特許第6110059号(P6110059)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ザ フォックス グループ,インコーポレイティドの特許一覧

特許6110059低欠陥密度炭化ケイ素を成長させる方法及び装置、並びに得られる物質
<>
  • 特許6110059-低欠陥密度炭化ケイ素を成長させる方法及び装置、並びに得られる物質 図000002
  • 特許6110059-低欠陥密度炭化ケイ素を成長させる方法及び装置、並びに得られる物質 図000003
  • 特許6110059-低欠陥密度炭化ケイ素を成長させる方法及び装置、並びに得られる物質 図000004
  • 特許6110059-低欠陥密度炭化ケイ素を成長させる方法及び装置、並びに得られる物質 図000005
  • 特許6110059-低欠陥密度炭化ケイ素を成長させる方法及び装置、並びに得られる物質 図000006
  • 特許6110059-低欠陥密度炭化ケイ素を成長させる方法及び装置、並びに得られる物質 図000007
  • 特許6110059-低欠陥密度炭化ケイ素を成長させる方法及び装置、並びに得られる物質 図000008
  • 特許6110059-低欠陥密度炭化ケイ素を成長させる方法及び装置、並びに得られる物質 図000009
  • 特許6110059-低欠陥密度炭化ケイ素を成長させる方法及び装置、並びに得られる物質 図000010
  • 特許6110059-低欠陥密度炭化ケイ素を成長させる方法及び装置、並びに得られる物質 図000011
  • 特許6110059-低欠陥密度炭化ケイ素を成長させる方法及び装置、並びに得られる物質 図000012
  • 特許6110059-低欠陥密度炭化ケイ素を成長させる方法及び装置、並びに得られる物質 図000013
  • 特許6110059-低欠陥密度炭化ケイ素を成長させる方法及び装置、並びに得られる物質 図000014
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6110059
(24)【登録日】2017年3月17日
(45)【発行日】2017年4月5日
(54)【発明の名称】低欠陥密度炭化ケイ素を成長させる方法及び装置、並びに得られる物質
(51)【国際特許分類】
   C30B 29/36 20060101AFI20170327BHJP
   C30B 23/06 20060101ALI20170327BHJP
【FI】
   C30B29/36 A
   C30B23/06
【請求項の数】9
【外国語出願】
【全頁数】13
(21)【出願番号】特願2011-221299(P2011-221299)
(22)【出願日】2001年2月14日
(65)【公開番号】特開2012-36088(P2012-36088A)
(43)【公開日】2012年2月23日
【審査請求日】2011年11月1日
【審判番号】不服2015-13124(P2015-13124/J1)
【審判請求日】2015年7月9日
(31)【優先権主張番号】60/182,553
(32)【優先日】2000年2月15日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】502296969
【氏名又は名称】ザ フォックス グループ,インコーポレイティド
(74)【代理人】
【識別番号】100099759
【弁理士】
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100077517
【弁理士】
【氏名又は名称】石田 敬
(74)【代理人】
【識別番号】100087413
【弁理士】
【氏名又は名称】古賀 哲次
(74)【代理人】
【識別番号】100128495
【弁理士】
【氏名又は名称】出野 知
(74)【代理人】
【識別番号】100173107
【弁理士】
【氏名又は名称】胡田 尚則
(74)【代理人】
【識別番号】100135895
【弁理士】
【氏名又は名称】三間 俊介
(72)【発明者】
【氏名】ホダコフ,ユーリ アレキサンドロビッチ
(72)【発明者】
【氏名】ラム,マーク ジー.
(72)【発明者】
【氏名】モクホフ,エフゲニ ニコラエビチ
(72)【発明者】
【氏名】ロエンコフ,アレクサンドル ドミトリエビチ
(72)【発明者】
【氏名】マカロフ,ユ
(72)【発明者】
【氏名】ユレビチ,カルポフ セルゲイ
(72)【発明者】
【氏名】ラム,マルク スピリドノビチ
(72)【発明者】
【氏名】ヘラバ,ヘイッキ
【合議体】
【審判長】 新居田 知生
【審判官】 板谷 一弘
【審判官】 瀧口 博史
(56)【参考文献】
【文献】 特開平10−291899(JP,A)
【文献】 特開平09−048605(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
IPC C30B 1/00-35/00
(57)【特許請求の範囲】
【請求項1】
第1の欠陥密度の単結晶炭化ケイ素種結晶、ここで前記欠陥はマイクロパイプ及び転位で構成されている;
前記単結晶炭化ケイ素種結晶の<0001>成長面から成長した第2の欠陥密度の、再結晶化炭化ケイ素の軸方向領域、ここで前記欠陥はマイクロパイプ及び転位で構成されている;並びに
前記単結晶炭化ケイ素種結晶の<0001>成長面から成長した第3の欠陥密度の、再結晶化炭化ケイ素の横方向領域、ここで前記欠陥はマイクロパイプ及び転位で構成されている;
を含む、炭化ケイ素材料であって、前記第3の欠陥密度が、前記第1の欠陥密度未満且つ前記第2の欠陥密度未満であり、また前記第3の欠陥密度が10/cm未満である、炭化ケイ素材料。
【請求項2】
前記第3の欠陥密度が10/cm未満である、請求項に記載の炭化ケイ素材料。
【請求項3】
前記第3の欠陥密度が10/cm未満である、請求項に記載の炭化ケイ素材料。
【請求項4】
前記第3の欠陥密度が10/cm未満である、請求項に記載の炭化ケイ素材料。
【請求項5】
前記再結晶化炭化ケイ素の軸方向領域が第1の厚さを有し、前記再結晶化炭化ケイ素の横方向領域が、前記第1の厚さと実質的に等しい第2の厚さを有し、且つ前記第1の厚さが、少なくとも1mmである、請求項に記載の炭化ケイ素材料。
【請求項6】
第1の領域及び第2の領域を有する単結晶炭化ケイ素結晶を含む単結晶炭化ケイ素種結晶の<0001>成長面から成長した炭化ケイ素材料であって、前記第1の領域が、前記単結晶炭化ケイ素結晶の中央部に位置しており、且つ第1の欠陥密度を有し、また前記第2の領域が、軸方向に配置された前記第1の領域を取り囲んでおり、且つ第2の欠陥密度を有し、前記欠陥はマイクロパイプ及び転位で構成されており、ここで前記第2の欠陥密度は、前記第1の欠陥密度よりも小さく、また前記第2の欠陥密度は、10/cm未満である、炭化ケイ素材料。
【請求項7】
前記第2の欠陥密度が10/cm未満である、請求項に記載の炭化ケイ素材料。
【請求項8】
前記第2の欠陥密度が10/cm未満である、請求項に記載の炭化ケイ素材料。
【請求項9】
前記単結晶炭化ケイ素結晶の厚さが少なくとも1mmである、請求項に記載の炭化ケイ素材料。
【発明の詳細な説明】
【技術分野】
【0001】
[発明の分野]
本発明は一般に炭化ケイ素、特に低欠陥密度炭化ケイ素を成長させる方法及び設備に関する。
【背景技術】
【0002】
[発明の背景]
炭化ケイ素(SiC)は、様々な半導体の用途、特に高出力取り扱い許容性を必要とする用途のための理想的な候補となる多くの特性を有する。議論のあるところだが、SiCの最も重要な特性は、その間接バンドギャップである。これは、直接バンドギャップ材料で得ることができる電圧ジャンクションよりも大きい電圧ジャンクションを提供する能力と比較的大きい再結合寿命をもたらす。この材料の大きいバンドギャップでは500℃までで漏電が無視でき、それによって過剰な漏電及び熱喪失なしに、高温操作を行うことができる。SiCデバイスの切り替え周波数は、ケイ素又はガリウムヒ素から作ったデバイスのそれよりもかなり大きい。これは、SiCの大きい破壊強さ、及び少数キャリア段階でのもたらされる減少、及び関連する切り替え損失による。最後に、SiCの高い結合温度及び大きい熱伝導性によって、SiCによって作られたデバイスは、冷却の必要性が少ない。
【0003】
SiCに基づく半導体デバイスは、ケイ素から作ったデバイスと比較してかなり改良されているが、これらの改良を実現するためには、材料は従来得られていたよりも欠陥がかなり少ないようにして作らなければならない。「SiC Power Devices, Naval Research Reviews」、Vol.51、No.1(1999年)において著者が示しているように、SiCによって作られたデバイスを大型化するためには、転位の密度及びマイクロパイプの密度を減少させなければならない。従来のSiC材料は、転位密度が、10〜10/cm、マイクロパイプ密度が10〜10/cmである。いくらかのかなり高品質なSiC材料は、10/cm程度の転位密度で成長させている。残念ながら、この転位密度でさえも、多くの半導体の用途では、少なくとも1桁程度大きすぎる。前記文献第21頁参照。
【0004】
米国特許第5,679,153号明細書は、液相エピタキシャルを使用するSiCエピタキシャル層の成長技術を開示している。ここではマイクロパイプの密度は実質的に減少しており又はなくなっている。開示されている技術の1つの面では、SiCのエピタキシャル層はバルク単結晶SiC上で作られており、エピタキシャル層は、バルク結晶から伝播するマイクロパイプ欠陥を閉じるのに十分な厚さを有する。デバイス製造のために電気的に活性な領域を作るために、化学気相堆積によって、第2のエピタキシャル層を第1のエピタキシャル層上に作っている。この技術に基づいて、マイクロパイプ密度が0〜50マイクロパイプ/表面cmのSiC層を特許請求している。
【発明の概要】
【発明が解決しようとする課題】
【0005】
マイクロパイプ密度が小さいSiC材料を得る技術が開示されているが、これらの技術はバルク材料を成長させない、すなわち少なくともミリメートル単位の厚さ又はそれよりも厚い材料、好ましくはセンチメートル単位の厚さの材料を成長させない。更にこれらの技術は、材料の転位密度に影響を与えない。従って欠陥密度が、10/cm程度、好ましくは10/cm程度、より好ましくは10/cm程度又はそれよりも少ないバルクSiC材料を成長させる技術がこの技術分野で求められている。本発明は、そのような技術及び得られる材料を提供する。
【課題を解決するための手段】
【0006】
[発明の概略]
本発明では、低転位密度炭化ケイ素(SiC)、並びにこれを成長させる方法及び装置を提供する。昇華技術を使用するSiC結晶の成長は、2つの成長段階に分けられる。成長の第1の段階では、結晶は通常の方向に成長し、同時に横方向に拡がる。好ましくはこの段階において、軸方向の成長速度に対する横方向の成長速度の比は、0.35〜1.75である。転位及び他の材料欠陥は、軸方向に成長した材料内に伝播することができるが、横方向に成長した材料内での欠陥の伝播及び発生は、完全にはなくならないものの実質的に減少している。結晶が所望の直径に拡がった後で、成長の第2の段階を開始する。ここでは横方向の成長を抑制し、通常の成長を促進する。好ましくはこの段階において、軸方向の成長速度に対する横方向の成長速度の比は、0.01〜0.3、より好ましくは0.1〜0.3である。実質的に減少した欠陥密度は、第1の段階で横方向に成長した材料に基づいて軸方向に成長した材料内において維持される。
【0007】
本発明の1つの面では、SiC材料は、転位及びマイクロパイプの両方を含む欠陥の密度が小さい。成長したSiCの欠陥密度は、10/cm未満、好ましくは10/cm未満、より好ましくは10/cm未満、更により好ましくは10/cm未満である。少なくとも1つの態様では、成長したSiCは軸方向に成長した領域と横方向に成長した領域とを有し、横方向に成長した領域が所望の低欠陥密度を有する。本発明の他の態様では、SiCは、第1の欠陥密度の中央領域と、この中央領域を囲んでいる第2の欠陥密度を有する周縁部領域とを有する。第2の欠陥密度は、第1の欠陥密度よりも実質的に小さく、10/cm未満、好ましくは10/cm未満、より好ましくは10/cm未満である。本発明の他の態様では、SiC材料は、SiC種結晶、SiC種結晶の成長表面で始まり軸方向成長成長経路に続く第1の結晶成長領域、及びSiC種結晶の成長表面で始まり横方向拡張成長経路に続く所望の欠陥密度の第2の結晶成長領域を有する。横方向成長経路は、通常の、すなわち軸方向の成長経路に対して、少なくとも25°、好ましくは少なくとも45°の角度である。
【0008】
本発明の他の面では、転位密度が小さいSiC材料を成長させる方法を提供する。少なくとも1つの態様では、SiC種結晶を昇華系に導入し、少なくとも1つの成長段階の間に、軸方向及び横方向の両方の結晶成長を促進する。種結晶から横方向に成長する結晶へのマイクロパイプを含む転位欠陥の伝播は、この領域における転位欠陥の発生と同様に、実質的に減少している。本発明の少なくとも1つの他の態様では、SiC種結晶を昇華系に導入し、昇華をもたらすのに十分な温度まで加熱する。昇華系における温度勾配及び結晶化成長面と隣接表面との温度差は、結晶化面が軸方向及び横方向の両方に拡がる第1の段階の自由空間結晶拡張、及びそれに続く、結晶化面が軸方向に拡がり横方向の拡張が抑制される第2の段階の自由空間結晶拡張を促進する。
【0009】
本発明の他の態様では、低転位密度のSiC材料を成長させるために使用する設備を提供する。本発明の少なくとも1つの態様では、この設備は、好ましくは円錐状表面の使用によって、横方向の結晶拡張を促進する環状の要素を有する。環状の要素は、SiC種結晶の端部から結晶の成長が起こらないようにするために使用することもできる。環状の要素は、横方向の結晶の絞りを促進する好ましくは円錐状の第2の表面も有することができる。好ましくは環状要素の内側表面は、Ta又はNbのいずれかでできている。本発明の少なくとも1つの態様では、この設備は、SiC種結晶の非成長表面に結合したグラファイトヒートシンク、好ましくはTa又はNbのいずれかでできている内側表面を有する成長容器、及びるつぼに温度勾配を提供する手段を有する。
【0010】
本発明の利点及び性質は、明細書の他の部分及び図面を参照することによって更に理解することができる。
【図面の簡単な説明】
【0011】
図1図1は、本発明で成長させた欠陥のない成長領域の概略を示している。
図2図2は、結晶成長の間における中心領域の減少の概略を示している。
図3図3は、低欠陥密度SiCを達成するために使用する基本的な方法を示している。
図4図4は、昇華系の好ましい設計を示している。
図5図5は、本発明の好ましい設計における重要な成長領域の詳細な断面を示している。
図6図6は、円錐角度45°の環状要素及び約4時間の成長時間での、成長セル及び成長結晶内の計算温度分布を示している。
図7図7は、円錐角度70°の環状要素及び約4時間の成長時間での、成長セル及び成長結晶内の計算温度分布を示している。
図8図8は、円錐角度45°の環状要素及び約22時間の成長時間での、成長セル及び成長結晶内の計算温度分布を示している。
図9図9は、円錐角度70°の環状要素及び約22時間の成長時間での、成長セル及び成長結晶内の計算温度分布を示している。
図10図10は、環状要素セル壁及び結晶界面にわたる一次元的な温度分布を示している。
図11図11は、図10のデータ点に対応する環状要素壁の複数の箇所及び結晶界面の複数の箇所を示している。
図12図12は、図6で示されている温度分布に関して計算した熱弾性応力テンソルの一次的な成分の分布を示している。
図13図13は、図8で示されている温度分布に関して計算した熱弾性応力テンソルの一次的な成分の分布を示している。
【発明を実施するための形態】
【0012】
[特定の態様の説明]
(0001)炭化ケイ素(SiC)種結晶における転位は主に、〈0001〉結晶方向におけるねじれ及びらせん転位である。マイクロパイプ欠陥は、バーガースベクトルが大きく、らせんの中心が空の基本的にらせん状の転位である。本発明の発明者等は、適当な条件において軸方向ではなく半径方向(すなわち横方向)に結晶を成長させることによって、〈0001〉転位の増殖が抑制されることを見出した。これによって、適当な条件下では、昇華技術を使用して、欠陥のないSiC結晶を成長させることができる。
【0013】
本発明の好ましい態様では、図1に示しているように、結晶成長を2つの段階に分ける。第1の成長段階においては、結晶は通常の方向(すなわち垂直方向)に成長しており、同時に横方向に拡がっている。好ましくはこの段階において、軸方向の成長速度に対する横方向の成長速度の比は、0.35〜1.75である。結晶が所望の直径に拡がった後で、横方向の成長を抑制し、通常の成長を促進する(すなわち第2の成長段階)。好ましくはこの段階において、軸方向の成長速度に対する横方向の成長速度の比は、0.01〜0.3、より好ましくは0.1〜0.3である。好ましい態様ではこの比は小さすぎずに、それによってわずかに凸型の成長表面を達成し、この表面の特異点化を防ぐ。横方向の結晶成長はるつぼの大きさによって制限され、またこれは、主に必要とされる温度勾配を達成する能力によって制限される。
【0014】
本発明では、転位及び他の欠陥は中央領域101において伝播するが、欠陥の伝播および発生は、横方向成長領域103において、完全にはなくならないものの、実質的に減少する。更に実質的に減少した欠陥密度は、横方向成長材料に基づく軸方向成長材料内、すなわち領域105においても維持される。好ましくは成長条件を選択して、図2に示されているように、成長の間に中央領域101の大きさを小さくする。
【0015】
欠陥のない横方向結晶成長を達成するために、本発明の発明者等は、好ましくは多数の条件を適合させることを見出した。以下で更に詳細に説明するこれらの条件としては以下のものを挙げることができる:
(i)高品質の種結晶−好ましくは種結晶の成長表面は欠陥がなく、それによって成長結晶の中央領域における欠陥の伝播を最少化する。
(ii)種結晶の後面を保護して、結晶を通って成長結晶の質に影響を与えることがある転位及び他の微視的な欠陥(例えば面欠陥)の発生を防ぐ。
(iii)適当な成長角度の選択−一般に図1の角度107は、25°超、好ましくは45°超であるべきである。この角度は主に、第1に供給源と種結晶との間の垂直温度勾配、第2にるつぼの中心とるつぼの壁との間の軸方向温度勾配の2つの要素によって決定される。
(iv)適当な種結晶直径の選択−一般的に種結晶の直径は、成長させる結晶の直径の30%未満であるべきである。
(v)多結晶成長の抑制−横方向に成長する材料とるつぼの壁との接触をなくし、結晶の自由空間拡張を保証することが必要である。これは、横方向成長結晶とるつぼの側壁との間の温度差を維持することによって達成される。
【0016】
図3は、欠陥のないSiCを達成するために使用される基本的な方法を示しており、対応する図4は、炉及びるつぼの好ましい設計を示している。初めにSiC種結晶401を選択及び調製する(工程301)。種結晶401は、任意の既知の技術を使用して成長させることができる(例えばレーリー(Lely)法)。好ましい態様では、典型的に欠陥が10/cm程度又はそれ未満の、最小欠陥の種結晶を使用する。また好ましくは、種結晶はマイクロパイプ欠陥を有するにしても最少のマイクロパイプ欠陥を有する。成長させる結晶の直径に対する種結晶401の直径の比は好ましくは0.3未満である。
【0017】
本発明の好ましい態様では、表面の機械的欠陥は、従来の表面調製技術、例えば研削、研磨及び化学エッチングを使用して種結晶の表面から除去する。この態様では、約50μmを除去するが、所望の表面を達成するために、50μmの層を超える追加の材料の除去が必要なこともある。好ましくは表面仕上げのRMS粗さは、50Å又はそれ未満である。
【0018】
結晶成長の間には、グラファイト化を防ぐことが重要である(工程303)。従って好ましくは、蒸発の間に種結晶401の後面を保護する。種結晶401の非成長表面を保護する好ましい方法は、結晶の成長表面を、タンタルディスクの平らな研磨された面に配置することである。その後、数分間にわたって減圧雰囲気において1,700〜1,750℃でウェハーをアニール処理し、密なグラファイト層403を、タンタルディスクに接触していない種結晶表面に作る。黒色表面グラファイト層403を作った後で、これをホルダー405に取り付ける。好ましくはホルダー405は、グラファイト又は熱分解グラファイトでできており、グラファイトに基づく接着剤を使用して、種結晶401をホルダー405に取り付ける。ここでこの接着剤は、これら2つの表面の間の接合部の空隙をなくす。グラファイト化を防ぐのに役立つだけでなく、上述の結晶取り付け方法は、種結晶の背面とるつぼのふた(例えば種結晶ホルダー)の間の空隙によってもたらされる取り付け領域における局所的な温度の不均一化も防ぐ。
【0019】
他の態様では、密なグラファイト層403を種結晶の全表面に堆積させ、その後で例えば表面(epi)研磨技術を使用して成長表面から除去する。
【0020】
種結晶の非成長表面を蒸発から保護するために、本発明の好ましい態様では、種結晶401を、環状要素407を含む多要素系内内にシールする(工程305)。環状要素407はシール系に必須なだけではなく、結晶の所望の横方向成長を行わせるのにも役立つ。この要素407の外側表面は筒状であり、内側表面は一般に円錐状で、Ta又はNbによってコーティングされている。好ましくは要素407の内側表面は、図4に示すように、一対の円錐状表面を構成している。
【0021】
種結晶401は、気体不透過性のグラファイト箔409を使用して、環状要素407に押しつけられシールされている。示されているように、環状要素407の一部の内径は、種結晶401に隣接しており、間に配置された気体不透過性の箔409は、結晶401の外径よりも小さい。従って結晶401の端部は露出されておらず、典型的に結晶端部から始まる結晶欠陥の成長が制御される。ここで結晶端部とは、結晶表側表面と結晶の側面との接合部として定義される。結晶端部の露出を防ぐことに加えて、環状要素407は、所望の横方向温度勾配を達成する手段を提供し、従って上述のように、結晶の横方向成長を制御する手段を提供する。
【0022】
本発明の好ましい態様では、環状要素407の内側表面は、一対の円錐状表面を構成しており、この一対の円錐状表面は、結晶成長表面のわずかなネックダウン(局部絞り)を提供する。このように、横方向の拡張の前に、結晶成長表面は初めの期間の絞りを受ける。他の態様では、環状要素407は、横方向に拡張する結晶表面の範囲を定める単一の円錐状内側表面を構成している。他の態様では、環状要素407は、横方向に拡張する結晶表面の範囲を定める単一の円錐状内側表面、及び横方向の拡張の前に結晶成長界面が初めに絞りを受けることを確実にする種結晶にすぐに隣接する非円錐状内側表面を構成している。好ましい態様でのように、他の態様では、要素407の箔409に接触する(且つ結晶401に隣接する)部分の内径は、種結晶401の外径よりも小さく、それによって端部欠陥の成長を制御している。
【0023】
第2の気体不透過性グラファイト箔411を使用して、種結晶401の後面とホルダー405をグラファイトヒートシンク413にシールする。箔411は、結晶401/ホルダー405とヒートシンク413との間の良好な熱的接触を達成するのに役立ち、熱的接触は好ましくはヒートシンク界面全体にわたって連続である。示されているように、グラファイトヒートシンク413の外径は、環状要素407の外径に実質的に等しい。ヒートシンク413、ホルダー405、種結晶401、環状要素407、並びにシール409及び411でできている積層体を、薄壁グラファイト筒状体415内に押しつけて取り付け(工程307)、それによってSi、SiC及び/又はSiCのような反応性のガスが種結晶401の非成長表面に達することを防ぐ。
【0024】
供給源417は、成長容器419内に配置する(工程309)。その後、種結晶401、多要素シール系及びグラファイト筒状体415を、成長容器内に配置する(工程311)。成長容器419は、Ta、Nb又はグラファイトによって作る。成長容器419のためにグラファイトを使用する場合、容器の内壁をTa又はNbでコーティングする。好ましくは種結晶成長表面と供給物質417との間の距離は、供給源417の直径の30%未満であり、準平衡蒸気相条件を維持できるようにする。
【0025】
供給源417は、結晶成長の間の供給物粒子の形成を抑制する様式で作る。本発明の好ましい態様では、エレクトロニクス等級のSiC粉末又はSiとCの粉末の混合物を約2,100〜2,500℃で約1時間にわたってアニール処理することによってこの目的は達成される。アニール処理によって、密な堆積物が形成され、これは結晶成長の間の粒子の形成をなくす。本発明で使用してドープされたSiC結晶を得るためには、所望のドーパント及び/又は不純物(例えば窒素、ホウ素、アルミニウム、インジウム、バナジウム、モリブデン、スカンジウム、クロム、鉄、マンガン、スズ及びジルコニウム)を供給源417に含有させる。
【0026】
成長容器419をツーピースグラファイトるつぼ421内に配置する(工程313)。ここでこのツーピースグラファイトるつぼ421の形状(例えばテーパーの部分)は、以下で詳細に説明する温度勾配を提供するように設計する。グラファイト化を防ぐために、本発明では、成長容器内の蒸気の化学量論量、すなわち炭素に対するケイ素の比は、結晶成長の間に比較的一定に維持しなければならない。この目的を達成するための1つの方法は、材料の損失を最少化することである。従って本発明の好ましい態様では、成長プロセスの間の材料の損失速度は、1時間当たり初期供給源重量の0.5%未満に維持する。特にこの損失速度は、第1に、グラファイトるつぼ421を、好ましくは示されているように高周波誘導炉である高温炉423内に配置することによって達成する(工程315)。グラファイト発泡体425を使用して、炉からの熱損失を抑制する。その後、成長容器と共に炉を、10−5torr又はそれ未満の圧力まで減圧し(工程317)、そして約1,500℃の温度まで加熱する(工程319)。好ましくは異なる熱膨張率の異なるタイプのグラファイトを使用して、容器419をその後シールし、それによってグラファイト化を防ぐ(工程321)。
【0027】
容器をシールした後で、炉に純粋なアルゴン又は微量の窒素を伴うアルゴンを満たす(工程323)。成長結晶の所望の抵抗率を得るために、ガス充填炉の分圧を10−1〜10−4torrに維持する。るつぼ421及び容器419を、6〜20℃/分の速度で、1,900〜2,400℃の温度に加熱する(工程325)。
【0028】
結晶成長の間に、るつぼ421を、約1〜5回転/分の速度で軸方向に回転させる(工程327)。結晶が成長したら、るつぼ421と炉423の相対的な位置を変更することによって、要求される温度勾配を少なくとも部分的に達成する(工程329)。典型的にこの動きの速度は、結晶成長の速度にほぼ等しく、すなわち0.1〜1.5mm/時間である。
【0029】
(好ましい結晶成長法)
上述の方法及び設備に加えて、本発明の発明者等は、ある種の成長法が好ましいことを見出した。上述のように、成長の間の結晶の自由空間拡張は、欠陥のないSiCを達成するために重要である。従って、環状要素407、種結晶ホルダー405、グラファイト筒状体415、及び成長容器419を含む表面のような、種結晶401を囲む全ての表面での多結晶堆積物の形成を防ぐことが重要である。問題となる表面の温度が種の温度よりも高いことを確実にすることは、多結晶堆積を防ぐための好ましい技術である。しかしながら同時に、種と隣接する表面との温度差は大きすぎないことが重要である。この温度差が大きすぎると、横方向の結晶成長が起こらないことがある。従って本発明の発明者等は、結晶化面と結晶化面の前側の隣接する表面との間の温度差は1〜5℃であるべきだということを見出した。
【0030】
本発明の発明者等は、結晶が横方向に拡張する間に、種401と供給源417との間で、5〜25℃、好ましくは5〜10℃の温度降下を維持すべきであるということを見出した。この温度差は、通常の(すなわち横方向ではない)結晶成長の抑制に役立つ。好ましくは温度勾配は横方向の位置に依存しており、それによって種の中心において温度差が最小であり、中心からの横方向の距離と共に温度差が大きくなる。結果として、凸型の結晶成長面が形成され、これはマイクロパイプ伝播をなくすのに役立つ。
【0031】
上述のように、好ましくは通常の結晶成長と横方向の結晶成長との角度(例えば図1の角度107)は25°超である。この角度が25°未満である場合、種結晶401の欠陥及び初期結晶成長の間に発生することがある全ての欠陥は、新たに成長した結晶を通って伝播し続ける。この角度が45°超である場合、本発明の好ましい態様でのように、典型的に全ての欠陥が、側面に向かって移動し、側面に達すると、それ以上は成長プロセスに関与しない。全ての欠陥が成長プロセスに関与しなくなるわけではない場合には、横方向に成長した材料における欠陥密度は典型的に10/cm程度又はそれ未満、より典型的には10/cm程度又はそれ未満である。この角度が25〜45°の中間の場合には、横方向に成長している結晶体への欠陥の拡張が典型的に観察される。しかしながら種結晶401が高品質である場合、この範囲内の角度は、十分に低欠陥密度の結晶をもたらすことができる。
【0032】
初めに、横方向結晶成長が優勢であり(工程331)、横方向に成長した結晶は、マイクロパイプがなく、且つ欠陥(例えば転位、マイクロパイプ)の密度が、10/cm未満、好ましくは10/cm未満、より好ましくは10/cm未満、更により好ましくは10/cm未満であり、更により好ましくは1cm当たりの欠陥がゼロである。観察されるように、この材料はグラファイト含有物がない。横方向結晶成長が主である結晶成長は、所望の結晶直径に達成するまで継続する。ここでこの結晶直径は一般に成長容器によって決定され、図5で示されている態様では環状要素407によって決定される。結晶が所望の直径に達したら(工程333)、垂直温度勾配を変更して、通常の、すなわち垂直方向の結晶成長を促進する(工程335)。温度勾配の所望の変更を達成するために、炉423とるつぼ421の相対的な位置を変更する。本発明の好ましい態様では、炉423は誘導炉であり、炉のコイルをるつぼ421に対して移動させる。あるいは又は炉とるつぼの相対的な位置を変更するのに加えて、炉の部分の温度を変更することができる。好ましくは軸方向温度勾配、すなわち供給源と成長表面との温度勾配は、10〜50℃/cmであり、0.4〜1.5mm/時間の所望の通常成長の速度をもたらす。
【0033】
結晶成長の最終段階においては、有意の横方向結晶拡張を防ぐことが重要である。また上述のように、るつぼの側壁(例えば成長容器419、グラファイト筒状体415及び環状要素407の側壁)にSiC堆積物ができるのを防ぐことも重要である。従って種結晶の温度と比較して比較的高い側壁温度を維持し、好ましくは温度差が少なくとも10℃、より好ましくは10〜30℃、更により好ましくは10〜15℃になるようにする。比較的高温の側壁は、成長結晶の側面を放射加熱し、それによって結晶の通常成長表面よりも高温の結晶側壁を達成する。結果として、全ての蒸気種が、結晶の通常成長表面で消費され、るつぼの側壁での成長が抑制される。更に、この温度差は、成長している結晶がるつぼの側壁と接触しないことを確実にする。このような接触は欠陥の主な原因である。
【0034】
本発明の発明者等は、成長している結晶中の温度勾配を比較的小さく維持しなければならない、好ましくは5℃/cm程度又はそれ未満にしなければならないことを見出した。この温度勾配が大きすぎると、成長している結晶中でひずみがもたらされ、結果として転位又は他の欠陥が形成される。
【0035】
(詳細な成長領域)
図5は、本発明の好ましい態様における重要な成長領域の断面図である。この態様では、SiC種結晶501が環状要素503の一部に保持されている。グラファイト箔環状体505が、環状要素503と結晶501の成長表面との間に配置されており、この箔環状体505は、種結晶を環状要素にシールしている。結晶501の側面及び後面は、グラファイト箔507で覆われている。グラファイトディスク509は、グラファイト箔507を介して種結晶501と組み合わされている。ディスク509及び中間のグラファイト箔507の主要な目的は、結晶501からの熱の除去を補助することである。更にディスク509は、結晶501のための支持表面及びグラファイト環状体511で結晶に圧力を適用するのに便利な手段を提供し、それによって結晶と要素503との間のシールを達成している。グラファイト箔505及び507は、典型的に0.25〜0.80mmの厚さである。
【0036】
環状要素503は好ましくは、グラファイト筒状体513内に押しつける。典型的に0.25〜0.80mmの厚さのグラファイト箔515を、好ましくは環状要素503の外壁と筒状体513の内壁との間に配置し、良好な圧力及び熱シールを達成するのに役立てる。グラファイト発泡体517を使用して、炉からの熱の損失を抑制する。
【0037】
本発明のこの態様では、環状要素503は、内側表面519がTa又はNbによってコーティングされたグラファイトで作る。要素503の最大内径である直径Dは30mmであるが、この直径を大きくし、それによって比較的大きい成長結晶を得ることに大きな制限はない。要素503の最小内径である直径dは、D/dの比が3よりも大きくなるように選択する。角度521は、上述のように25°よりも大きく、好ましくは90°未満であるように選択する。
【0038】
(熱解析)
図6〜10は、本発明の特定の態様に関して、成長セル及び成長結晶中における計算温度分布を示している。図6〜9では、種結晶は基体601として示されており、結晶成長界面は表面603として示されており、また環状要素は要素605として示されている。この解析に関して、環状要素605は、図4及び5の環状要素で示されるような一対の円錐状表面ではなく、単一の円錐表面からなっている。
【0039】
図6及び7は、約4時間の成長後の温度分布を示しており、図8及び9は、約22時間の成長後の温度分布を示している。図6及び8の環状要素の円錐角度は45°であり。図7及び9の環状要素の円錐角度は70°である。
【0040】
図10は、環状要素セル壁(線1001)及び結晶界面(線1003)での1次元温度分布を示している。線1001及び1003で示されているデータ点に対応する環状要素壁の箇所及び結晶界面の箇所はそれぞれ図11で示されている。
【0041】
(熱弾性応力分布)
上述のように、成長結晶内における温度勾配は比較的小さく、好ましくは5℃/cm又はそれ未満に維持しなければならない。図12及び13は、図6及び8で示されている温度分布に関して計算した、熱弾性応力テンソルσrz(パスカル)の一次成分の分布を示している。示されている熱弾性応力成分は、転位の勾配すべりに対応するものである。
【0042】
計算結果は、σrz値が結晶の主要部におけるSiC塑性しきい値を超えないことを示している。従って成長結晶内で発生する転位の可能性は無視できる。
【0043】
当業者が理解するように、本発明は、本発明の精神又は本質的な特徴内の他の態様によって実施することができる。従って本明細書において示された開示及び例は説明のためのものであり、特許請求の範囲において示される本発明の範囲を限定するものではない。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13