ1004のための静的情報および命令を記憶するために、バス1002に連結される読み取り専用メモリ(「ROM」)または他の静的記憶デバイスを含み得る。
【0153】
コンピュータシステム1000はまた、例えば、媒体ドライブ1012および取り外し可能な記憶インターフェース1020を含み得る、情報記憶システム1010を含み得る。媒体ドライブ1012は、ハードディスクドライブ、フロッピー(登録商標)ディスクドライブ、磁気テープドライブ、光ディスクドライブ、CDまたはDVDドライブ(RまたはRW)、あるいは他の取り外し可能なまたは固定の媒体ドライブ等の固定または取り外し可能読み取り可能な媒体をサポートするドライブまたは他の機構を含み得る。読み取り可能な媒体1018は、例えば、媒体ドライブ1012によって読み書きされる、ハードディスク、フロッピー(登録商標)ディスク、磁気テープ、光ディスク、CDまたはDVD、あるいは他の固定または取り外し可能な媒体を含み得る。これらの実施例が例証するように、読み取り可能な媒体1018は、その中に特定のコンピュータソフトウェアまたはデータを記憶している、コンピュータ読み取り可能な記憶媒体を含み得る。
【0154】
代替実施形態では、情報記憶システム1010は、コンピュータプログラムまたは他の命令あるいはデータが、コンピュータシステム1000にロードされることを可能にするための他の同様の構成要素を含み得る。そのような構成要素は、例えば、プログラムカートリッジおよびカートリッジインターフェース、取り外し可能なメモリ(例えば、フラッシュメモリまたは他の取り外し可能なメモリモジュール)およびメモリスロット等の取り外し可能な記憶ユニット1022およびインターフェース1020、ならびにソフトウェアおよびデータが取り外し可能な記憶ユニット1018からコンピュータシステム1000へ転送されることを可能にする他の取り外し可能な記憶ユニット1022およびインターフェース1020を含み得る。
【0155】
コンピュータシステム1000はまた、通信インターフェース1024を含むこともできる。通信インターフェース1024は、ソフトウェアおよびデータがコンピュータシステム1000と外部デバイスとの間で転送されることを可能にするために使用することができる。通信インターフェース1024の実施例は、モデム、ネットワークインターフェース(Ethernet(登録商標)または他のNICカード等)、通信ポート(例えば、USBポート等)、PCMCIAスロットおよびカード等を含むことができる。通信インターフェース1024を介して転送されるソフトウェアおよびデータは、通信インターフェース1024によって受信されることが可能な電子、電磁、光学、または他の信号であり得る、信号の形態である。これらの信号は、チャネル1028を介して通信インターフェース1024に提供される。このチャネル1028は、信号を搬送し得、無線媒体、ワイヤまたはケーブル、光ファイバ、または他の通信媒体を使用して実装され得る。チャネルのいくつかの実施例は、電話線、携帯電話リンク、RFリンク、ネットワークインターフェース、ローカルエリアまたは広域ネットワーク、または他の通信チャネルを含む。
【0156】
本書では、「コンピュータプログラム製品」、「コンピュータ読み取り可能な媒体」等という用語は、概して、例えば、メモリ1008、記憶媒体1018、または記憶ユニット1022等の物理的な有形媒体を指すために使用され得る。コンピュータ読み取り可能な媒体のこれらおよび他の形態は、プロセッサに特定動作を行わせるように、プロセッサ1004によって使用するための1つ以上の命令を記憶することに関与し得る。概して、「コンピュータプログラムコード」(コンピュータプログラムまたは他のグループの形態でグループ化され得る)と称される、そのような命令は、実行されると、コンピュータシステム1000が本発明の実施形態の特徴または機能を果たすことを可能にする。コードは、直接、プロセッサに特定動作を行わせ、そうするようにコンパイルさせられ、および/またはそうするように他のソフトウェア、ハードウェア、および/またはファームウェア要素(例えば、標準機能を果たすためのライブラリ)と組み合わせられ得ることに留意されたい。
【0157】
要素がソフトウェアを使用して実装される実施形態では、ソフトウェアは、コンピュータ読み取り可能な媒体に記憶され、例えば、取り外し可能読み取り可能な媒体1018、ドライブ1012、または通信インターフェース1024を使用して、コンピュータシステム1000にロードされ得る。制御論理(この実施例では、ソフトウェア命令またはコンピュータプログラムコード)は、プロセッサ1004によって実行されたとき、プロセッサ1004に本明細書で説明されるような本発明の機能を果たさせる。
【0158】
明確にする目的で、上記の説明は、異なる機能的ユニットおよびプロセッサを参照して、本発明の実施形態を説明してきたことが理解されるであろう。しかしながら、本発明を損なうことなく、異なる機能的ユニット、プロセッサ、またはドメインの間の任意の好適な機能性の分布が使用され得ることが明白となるであろう。例えば、別個のプロセッサまたはコントローラによって果たされることが例証される機能性は、同一のプロセッサまたはコントローラによって果たされ得る。したがって、特定の機能的ユニットの参照は、厳重な論理または物理的構造または組織を示すよりもむしろ、説明された機能性を提供するための好適な手段の参照として見なされるにすぎない。
【0159】
本発明の上記の実施形態は、限定的ではなく例証的であるように意図されているにすぎない。そのより広い側面で本発明から逸脱することなく、種々の変更および修正が行われ得る。添付の請求項は、本発明の精神および範囲内で、そのような変更および修正を包含する。