(58)【調査した分野】(Int.Cl.,DB名)
前記第1方向から見た場合に、前記第2方向において互いに隣接する前記凹部と前記周辺部との境界線は、前記第3方向に沿って前記底壁部を横切っている、請求項1〜4のいずれか一項記載の分光器。
前記第1方向から見た場合に、前記側壁部は、前記第2方向において前記凹部及び前記周辺部を挟んで互いに対向する一対の第1側壁と、前記第3方向において前記凹部及び前記周辺部を挟んで互いに対向する一対の第2側壁と、を有する、請求項1〜8のいずれか一項記載の分光器。
互いに対向する一対の前記第1側壁の内側表面は、前記凹部及び前記周辺部から離れ且つ前記光検出素子に近付くほど互いに離れるように傾斜している、請求項9記載の分光器。
互いに対向する一対の前記第2側壁の内側表面は、前記凹部及び前記周辺部から離れ且つ前記光検出素子に近付くほど互いに離れるように傾斜している、請求項9又は10記載の分光器。
前記分光部を構成する複数のグレーティング溝が並ぶ方向における前記支持体の熱膨張率は、複数の前記グレーティング溝が並ぶ方向、及び前記分光部と前記光検出素子とが互いに対向する方向の両方向に垂直な方向における前記支持体の熱膨張率よりも小さい、請求項13〜15のいずれか一項記載の分光器。
【発明の概要】
【発明が解決しようとする課題】
【0004】
上述したような分光器には、用途の拡大に応じて、更なる小型化、特に薄型化が求められている。しかし、分光器が薄型化されればされるほど、迷光の影響が相対的に大きくなり、それによって、分光器の検出精度が低下するおそれが高まる。
【0005】
そこで、本開示の一形態は、検出精度の低下を抑制しつつ薄型化を図ることができる分光器を提供することを目的とする。
【課題を解決するための手段】
【0006】
本開示の一形態に係る分光器は、凹曲面状の内面を含む凹部、及び凹部と隣接する周辺部が設けられた底壁部と、底壁部に対して凹部が開口する側に配置された側壁部と、を有する支持体と、凹部と対向した状態で側壁部に支持された光検出素子と、凹部の内面上に配置された分光部と、を備え、凹部と光検出素子とが互いに対向する第1方向から見た場合に、分光部を構成する複数のグレーティング溝が並ぶ第2方向における凹部の長さは、第2方向に垂直な第3方向における凹部の長さよりも、大きく、第1方向から見た場合に、第2方向において凹部と隣接する周辺部の面積は、第3方向において凹部と隣接する周辺部の面積よりも、大きい。
【0007】
この分光器では、支持体の底壁部に設けられた凹部の内面上に分光部が配置されており、光検出素子が凹部と対向した状態で支持体の側壁部に支持されている。このような構成により、分光器の小型化を図ることができる。特に、凹部と光検出素子とが互いに対向する第1方向から見た場合に、分光部を構成する複数のグレーティング溝が並ぶ第2方向における凹部の長さが、第2方向に垂直な第3方向における凹部の長さよりも大きく、且つ、第2方向において凹部と隣接する周辺部の面積が、第3方向において凹部と隣接する周辺部の面積よりも大きいため、第3方向において、分光器を薄型化することができる。また、分光部で分光されると共に反射された光が光検出素子で反射されたとしても、その光を、第2方向において凹部と隣接する周辺部に入射させることで、その光が迷光となるのを抑制することができる。よって、この分光器によれば、検出精度の低下を抑制しつつ薄型化を図ることが可能となる。
【0008】
本開示の一形態に係る分光器では、側壁部は、第1方向から見た場合に凹部及び周辺部を包囲する環状の形状を有してもよい。これにより、分光部の特性が劣化するのをより確実に抑制することができる。
【0009】
本開示の一形態に係る分光器では、周辺部は、凹部から離れるほど光検出素子から離れる傾斜面を含んでもよい。これにより、分光部で分光されると共に反射された光が光検出素子で反射されたとしても、その光を周辺部の傾斜面に入射させることで、その光が迷光となるのをより確実に抑制することができる。
【0010】
本開示の一形態に係る分光器では、第1方向から見た場合に、分光部は、凹部の中心に対して第2方向における一方の側に片寄っており、第1方向から見た場合に、凹部に対して第2方向における一方の側に位置する周辺部の面積は、凹部に対して第2方向における他方の側に位置する周辺部の面積よりも、大きくてもよい。これにより、分光部で分光されると共に反射された光が光検出素子で反射されたとしても、その光を、凹部に対して第2方向における一方の側に位置する周辺部に入射させることで、その光が迷光となるのをより確実に抑制することができる。
【0011】
本開示の一形態に係る分光器では、第1方向から見た場合に、第2方向において互いに隣接する凹部と周辺部との境界線は、第3方向に沿って底壁部を横切っていてもよい。これにより、第3方向における分光部の長さを長くして、分光する光量の増大を図り、検出感度を向上させることができる。
【0012】
本開示の一形態に係る分光器では、凹部の内面は、第2方向及び第3方向のそれぞれの方向において曲面状に湾曲していてもよい。これにより、分光する光量の増大を図りつつも、分光部で分光された光を精度良く光検出素子の所定位置に集光させることができる。
【0013】
本開示の一形態に係る分光器では、第1方向から見た場合に、複数のグレーティング溝は、同一の側に曲線状に湾曲していてもよい。これにより、分光部で分光された光を精度良く光検出素子の所定位置に集光させることができる。
【0014】
本開示の一形態に係る分光器では、凹部及び周辺部の形状は、支持体の形状によって構成されていてもよい。これにより、凹部及び周辺部の形状が精度良く且つ安定的に画定されるので、高精度な分光部を得ることができる。
【0015】
本開示の一形態に係る分光器では、第1方向から見た場合に、側壁部は、第2方向において凹部及び周辺部を挟んで互いに対向する一対の第1側壁と、第3方向において凹部及び周辺部を挟んで互いに対向する一対の第2側壁と、を有してもよい。これにより、支持体の構成を単純化することができる。
【0016】
本開示の一形態に係る分光器では、互いに対向する一対の第1側壁の内側表面は、凹部及び周辺部から離れ且つ光検出素子に近付くほど互いに離れるように傾斜していてもよい。これにより、分光部が設けられる凹部側において側壁部の厚さを相対的に大きくして、分光部に応力が作用するのを抑制することができる。また、光検出素子側において側壁部の厚さを相対的に小さくして、支持体の軽量化を図ることができる。
【0017】
本開示の一形態に係る分光器では、互いに対向する一対の第2側壁の内側表面は、凹部及び周辺部から離れ且つ光検出素子に近付くほど互いに離れるように傾斜していてもよい。これにより、分光部が設けられる凹部側において側壁部の厚さを相対的に大きくして、分光部に応力が作用するのを抑制することができる。また、光検出素子側において側壁部の厚さを相対的に小さくして、支持体の軽量化を図ることができる。
【0018】
本開示の一形態に係る分光器は、凹部の内面上に配置された第1反射部を更に備え、光検出素子には、光通過部、第2反射部及び光検出部が設けられており、第1反射部は、光通過部を通過した光を反射し、第2反射部は、第1反射部で反射された光を反射し、分光部は、第2反射部で反射された光を分光すると共に反射し、光検出部は、分光部で分光されると共に反射された光を検出してもよい。光通過部を通過した光を第1反射部及び第2反射部で順次反射させることで、分光部に入射する光の入射方向、及び当該光の広がり乃至収束状態を調整することが容易となるため、分光部から光検出部に至る光路長を短くしても、分光部で分光された光を精度良く光検出部の所定位置に集光させることができる。
【0019】
本開示の一形態に係る分光器は、底壁部と、底壁部に対して一方の側に配置された側壁部と、を有する支持体と、底壁部における一方の側に配置された分光部と、側壁部のうち、底壁部とは反対側において、支持体の内側の空間が拡幅された第1拡幅部に配置された光検出素子と、側壁部のうち、底壁部とは反対側において、第1拡幅部の内側の空間が拡幅された第2拡幅部に配置されたカバーと、光検出素子と電気的に接続され、第1拡幅部及び第2拡幅部を介して支持体の外側表面に延在する配線と、を備え、第1拡幅部の側面は、第1拡幅部の底面と鈍角を成すように傾斜しており、第2拡幅部の側面は、第2拡幅部の底面と鈍角を成すように傾斜しており、支持体における底壁部とは反対側の端面のうち、少なくとも配線が配置される領域は、カバーにおける底壁部とは反対側の表面よりも、底壁部側に位置している。
【0020】
この分光器では、第1拡幅部の側面が、第1拡幅部の底面と鈍角を成すように傾斜しており、第2拡幅部の側面が、第2拡幅部の底面と鈍角を成すように傾斜している。これにより、配線を容易に且つ精度良く引き回すことができる。また、配線に生じる応力を低減することができる。また、この分光器では、支持体における底壁部とは反対側の端面のうち、少なくとも配線が配置される領域が、カバーにおける底壁部とは反対側の表面よりも、底壁部側に位置している。これにより、分光器の実装時に配線が他の部材と接触するのを防止することができる。また、配線の長さを低減することができる。
【0021】
本開示の一形態に係る分光器では、第1拡幅部において互いに対向する光検出素子の1つの端子と配線の1つの端部とは、複数のバンプによって互いに接続されており、複数のバンプは、分光部を構成する複数のグレーティング溝が並ぶ方向に沿って並んでいてもよい。これにより、例えば支持体の熱膨張等に起因して、分光部における複数のグレーティング溝と、光検出素子の光検出部における複数の光検出チャネルとの位置関係がずれるのを抑制することができる。また、2次元的にバンプを配置することで、1列にバンプを配置する場合に比べ、使用し得るスペースに余裕ができるため、各端子の面積を十分に確保することができる。
【0022】
本開示の一形態に係る分光器では、カバーと光検出素子とは、互いに離間していてもよい。これにより、カバーと光検出素子との間の空間によって、迷光をより確実に除去することができる。
【0023】
本開示の一形態に係る分光器では、分光部を構成する複数のグレーティング溝が並ぶ方向における支持体の熱膨張率は、複数のグレーティング溝が並ぶ方向、及び分光部と光検出素子とが互いに対向する方向の両方向に垂直な方向における支持体の熱膨張率よりも小さくてもよい。これにより、支持体の熱膨張に起因して、分光部における複数のグレーティング溝と、光検出素子の光検出部における複数の光検出チャネルとの位置関係がずれるのを抑制することができる。
【0024】
本開示の一形態に係る分光器では、第1拡幅部の側面と光検出素子との間には、樹脂からなる部材が充填されていてもよい。これにより、光検出素子を安定して支持することができる。
【0025】
本開示の一形態に係る分光器では、第2拡幅部の側面とカバーとの間には、樹脂からなる部材が充填されていてもよい。これにより、カバーと安定して支持することができる。
【発明の効果】
【0026】
本開示の一形態によれば、検出精度の低下を抑制しつつ薄型化を図ることができる分光器を提供することが可能となる。
【発明を実施するための形態】
【0028】
以下、本開示の一実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[分光器の構成]
【0029】
図1に示されるように、分光器1では、支持体10及びカバー20によって箱形のパッケージ2が構成されている。支持体10は、成形回路部品(MID:Molded Interconnect Device)として構成されており、複数の配線11を有している。一例として、分光器1は、X軸方向、Y軸方向(X軸方向に垂直な方向)及びZ軸方向(X軸方向及びY軸方向に垂直な方向)のそれぞれの方向の長さが15mm以下である直方体状の形状を有している。特に、分光器1は、Y軸方向の長さが数mm程度にまで薄型化されている。
【0030】
図2及び
図3に示されるように、パッケージ2内には、光検出素子30、樹脂層40及び反射層50が設けられている。反射層50には、第1反射部51及び分光部52が設けられている。光検出素子30には、光通過部31、第2反射部32、光検出部33及び0次光捕捉部34が設けられている。光通過部31、第1反射部51、第2反射部32、分光部52、光検出部33及び0次光捕捉部34は、光通過部31を通過する光L1の光軸方向(すなわち、Z軸方向)から見た場合に、X軸方向に平行な同一直線上に並んでいる。
【0031】
分光器1では、光通過部31を通過した光L1は、第1反射部51で反射され、第1反射部51で反射された光L1は、第2反射部32で反射される。第2反射部32で反射された光L1は、分光部52で分光されると共に反射される。分光部52で分光されると共に反射された光のうち、0次光L0以外で光検出部33に向かう光L2は、光検出部33に入射して光検出部33で検出され、0次光L0は、0次光捕捉部34に入射して0次光捕捉部34で捕捉される。光通過部31から分光部52に至る光L1の光路、分光部52から光検出部33に至る光L2の光路、及び分光部52から0次光捕捉部34に至る0次光L0の光路は、パッケージ2内の空間Sに形成されている。
【0032】
支持体10は、底壁部12と、側壁部13と、を有している。底壁部12における空間S側の表面には、凹部14及び周辺部15,16が設けられている。側壁部13は、底壁部12に対して凹部14が開口する側に配置されている。側壁部13は、Z軸方向から見た場合に凹部14及び周辺部15,16を包囲する矩形環状の形状を有している。より具体的には、側壁部13は、一対の第1側壁17と、一対の第2側壁18と、を有している。一対の第1側壁17は、Z軸方向から見た場合に、X軸方向において凹部14及び周辺部15,16を挟んで互いに対向している。一対の第2側壁18は、Z軸方向から見た場合に、Y軸方向において凹部14及び周辺部15,16を挟んで互いに対向している。底壁部12及び側壁部13は、AlN、Al
2O
3等のセラミックによって一体的に形成されている。
【0033】
側壁部13には、第1拡幅部13a及び第2拡幅部13bが設けられている。第1拡幅部13aは、底壁部12とは反対側において、空間SがX軸方向のみに拡幅された段差部である。第2拡幅部13bは、底壁部12とは反対側において、第1拡幅部13aがX軸方向及びY軸方向のそれぞれの方向に拡幅された段差部である。第1拡幅部13aには、各配線11の第1端部11aが配置されている。各配線11は、第1端部11aから、第2拡幅部13b及び第1側壁17の外側表面を介して、一方の第2側壁18の外側表面に配置された第2端部11bに至っている(
図1参照)。各第2端部11bは、分光器1を外部の回路基板に実装するための電極パッドとして機能し、各配線11を介して、光検出素子30の光検出部33に対して電気信号が入出力される。
【0034】
図2、
図3及び
図4に示されるように、Z軸方向から見た場合に、X軸方向における凹部14の長さは、Y軸方向における凹部14の長さよりも大きい。凹部14は、凹曲面状の内面14aを含んでいる。内面14aは、例えば、球面の一部(球冠)の両側がZX平面に平行な平面で切り落とされた形状を有している。このように、内面14aは、X軸方向及びY軸方向のそれぞれの方向において曲面状に湾曲している。つまり、内面14aは、Y軸方向から見た場合にも(
図2参照)、X軸方向から見た場合にも(
図3参照)、曲面状に湾曲している。
【0035】
各周辺部15,16は、X軸方向において凹部14と隣接している。周辺部15は、Z軸方向から見た場合に、凹部14に対して一方の第1側壁17側(X軸方向における一方の側)に位置している。周辺部16は、Z軸方向から見た場合に、凹部14に対して他方の第1側壁17側(X軸方向における他方の側)に位置している。Z軸方向から見た場合に、周辺部15の面積は、周辺部16の面積よりも大きい。分光器1では、周辺部16の面積は、Z軸方向から見た場合に、凹部14の内面14aの外縁が他方の第1側壁17の内側表面17aに接する程度にまで狭められている。周辺部15は、傾斜面15aを含んでいる。傾斜面15aは、X軸方向に沿って凹部14から離れるほどZ軸方向に沿って光検出素子30から離れるように、傾斜している。
【0036】
凹部14及び周辺部15,16の形状は、支持体10の形状によって構成されている。つまり、凹部14及び周辺部15,16は、支持体10のみによって画定されている。凹部14の内面14aと一方の第1側壁17の内側表面17aとは、周辺部15を介して互いに接続されている(つまり、物理的には、互いに離れている)。凹部14の内面14aと他方の第1側壁17の内側表面17aとは、周辺部16を介して互いに接続されている(つまり、物理的には、互いに離れている)。凹部14の内面14aと各第2側壁18の内側表面18aとは、面と面との交線(角、屈曲箇所等)を介して互いに接続されている。このように、凹部14の内面14aと側壁部13の各内側表面17a,18aとは、不連続な状態(物理的に互いに離れた状態、面と面との交線を介して互いに接続された状態等)で互いに接続されている。Z軸方向から見た場合に、X軸方向において互いに隣接する凹部14と周辺部15との境界線19は、Y軸方向に沿って底壁部12を横切っている(
図4参照)。つまり、境界線19の両端は、各第2側壁18の内側表面18aに至っている。
【0037】
図2及び
図3に示されるように、光検出素子30は、基板35を有している。基板35は、例えば、シリコン等の半導体材料によって矩形板状に形成されている。光通過部31は、基板35に設けられたスリットであり、Y軸方向に延在している。0次光捕捉部34は、基板35に設けられたスリットであり、Z軸方向から見た場合に光通過部31と光検出部33との間に位置し、Y軸方向に延在している。なお、光通過部31における光L1の入射側の端部は、X軸方向及びY軸方向のそれぞれの方向において、光L1の入射側に向かって末広がりとなっている。また、0次光捕捉部34における0次光L0の入射側とは反対側の端部は、X軸方向及びY軸方向のそれぞれの方向において、0次光L0の入射側とは反対側に向かって末広がりとなっている。0次光L0が0次光捕捉部34に斜めに入射するように構成することで、0次光捕捉部34に入射した0次光L0が空間Sに戻るのをより確実に抑制することができる。
【0038】
第2反射部32は、基板35における空間S側の表面35aのうち光通過部31と0次光捕捉部34との間の領域に設けられている。第2反射部32は、例えば、Al、Au等の金属膜であり、平面ミラーとして機能する。
【0039】
光検出部33は、基板35の表面35aに設けられている。より具体的には、光検出部33は、基板35に貼り付けられているのではなく、半導体材料からなる基板35に作り込まれている。つまり、光検出部33は、半導体材料からなる基板35内の第1導電型の領域と、該領域内に設けられた第2導電型の領域とで形成された複数のフォトダイオードによって、構成されている。光検出部33は、例えば、フォトダイオードアレイ、C−MOSイメージセンサ、CCDイメージセンサ等として構成されたものであり、X軸方向に並んだ複数の光検出チャネルを有している。光検出部33の各光検出チャネルには、異なる波長を有する光L2が入射させられる。基板35の表面35aには、光検出部33に対して電気信号を入出力するための複数の端子36が設けられている。なお、光検出部33は、表面入射型のフォトダイオードとして構成されていてもよいし、或いは裏面入射型のフォトダイオードとして構成されていてもよい。光検出部33が裏面入射型のフォトダイオードとして構成されている場合、基板35における表面35aとは反対側の表面に複数の端子36が設けられため、その場合、各端子36は、対応する配線11の第1端部11aとワイヤボンディングによって電気的に接続される。
【0040】
光検出素子30は、側壁部13の第1拡幅部13aに配置されている。第1拡幅部13aにおいて互いに対向する光検出素子30の端子36と配線11の第1端部11aとは、半田層3によって、互いに接続されている。一例として、互いに対向する光検出素子30の端子36と配線11の第1端部11aとは、端子36の表面に下地(Ni−Au、Ni−Pd−Au等)のめっき層を介して形成された半田層3によって、互いに接続されている。この場合、分光器1では、半田層3によって、光検出素子30と側壁部13とが互いに固定されていると共に、光検出素子30の光検出部33と複数の配線11とが電気的に接続されている。光検出素子30と第1拡幅部13aとの間には、互いに対向する光検出素子30の端子36と配線11の第1端部11aとの接続部を覆うように、例えば樹脂からなる補強部材7が配置されている。このように、光検出素子30は、凹部14と対向した状態で側壁部13に取り付けられて、側壁部13に支持されている。なお、分光器1では、Z軸方向が、凹部14と光検出素子30とが互いに対向する第1方向である。
【0041】
樹脂層40は、凹部14の内面14a上に配置されている。樹脂層40は、成形材料である樹脂材料(例えば、光硬化性のエポキシ樹脂、アクリル樹脂、フッ素系樹脂、シリコーン、有機・無機ハイブリッド樹脂等のレプリカ用光学樹脂等)に成形型を押し当て、その状態で、樹脂材料を硬化(例えば、UV光等による光硬化、熱硬化等)させることで、形成されている。
【0042】
樹脂層40のうち、Z軸方向から見た場合に凹部14の中心に対して周辺部15側(X軸方向における一方の側)に片寄った領域には、グレーティングパターン41が設けられている。グレーティングパターン41は、例えば、鋸歯状断面のブレーズドグレーティング、矩形状断面のバイナリグレーティング、正弦波状断面のホログラフィックグレーティング等に対応している。
【0043】
樹脂層40は、一方の第1側壁17(
図2における左側の第1側壁17)の内側表面17aから離れており、他方の第1側壁17(
図2における右側の第1側壁17)の内側表面17a、一方の第2側壁18の内側表面18a、及び他方の第2側壁18の内側表面18aのそれぞれと接触している。樹脂層40は、内面14aから内側表面17a,18aを這い上がるように、他方の第1側壁17の内側表面17a、一方の第2側壁18の内側表面18a、及び他方の第2側壁18の内側表面18aのそれぞれに沿って広がっている。
【0044】
Z軸方向における樹脂層40の厚さは、内面14a上に配置されている部分42よりも、内側表面17aと接触している部分43、及び内側表面18aと接触している部分44のほうが、大きい。つまり、樹脂層40のうち内側表面17aと接触している部分43の「Z軸方向に沿った厚さH2」、及び樹脂層40のうち内側表面18aと接触している部分44の「Z軸方向に沿った厚さH3」は、樹脂層40のうち内面14a上に配置されている部分42の「Z軸方向に沿った厚さH1」よりも大きい。一例として、H1は、数μ〜80μm程度(最小値は、支持体10の表面粗さを埋め得る程度の厚さ以上)であり、H2,H3は、それぞれ、数百μm程度である。
【0045】
樹脂層40は、周辺部15の傾斜面15a上に至っている。Z軸方向における樹脂層40の厚さは、内面14a上に配置されている部分42よりも、周辺部15に至っている部分45のほうが、大きい。つまり、樹脂層40のうち周辺部15に至っている部分45の「Z軸方向に沿った厚さH4」は、樹脂層40のうち内面14a上に配置されている部分42の「Z軸方向に沿った厚さH1」よりも大きい。一例として、H4は、数百μm程度である。
【0046】
ここで、各部分42,43,44,45において「Z軸方向に沿った厚さ」が変化している場合には、各部分42,43,44,45における当該厚さの平均値を、各部分42,43,44,45の「Z軸方向に沿った厚さ」と捉えることができる。なお、内側表面17aと接触している部分43の「内側表面17aに垂直な方向に沿った厚さ」、内側表面18aと接触している部分44の「内側表面18aに垂直な方向に沿った厚さ」、及び周辺部15に至っている部分45の「傾斜面15aに垂直な方向に沿った厚さ」も、内面14a上に配置されている部分42の「内面14aに垂直な方向に沿った厚さH1」よりも大きい。以上のような樹脂層40は、一続きの状態で形成されている。
【0047】
反射層50は、樹脂層40上に配置されている。反射層50は、例えば、Al、Au等の金属膜である。反射層50のうちZ軸方向において光検出素子30の光通過部31と対向する領域が、凹面ミラーとして機能する第1反射部51である。第1反射部51は、凹部14の内面14a上に配置されており、Z軸方向から見た場合に凹部14の中心に対して周辺部16側(X軸方向における他方の側)に片寄っている。反射層50のうち樹脂層40のグレーティングパターン41を覆う領域が、反射型グレーティングとして機能する分光部52である。分光部52は、凹部14の内面14a上に配置されており、Z軸方向から見た場合に凹部14の中心に対して周辺部15側(X軸方向における一方の側)に片寄っている。このように、第1反射部51及び分光部52は、凹部14の内面14a上において樹脂層40に設けられている。
【0048】
分光部52を構成する複数のグレーティング溝52aは、グレーティングパターン41の形状に沿った形状を有している。複数のグレーティング溝52aは、Z軸方向から見た場合にX軸方向に並んでおり、Z軸方向から見た場合に同一の側に曲線状(例えば、周辺部15側に凸の円弧状)に湾曲している(
図4参照)。なお、分光器1では、X軸方向が、Z軸方向から見た場合に複数のグレーティング溝52aが並ぶ第2方向であり、Y軸方向が、Z軸方向から見た場合に第2方向に垂直な第3方向である。
【0049】
反射層50は、樹脂層40のうち、凹部14の内面14a上に配置されている部分42(グレーティングパターン41を含む)の全体、他方の第1側壁17の内側表面17aと接触している部分43の全体、各第2側壁18の内側表面18aと接触している部分44の全体、及び周辺部15に至っている部分45の一部を覆っている。つまり、第1反射部51及び分光部52を構成する反射層50は、一続きの状態で樹脂層40上に配置されている。
【0050】
カバー20は、光透過部材21と、遮光膜22と、を有している。光透過部材21は、例えば、石英、硼珪酸ガラス(BK7)、パイレックス(登録商標)ガラス、コバールガラス等、光L1を透過させる材料からなり、矩形板状の形状を有している。遮光膜22は、光透過部材21における空間S側の表面21aに設けられている。遮光膜22には、Z軸方向において光検出素子30の光通過部31と対向するように、光通過開口22aが設けられている。光通過開口22aは、遮光膜22に設けられたスリットであり、Y軸方向に延在している。
【0051】
なお、赤外線を検出する場合には、光透過部材21の材料として、シリコン、ゲルマニウム等も有効である。また、光透過部材21に、AR(Anti Reflection)コートを施したり、所定波長の光のみを透過させるフィルタ機能を持たせたりしてもよい。また、遮光膜22の材料としては、例えば、黒レジスト、Al等を用いることができる。ただし、0次光捕捉部34に入射した0次光L0が空間Sに戻ることを抑制する観点からは、遮光膜22の材料として、黒レジストが有効である。一例として、遮光膜22は、光透過部材21の表面21aを覆うAl層と、当該AL層のうち少なくとも0次光捕捉部34と対向する領域に設けられた黒レジスト層と、を含む複合膜であってもよい。つまり、当該複合膜においては、光透過部材21の空間S側に、Al層、黒レジスト層の順で積層されている。
【0052】
カバー20は、側壁部13の第2拡幅部13bに配置されている。カバー20と第2拡幅部13bとの間には、例えば、樹脂、半田等からなる封止部材4が配置されている。分光器1では、封止部材4によって、カバー20と側壁部13とが互いに固定されていると共に、空間Sが気密に封止されている。
[作用及び効果]
【0053】
分光器1によれば、以下の理由により、検出精度の低下を抑制しつつ薄型化を図ることが可能となる。
【0054】
まず、支持体10の底壁部12に設けられた凹部14の内面14a上に分光部52が配置されており、光検出素子30が凹部14と対向した状態で支持体10の側壁部13に支持されている。このような構成により、分光器1の小型化を図ることができる。特に、分光器1では、Z軸方向から見た場合に、X軸方向における凹部14の長さが、Y軸方向における凹部14の長さよりも大きく、且つ、凹部14に対して一方の第2側壁18側及び他方の第2側壁18側に、周辺部が設けられていない。これにより、Y軸方向において、分光器1を薄型化することができる。
【0055】
また、分光部52で分光されると共に反射された光が光検出素子30で反射されたとしても、その光を、例えば周辺部16に比べて面積が十分に確保された周辺部15に入射させることで、その光が迷光となるのを抑制することができる。特に、分光器1では、周辺部15が、凹部14から離れるほど光検出素子30から離れる傾斜面15aを含んでいるため、傾斜面15aで反射された光が光検出素子30の光検出部33に直接戻るのを抑制することができる。
【0056】
以上により、分光器1によれば、検出精度の低下を抑制しつつ薄型化を図ることが可能となる。特に、分光器1では、側壁部13が、Z軸方向から見た場合に凹部14及び周辺部15,16を包囲する環状の形状を有している。これにより、分光部52の特性が劣化するのをより確実に抑制することができる。また、分光器1では、光通過部31を通過した光L1が第1反射部51及び第2反射部32で順次反射されて分光部52に入射する。これにより、分光部52に入射する光L1の入射方向、及び当該光L1の広がり乃至収束状態を調整することが容易となるため、分光部52から光検出部33に至る光路長を短くしても、分光部52で分光された光L2を精度良く光検出部33の所定位置に集光させることができる。
【0057】
また、分光器1では、X軸方向における長さがY軸方向における長さよりも大きい凹部14上に、X軸方向に沿って並ぶように第1反射部51及び分光部52が設けられている。これにより、Y軸方向において分光器1を薄型化しつつも、分光部52の有効エリアを広くして、検出感度を向上させることができる。更に、分光部52で分光されると共に反射された光が光検出素子30で反射されて凹部14に戻ったとしても、その光を光検出部33とは反対側に逃がすことができる。
【0058】
また、分光器1では、Z軸方向から見た場合に、分光部52が、凹部14の中心に対してX軸方向における一方の側に片寄っている。そして、Z軸方向から見た場合に、凹部14に対してX軸方向における一方の側に位置する周辺部15の面積が、凹部14に対してX軸方向における他方の側に位置する周辺部16の面積よりも、大きい。これにより、分光部52で分光されると共に反射された光が光検出素子30で反射されたとしても、その光を、凹部14に対してX軸方向における一方の側に位置する周辺部15に入射させることで、その光が迷光となるのをより確実に抑制することができる。
【0059】
また、分光器1では、Z軸方向から見た場合に、X軸方向において互いに隣接する凹部14と周辺部15との境界線19が、Y軸方向に沿って底壁部12を横切っている。これにより、Y軸方向における分光部52の長さを長くして、分光する光量の増大を図り、検出感度を向上させることができる。
【0060】
また、分光器1では、1つの凹部14の内面14a上に第1反射部51及び分光部52が配置されている。第1反射部51及び分光部52のそれぞれが別々の凹部に設けられていると、凹部と凹部との間に形成される凸部によって光路が妨げられることで、光路設計の自由度が低下し、結果として、分光器1の小型化が妨げられるおそれがある。それに対し、分光器1では、第1反射部51及び分光部52が1つの凹部14に設けられているため、光路設計の自由度が向上し、結果として、分光器1の小型化が可能となる。
【0061】
また、分光器1では、凹部14の内面14aが、X軸方向及びY軸方向のそれぞれの方向において曲面状に湾曲している。これにより、分光する光量の増大を図りつつも、分光部52で分光された光を精度良く光検出素子30の所定位置に集光させることができる。
【0062】
また、分光器1では、Z軸方向から見た場合に、複数のグレーティング溝52aが、同一の側に曲線状に湾曲している。これにより、分光部52で分光された光を精度良く光検出素子30の所定位置に集光させることができる。
【0063】
また、分光器1では、凹部14及び周辺部15,16の形状が、支持体10の形状によって構成されている。これにより、凹部14及び周辺部15,16の形状が精度良く且つ安定的に画定されるので、高精度な分光部52を得ることができる。
【0064】
また、分光器1では、第1反射部51及び分光部52が樹脂層40に設けられている。これにより、樹脂層40が支持体10の表面を覆う面積が増加するため、支持体10の表面での光の散乱に起因する迷光の発生を抑制することができる。支持体10の表面を樹脂層40で覆うことで、支持体10の表面の状態に左右されることなく、光の散乱を抑制し得る表面を容易に且つ精度良く得ることができる。
【0065】
例えば、分光器1が使用される環境の温度変化、光検出部33での発熱等に起因する支持体10の膨張及び収縮を抑制することができ、分光部52と光検出部33との位置関係にずれが生じることに起因する検出精度の低下(光検出部33で検出された光におけるピーク波長のシフト等)を抑制することができるという観点からは、支持体10の材料がセラミックであってもよい。また、支持体10の成形の容易化、支持体10の軽量化が可能になるという観点からは、支持体10の材料がプラスチック(PPA、PPS、LCP、PEAK等)であってもよい。しかし、支持体10の材料にいずれの材料が用いられても、ある程度の厚さ及び大きさを有する支持体10を作製しようとすると、支持体10の表面粗さが大きくなり易い。特に、支持体10の材料がセラミックであると、支持体10の表面粗さが大きくなり易い。また、支持体10の材料がプラスチックであっても、支持体10の表面粗さは、40〜50μm程度というように、相対的に大きくなり易い(グレーティング溝52aの深さが例えば5μm以下になるような小型の分光器1では、40〜50μm程度の表面粗さでも相対的に大きいといえる)。したがって、支持体10の材料にいずれの材料が用いられている場合でも、支持体10の表面を樹脂層40で覆うことで、支持体10の表面よりも滑らかで光の散乱を抑制し得る表面(支持体10の表面粗さよりも小さい表面粗さを有する樹脂層40の表面)を容易に且つ精度良く得ることができる。
【0066】
また、分光器1では、樹脂層40上に、第1反射部51及び分光部52を構成する反射層50が一続きの状態で配置されている。これにより、反射層50が樹脂層40の表面を覆う面積が増加するため、樹脂層40の表面での光の散乱に起因する迷光の発生を抑制することができる。また、分光部52で分光されると共に反射された光が光検出素子30で反射された場合に、その光が一続きの状態の反射層50で光通過部31側に反射されるので、その光が光検出部33に直接戻るのを抑制することができる。なお、この場合、第1反射部51で光L1のNAを規定することは困難である。しかし、分光器1では、遮光膜22の光通過開口22a及び光検出素子30の光通過部31によって、空間Sに入射する光L1のNAを規定することができ、更に、光検出素子30の第2反射部32によって、第1反射部51で反射された光L1のNAを規定することができる。
【0067】
また、分光器1では、支持体10が底壁部12及び側壁部13で構成されており、側壁部13が一対の第1側壁17及び一対の第2側壁18で構成されている。これにより、支持体の構成を単純化することができる。
【0068】
また、分光器1では、光検出素子30に、分光部52で分光されると共に反射された光のうち0次光L0を捕捉する0次光捕捉部34が設けられている。これにより、0次光L0が多重反射等により迷光となって検出精度が低下するのを抑制することができる。
【0069】
また、分光器1では、支持体10及びカバー20によってパッケージ2が構成されており、パッケージ2内の空間Sが気密に封止されていている。これにより、湿気による空間S内の部材の劣化及び外気温の低下による空間S内での結露の発生等に起因する検出精度の低下を抑制することができる。
[分光器の製造方法]
【0070】
上述した分光器1の製造方法について説明する。まず、
図5の(a)及び(b)に示されるように、支持体10を用意し、凹部14の内面14a上に、成形材料である樹脂材料5(例えば、光硬化性のエポキシ樹脂、アクリル樹脂、フッ素系樹脂、シリコーン、有機・無機ハイブリッド樹脂等のレプリカ用光学樹脂等)を配置する(第1ステップ)。
【0071】
続いて、
図6の(a)及び(b)に示されるように、樹脂材料5に成形型6を押し当て、その状態で、樹脂材料5を硬化(例えば、UV光等による光硬化、熱硬化等)させることで、
図7の(a)及び(b)に示されるように、凹部14の内面14a上に樹脂層40を形成する(第2ステップ)。
図6の(a)及び(b)に示されるように、成形型6には、凹部14の内面14aに対応する成形面6aが設けられており、成形面6aには、グレーティングパターン41に対応するパターン6bが設けられている。成形面6aは、鏡面に近い滑らかさを有している。
【0072】
このとき、他方の第1側壁17の内側表面17a、一方の第2側壁18の内側表面18a、及び他方の第2側壁18の内側表面18aのそれぞれと接触するように、グレーティングパターン41を有する樹脂層40を形成する。且つ、内側表面17aと接触している部分43の「Z軸方向に沿った厚さH2」、及び内側表面18aと接触している部分44の「Z軸方向に沿った厚さH3」が、内面14a上に配置されている部分42の「Z軸方向に沿った厚さH1」よりも大きくなるように、グレーティングパターン41を有する樹脂層40を形成する。
【0073】
なお、樹脂材料5に成形型6を押し当てた際には、周辺部15が、余分な樹脂の逃げ場として機能する。これにより、薄く且つ高精度なグレーティングパターン41を得ることができる。
【0074】
続いて、
図8の(a)及び(b)に示されるように、樹脂層40上に反射層50を形成することで、第1反射部51及び分光部52を形成する(第3ステップ)。反射層50の形成は、例えば、Al、Au等の金属を蒸着することで、実施される。なお、反射層50は、金属の蒸着以外の方法で形成されてもよい。
【0075】
続いて、
図9の(a)及び(b)に示されるように、側壁部13の第1拡幅部13aに光検出素子30を配置し、第1拡幅部13aにおいて互いに対向する光検出素子30の端子36と配線11の第1端部11aとを、半田層3によって、互いに接続する。つまり、凹部14と対向するように側壁部13に光検出素子30を取り付けて、側壁部13に光検出素子30を支持させる(第4ステップ)。このとき、各端子36に設けられた半田層3の溶融・再固化によって、光検出素子30のセルフアライメントが実現される。なお、光検出素子30の端子36と配線11の第1端部11aとの接続にコア付の半田ボールを用いても、光検出素子30のセルフアライメントを実現することができる。続いて、光検出素子30と第1拡幅部13aとの間に、互いに対向する光検出素子30の端子36と配線11の第1端部11aとの接続部を覆うように、例えば樹脂からなる補強部材7を配置する。
【0076】
続いて、
図10の(a)及び(b)に示されるように、側壁部13の第2拡幅部13bにカバー20を配置し、カバー20と第2拡幅部13bとの間に、例えば樹脂等からなる封止部材4を配置する。これにより、空間Sが気密に封止され、分光器1が得られる。
【0077】
以上の分光器1の製造方法によれば、成形型6の離型の際に樹脂層40が支持体10から剥離するのを抑制することができ、よって、検出精度の低下を抑制しつつ小型化を図ることができる分光器1を容易に製造することが可能となる。
[変形例]
【0078】
以上、本開示の一実施形態について説明したが、本開示の一形態は、上記一実施形態に限定されるものではない。
【0079】
例えば、
図11の(a)及び(b)に示されるように、互いに対向する一対の第1側壁17の内側表面17aは、凹部14及び周辺部15,16から離れ且つ光検出素子30に近付くほど互いに離れるように傾斜していてもよい。同様に、互いに対向する一対の第2側壁18の内側表面18aは、凹部14及び周辺部15,16から離れ且つ光検出素子30に近付くほど互いに離れるように傾斜していてもよい。これらにより、分光部52が設けられる凹部14側において側壁部13の厚さを相対的に大きくして、分光部52に応力が作用するのを抑制することができる。また、光検出素子30側において側壁部13の厚さを相対的に小さくして、支持体10の軽量化を図ることができる。更に、第1側壁17の内側表面17a及び第2側壁18の内側表面18aと接触している部分における樹脂層40の厚さを、凹部14及び周辺部15,16から離れ且つ光検出素子30に近付くほど大きくすることができる。当該部分における樹脂層40の厚さを、凹部14及び周辺部15,16側で相対的に小さくし、光検出素子30側で相対的に大きくすることで、分光部52に応力が作用するのを抑制しつつ、樹脂層40が支持体10から剥離するのを抑制することができる。また、分光器1を製造する際に、成形型6の離型を容易に実施することができる。
【0080】
また、
図12の(a)及び(b)に示されるように、カバー20と光検出素子30とは、互いに接合されていてもよい。この場合、支持体10に対するカバー20及び光検出素子30の実装は、次のように実施される。すなわち、側壁部13の第1拡幅部13aにカバー20及び光検出素子30を配置し、第1拡幅部13aにおいて互いに対向する光検出素子30の端子36と配線11の第1端部11aとを、半田層3によって互いに接続する。続いて、カバー20及び光検出素子30と第1拡幅部13aとの間に、樹脂からなる封止部材4を配置する。このように、カバー20と光検出素子30とを予め接合しておくことで、支持体10に対するカバー20及び光検出素子30の実装を容易化することができる。一例として、カバー20及び光検出素子30は、少なくとも一方がウェハレベルの状態で互いに接合され、その後にダイシングが実施されることで、用意される。
【0081】
また、互いに対向する光検出素子30の端子36と配線11の第1端部11aとは、例えば、Au、半田等からなるバンプ、或いは銀ペースト等の導電性樹脂によって、互いに接続されてもよい。その場合にも、光検出素子30と第1拡幅部13aとの間に、互いに対向する光検出素子30の端子36と配線11の第1端部11aとの接続部を覆うように、例えば樹脂からなる補強部材7が配置されてもよい。
【0082】
また、光検出素子30は、側壁部13に支持されていれば、間接的に(例えばガラス基板等の別の部材を介して)側壁部13に取り付けられていてもよい。
【0083】
また、分光器1を外部の回路基板に実装するための電極パッドとして機能する第2端部11bは、支持体10の外側表面であれば、一方の第2側壁18の外側表面以外の領域に配置されていてもよい。なお、いずれの場合にも、第2端部11bは、バンプ、半田等によって、外部の回路基板にダイレクトに表面実装されてもよい。
【0084】
また、分光器1は、第1反射部51及び第2反射部32を備えず、光通過部31を通過した光L1が、分光部52で分光されると共に反射され、分光部52で分光されると共に反射された光L2が、光検出部33に入射して光検出部33で検出されるものであってもよい。
【0085】
また、側壁部13の内側表面17a,18aは、平面でなく、曲面であってもよい。また、凹部14の内面14aと側壁部13の内側表面17a,18aとは、例えば、R面取り面を介して接続される等、連続的な状態で接続されていてもよい。
【0086】
また、分光器1においては、「Z軸方向から見た場合に、X軸方向において凹部14と隣接する周辺部15,16の面積が、Y軸方向において凹部14と隣接する周辺部の面積よりも、大きい」との要件が満たされれば、Y軸方向において凹部14と隣接する周辺部が、底壁部12に設けられていてもよい。その場合にも、Y軸方向において、分光器1を薄型化することができる。なお、「凹部14に対して他方の第1側壁17側に位置する周辺部の面積」、「凹部14に対して一方の第2側壁18側に位置する周辺部の面積」及び「凹部14に対して他方の第2側壁18側に位置する周辺部の面積」には、「0」の場合も含まれる。
【0087】
また、凹部14の内面14aは、X軸方向及びY軸方向のそれぞれの方向において曲面状に湾曲しているものに限定されず、X軸方向及びY軸方向のいずれか1つの方向において曲面状に湾曲しているものであってもよい。
【0088】
また、
図13に示されるように、光検出素子30が配置される第1拡幅部(第1段差部)13aにおいては、第1拡幅部13aの側面13a
2が、第1拡幅部13aの底面13a
1と鈍角を成すように傾斜していてもよい。また、カバー20が配置される第2拡幅部(第2段差部)13bにおいては、第2拡幅部13bの側面13b
2が、第2拡幅部13bの底面13b
1と鈍角を成すように傾斜していてもよい。これらによれば、配線11を容易に且つ精度良く引き回すことができる。また、配線11に生じる応力を低減することができる。
【0089】
また、第1拡幅部13aの側面13a
2と光検出素子30との間に、樹脂からなる補強部材7が充填されていてもよい。これによれば、側面13a
2が傾斜していることで補強部材7が隙間に入り込み易くなるため、光検出素子30の支持をより十分に補強することができると共に、当該部分での気密性をより十分に確保することができる。また、後述するバンプ16の配置との相乗効果によって、X軸方向(分光部52を構成する複数のグレーティング溝52aが並ぶ第2方向)への光検出素子30の位置ずれをより確実に抑制することができる。また、第2拡幅部13bの側面13b
2とカバー20との間に、樹脂からなる封止部材4が充填されていてもよい。これによれば、側面13b
2が傾斜していることで封止部材4が隙間に入り込み易くなるため、カバー20の支持をより十分に補強することができると共に、当該部分での気密性をより十分に確保することができる。なお、気密性の確保は、第1拡幅部13aの側面13a
2と光検出素子30との間に、樹脂からなる補強部材7が充填されることによって行われてもよいし、若しくは、第2拡幅部13bの側面13b
2とカバー20との間に、樹脂からなる封止部材4が充填されることによって行われてもよいし、又は、それらの両方によって行われてもよい。これら気密に関する構成以外(分光器1を別のパッケージ内に収容し、該パッケージ内を気密にする等)の構成によって気密の確保が行われてもよい。
【0090】
また、
図13に示されるように、支持体10における底壁部12とは反対側の端面10aのうち、少なくとも配線11が配置される領域10a
1は、カバー20における底壁部12とは反対側の表面20aよりも、底壁部12側に位置していてもよい。これによれば、分光器1の実装時に配線11が他の部材と接触するのを防止することができる。また、配線11の長さを低減することができる。なお、支持体10の端面10aの全体が、カバー20の表面20aよりも、底壁部12側に位置していてもよい。
【0091】
また、
図13に示されるように、カバー20と光検出素子30とは、互いに離間していてもよい。これによれば、カバー20と光検出素子30との間の空間によって、迷光を閉じ込め、迷光をより確実に除去することができる。
【0092】
また、X軸方向(分光部52を構成する複数のグレーティング溝52aが並ぶ第2方向)における支持体10の熱膨張率は、Y軸方向(凹部14と光検出素子30とが互いに対向する第1方向に垂直であり、且つ第2方向に垂直である第3方向)における支持体10の熱膨張率以下である(X軸方向における支持体10の熱膨張率が、Y軸方向における支持体10の熱膨張率よりも小さいことが、より好ましい)。つまり、X軸方向における支持体10の熱膨張率をαとし、Y軸方向における支持体10の熱膨張率をβとした場合、α≦βの関係を満たす(α<βの関係を満たすことが、より好ましい)。これによれば、支持体10の熱膨張に起因して、分光部52における複数のグレーティング溝52aと、光検出素子30の光検出部33における複数の光検出チャネルとの位置関係がずれるのを抑制することができる。
【0093】
また、
図13に示されるように、互いに対向する光検出素子30の1つの端子36と配線11の1つの第1端部11aとは、例えば、Au、半田等からなる複数のバンプ61によって、互いに接続されており、それらの複数のバンプ61は、X軸方向(分光部52を構成する複数のグレーティング溝52aが並ぶ第2方向)に沿って並んでいてもよい。そして、そのような1つの端子36と1つの第1端部11aと複数のバンプ61との組は、Y軸方向において複数組設けられていてもよい。これによれば、例えば支持体10の熱膨張等に起因して、分光部52における複数のグレーティング溝52aと、光検出素子30の光検出部33における複数の光検出チャネルとの位置関係がずれるのを抑制することができる。また、2次元的にバンプ61を配置することで、1列にバンプ61を配置する場合に比べ、使用し得るスペースに余裕ができるため、各端子36の面積を十分に確保することができる。
【0094】
また、第1拡幅部13aは、底壁部12とは反対側において、空間S(光通過部31から分光部52に至る光L1の光路、分光部52から光検出部33に至る光L2の光路、及び分光部52から0次光捕捉部34に至る0次光L0の光路が形成される空間)が少なくとも一方向(例えば、X軸方向)に拡幅された段差部であればよく、一段で構成されていても複数段で構成されていてもよい。同様に、第2拡幅部13bは、底壁部12とは反対側において、第1拡幅部13aが少なくとも一方向(例えば、X軸方向)に拡幅された段差部であればよく、一段で構成されていても複数段で構成されていてもよい。光検出部33が裏面入射型のフォトダイオードとして構成されており、基板35における表面35aとは反対側の表面に複数の端子36が設けられている場合において、各端子36が、対応する配線11の第1端部11aとワイヤボンディングによって電気的に接続されるときには、各配線11の第1端部11aは、複数段で構成された第1拡幅部13aのうち、光検出素子30が配置された段とは異なる段(光検出素子30が配置された段よりも外側且つ上側の段)に配置されてもよい。
【0095】
また、支持体10の材料は、セラミックに限定されず、LCP、PPA、エポキシ等の樹脂、成形用ガラスといった他の成形材料であってもよい。また、支持体10の形状は、直方体状に限定されず、例えば外側表面に曲面が設けられた形状であってもよい。また、側壁部13の形状は、Z軸方向から見た場合に凹部14を包囲する環状の形状であれば、矩形環状の形状に限定されず、円環状の形状であってもよい。このように、分光器1の各構成の材料及び形状には、上述した材料及び形状に限らず、様々な材料及び形状を適用することができる。
分光器は、凹曲面状の内面を含む凹部、及び凹部と隣接する周辺部が設けられた底壁部と、底壁部に対して凹部が開口する側に配置された側壁部と、を有する支持体と、凹部と対向した状態で側壁部に支持された光検出素子と、凹部の内面上に配置された分光部と、を備える。凹部と光検出素子とが互いに対向する第1方向から見た場合に、分光部を構成する複数のグレーティング溝が並ぶ第2方向における凹部の長さは、第2方向に垂直な第3方向における凹部の長さよりも、大きい。第1方向から見た場合に、第2方向において凹部と隣接する周辺部の面積は、第3方向において凹部と隣接する周辺部の面積よりも、大きい。