【文献】
European Journal of Pharmacology,2002 Dec,457(2−3),p.137−46
【文献】
Journal of Cerebral Blood Flow & Metabolism,2008 Feb,28(2), p.431−8,Epub 2007 Aug 15
【文献】
Canadian Medical Association Journal,2006,174(7),p.927−33
(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0011】
前述の背景に鑑み、本発明の目的は、神経損傷が伴う疾患のより効果的な治療のための代替薬およびその製造を提供することである。
【課題を解決するための手段】
【0012】
そのため、本発明の一つは、式IのG-CSF二量体である。
【0013】
M1-L-M2 (I)
【0014】
(ただし、M1はG-CSFの第一の単量体で、M2はG-CSFの第二の単量体で、Lは前述第一の単量体および前述第二の単量体を連結するリンカーで、前述第一の単量体と前述第二の単量体との間に位置する。)
【0015】
そして、前述G-CSF二量体は、G-CSF単量体の生物活性を保持し、且つ前述第一の単量体および前述第二の単量体のいずれかの2倍以上の血清半減期を有する。
【0016】
本発明の一つの典型的な実施形態において、前述Lは、
a)有機リンカー、
b)3〜50個のアミノ酸からなる短鎖ペプチド、および
c)式IIのポリペプチド、
-Z-Y-Z- (II)
(ただし、Yは担体タンパク質で、Zは0〜30個のアミノ酸を含む短鎖ペプチドである。一つの実施形態において、アミノ酸を含まない前述短鎖ペプチドは、ペプチド結合のことを指す。)
からなる群から選ばれる。
【0017】
もう一つの典型的な実施形態において、前述リンカーは、G-CSF二量体に対する立体障害が前述第一の単量体および前述第二の単量体の配置による適切な折り畳みおよび配座に影響しない、又は顕著に影響しない程度に充分に小さい。
【0018】
一つの典型的な実施形態において、前述有機リンカーは、オキシメチルフェニルアセトアミドメチル(oxymethylphenylacetamidomethyl)(PAM)樹脂、4-オキシメチルフェニルアセトアミドメチル樹脂(4-oxymethyl phenylacetamidomethyl resin)、およびクロロメチルポリスチレン樹脂(chloromethyl polystyrene resin)からなる群から選ばれる。
【0019】
もう一つの典型的な実施形態において、前述第一の単量体と前述第二の単量体は、同じものである。
【0020】
一つの典型的な実施形態において、前述融合タンパク質の生物活性は、
a)好中性顆粒球および幹細胞に作用することによって、好中性顆粒球の分化、成長および成熟を促進すること、および
b)成熟した好中性顆粒球を活性化し、免疫反応に関与させること、
を含む。
【0021】
もう一つの典型的な実施形態において、前述担体タンパク質は、アルブミン、またはヒトIgGのFc断片である。
【0022】
一つの典型的な実施形態において、前述G-CSF二量体の血清半減期は、前述第一の単量体及び/又は前述第二の単量体の血清半減期の3倍以上、5倍以上、または10倍以上である。
【0023】
もう一つの典型的な実施形態において、前述G-CSF二量体は、二つの、SEQ ID NO:2〜7からなる群から選ばれるアミノ酸配列を含有するG-CSF-Fc複合体から製造されたものである。
【0024】
本発明のもう一つは、SEQ ID NO:8のアミノ酸配列を含み、且つ立体障害がないように連結した、第一のポリペプチドおよび第二のポリペプチドからなる融合タンパク質を提供する。
【0025】
一つの典型的な実施形態において、前述第一のポリペプチドおよび前述第二のポリペプチドは、G-CSF単量体である。
【0026】
本発明のもう一つの典型的な実施形態において、前述第一のポリペプチドと前述第二のポリペプチドとの間の立体障害のない連結は、リンカーによるものである。この実施形態において、前述リンカーは、
a)立体障害が前述第一の単量体および前述第二の単量体の配置による適切な折り畳みおよび配座に影響しない、又は顕著に影響しない程度に充分に小さい、有機リンカー、
b)3〜50個のアミノ酸からなる短鎖ペプチド、および
c)式IIのポリペプチド、
-Z-Y-Z- (II)
(ただし、Yは担体タンパク質で、Zは0〜30個のアミノ酸を含む短鎖ペプチドである。一つの実施形態において、アミノ酸を含まない前述短鎖ペプチドは、ペプチド結合のことを指す。)
である。
【0027】
一つの典型的な実施形態において、前述有機リンカーは、オキシメチルフェニルアセトアミドメチル(oxymethylphenylacetamidomethyl)(PAM)樹脂、4-オキシメチルフェニルアセトアミドメチル樹脂(4-oxymethyl phenylacetamidomethyl resin)、およびクロロメチルポリスチレン樹脂(chloromethyl polystyrene resin)からなる群から選ばれる。
【0028】
本発明のもう一つは、活性成分として、二つの、SEQ ID NO:2〜7からなる群から選ばれるアミノ酸配列を含有するG-CSF-Fc複合体から製造された精製したG-CSF二量体を含む薬物組成物を提供する。一つの典型的な実施形態において、前述G-CSF二量体は、純度が90〜100%である。もう一つの典型的な実施形態において、前述G-CSF二量体は、純度が95〜100%である。またもう一つの典型的な実施形態において、前述G-CSF二量体は、純度が99〜100%である。
【0029】
その中の一つの典型的な実施形態において、治療を必要とする対象に有効量の前述薬物組成物を投与することを含む、神経系疾患(neurological disorder)を治療する方法を提供する。一つの典型的な実施形態において、前述の有効量は、0.001-1000mg二量体/回である。もう一つの典型的な実施形態において、前述の疾患は、卒中、脊柱損傷および血液脳関門の損傷が伴う神経系疾患からなる群から選ばれる。
【0030】
その中のもう一つの典型的な実施形態において、治療を必要とする対象に有効量の前述薬物組成物を投与することを含む、神経細胞におけるSTAT3を活性化させる方法を提供する。一つの典型的な実施形態において、前述の有効量は、0.001-1000mg二量体/回である。
【0031】
本発明のもう一つは、SEQ ID NO:2〜7におけるアミノ酸配列を含有する、単離されたポリペプチドを提供する。一つの実施形態において、活性成分として、SEQ ID NO:2〜7におけるアミノ酸配列を含有する精製したポリペプチド、を含む薬物組成物を提供する。一つの典型的な実施形態において、前述ポリペプチドは、純度が90〜100%である。もう一つの典型的な実施形態において、前述ポリペプチドは、純度が95〜100%である。またもう一つの典型的な実施形態において、前述ポリペプチドは、純度が99〜100%である。
【0032】
その中の一つの典型的な実施形態において、治療を必要とする対象に有効量の前述薬物組成物を投与することを含む、神経系疾患を治療する方法を提供する。もう一つの典型的な実施形態において、前述の疾患は、卒中、脊柱損傷および血液脳関門の損傷が伴う神経系疾患からなる群から選ばれる。
【0033】
その中のもう一つの典型的な実施形態において、治療を必要とする対象に有効量の前述薬物組成物を投与することを含む、神経細胞におけるSTAT3を活性化させる方法を提供する。
【0034】
本発明のもう一つは、神経系疾患を治療する薬物の製造における、本発明に係るヒト顆粒球コロニー刺激因子(G-CSF)の二量体または単離されたポリペプチドの用途を提供する。
【0035】
その中の一つの典型的な実施形態において、前述の疾患は、卒中、脊柱損傷および血液脳関門の損傷が伴う神経系疾患からなる群から選ばれる。
【0036】
本発明のもう一つは、神経細胞におけるSTAT3を活性化させる組成物の製造における、本発明に係るヒト顆粒球コロニー刺激因子(G-CSF)の二量体または単離されたポリペプチドの用途を提供する。
【0037】
本発明のもう一つは、
a)SEQ ID NO:9-10からなる群から選ばれるヌクレチオド配列を含み、G-CSF-Fc複合体をコードするDNA配列を含有する発現ベクターで哺乳動物の細胞をトランスフォームする工程、
b)G-CSF-Fc複合体およびG-CSF二量体の発現に適する条件で、前述トランスフォームされた哺乳動物の細胞を培養する工程、および
工程(b)で得られたG-CSF二量体を単離・精製する工程
を含む、SEQ ID NO:2〜7からなる群から選ばれるアミノ酸配列を含むG-CSF-Fc複合体を二つ含有するG-CSF二量体の製造方法を提供する。
【0038】
本発明のもう一つは、
a)SEQ ID NO:9-10からなる群から選ばれるヌクレチオド配列を含み、SEQ ID NO:2〜7からなる群から選ばれるアミノ酸配列を含有するポリペプチドをコードするDNA配列を含む発現ベクターで哺乳動物の細胞をトランスフォームする工程、
b)前述ポリペプチドの発現に適する条件で、前述トランスフォームされた哺乳動物の細胞を培養する工程、および
工程(b)で得られたポリペプチドを単離・精製する工程、
を含む、SEQ ID NO:2〜7からなる群から選ばれるアミノ酸配列を含有する単離されたポリペプチドの製造方法を提供する。
【発明を実施するための形態】
【0040】
本発明者らは、幅広く、深く研究したところ、本発明の新規なG-CSF二量体の製造に成功した。前述新規なG-CSF二量体は、体内における半減期を延ばし、薬物の動態学的性能を改善し、投与の頻度を減少し、体内における薬物活性を増加し、且つ神経機能の回復を促進することができる。また、前述G-CSF二量体は、同じG-CSFのモル比率のG-CSF単量体と比較すると、顕著なSTAT3の活性化能力を示すため、薬物の生物活性を改善し、神経損傷の治療効果を向上させる。前述特徴は、後述の実施例でさらに説明される。
【0041】
G-CSF二量体
本発明の第一の実施形態は、式(I)で示されるG-CSF二量体で、その構造は、
図1〜3に示される。担体タンパク質は、ヒトIgG1、IgG2、IgG3、IgG4のFc断片、およびヒトアルブミンを含む。
【0042】
一つの好ましい実施形態において、
図2〜3に示されるように、G-CSFは、前述担体タンパク質のC-末端またはN-末端に位置してもよい。
【0043】
ここ及び請求項で用いられるように、用語の「リンカー」は、二つの単量体のポリペプチドを連結することで、得られた化合物が生物活性を維持する、または単量体のポリペプチドよりも高い生物活性を有するような分子である。
【0044】
一つの好ましい実施形態において、「リンカー」は、有機リンカーまたはペプチド結合で連結したアミノ酸配列、またはペプチド結合で結合・連結した二つのアミノ酸、または通常のペプチド結合を介しない二つのアミノ酸配列もしくはポリペプチドドメインを指す。リンカーの配列は、前述リンカーで結合する二つのポリペプチドドメインをコードする配列の間にあるポリヌクレオチドの読み枠でコードされる。
【0045】
もう一つの好ましい実施形態において、「リンカー」は、二つのG-CSF単量体の間にある、両者を結合する単鎖ペプチドを指す。リンカーの長さは、特に限定されない。通常、一つのリンカーの長さは5〜50個のアミノ酸残基で、一般的に、リンカーは、二つの単量体の配置による適切な折り畳みおよび配座に影響しない、又は顕著に影響しない。
【0046】
リンカーの例として、有機リンカー、3〜50個のアミノ酸を含む短鎖ペプチドや前述式(II)で示されるポリペプチドを含む。
【0047】
一つの好ましい実施形態において、前述有機リンカーは、立体障害が二つの単量体の配置による適切な折り畳みおよび配座に影響しない、又は顕著に影響しない程度に充分に小さいため、オキシメチルフェニルアセトアミドメチル(oxymethylphenylacetamidomethyl)(PAM)樹脂、4-オキシメチルフェニルアセトアミドメチル樹脂(4-oxymethyl phenylacetamidomethyl resin)、クロロメチルポリスチレン樹脂(chloromethyl polystyrene resin)、またはこれらの組合せでもよい。
【0048】
もう一つの好ましい実施形態において、前述リンカーは、例えば、グリシン、アラニン、プロリンなどの二つの単量体の配置による適切な折り畳みおよび配座に影響しない、又は顕著に影響しない程度に構造が小さいアミノ酸を含む。
【0049】
またもう一つの好ましい実施形態において、前述リンカーは、以下のものからなる群から選ばれるアミノ酸配列を含む。
【0050】
(a)グリシン(Gly)やプロリン(Pro)などの疎水性アミノ酸からなる、3〜15個のアミノ酸残基のアミノ酸配列、例えばGly-Pro-Gly-Pro-Gly-Pro。
【0051】
(b)多回クローニングサイトでコードされるアミノ酸配列。このような配列は、通常、5〜20個のアミノ酸残基を含む。一つの好ましい実施形態において、前述配列は、10〜20個のアミノ酸残基を含む。
【0052】
(c)G-CSF単量体以外のタンパク質由来のアミノ酸配列、例えばIgGまたはアルブミンのアミノ酸配列。
【0053】
(d)上述(a)、(b)および(c)の任意の組合せを含むアミノ酸配列。
【0054】
一つの好ましい実施形態において、前述リンカーの配列は、GSGGGSGGGGSGGGGS(例えば、SEQ ID NO:1における175〜190番目のアミノ酸残基)である。もう一つの好ましい実施形態において、前述リンカーは、ASTKGP(例えば、SEQ ID NO:4における175〜180番目のアミノ酸残基)を有する配列である。
【0055】
一つのより好ましい実施形態において、G-CSF二量体のN-末端またはC-末端にG-CSF単量体の生物活性に影響しないアミノ酸配列を加えてもよい。一つの好ましい実施形態において、これらの加わったアミノ酸配列は、発現(例えばシグナルペプチド)、精製(例えば6×His配列、出芽酵母のα-因子のシグナルペプチドの切断部位)、またはG-CSF二量体の生物活性の向上に有利である。
【0056】
配列表
SEQ ID NO:1は、
図1に示されるように、一方のG-CSF単量体(1〜174番目のアミノ酸残基)がリンカー(175〜190番目のアミノ酸残基)を介してもう一方のG-CSF単量体(191〜364番目のアミノ酸残基)に連結された、G-CSF二量体を表す。
【0057】
SEQ ID NO:2は、
図2aおよび
図2bに示されるように、G-CSF単量体(1〜174番目のアミノ酸残基)、ヒトIgG2のFc断片(191〜418番目のアミノ酸残基)および前述G-CSF単量体と前述Fc断片を連結するペプチド(175〜190番目のアミノ酸残基)を含む、G-CSF二量体を構成するG-CSF-Fc複合体を表す。前述二量体は、二つのG-CSF-Fc複合体が含有するFc断片のペアリングによって構成される。一つの実施形態において、前述Fc断片は、その間に位置する複数のジスルフィド結合でペアリングする。もう一つの実施形態において、前述のジスルフィド結合の数は2又は4である。
【0058】
SEQ ID NO:3は、
図3aおよび
図3bに示されるように、G-CSF単量体(245〜418番目のアミノ酸残基)、ヒトIgG2のFc断片(1〜228番目のアミノ酸残基)および前述G-CSF単量体と前述Fc断片を連結するペプチド(229〜244番目のアミノ酸残基)を含む、G-CSF二量体を構成するG-CSF-Fc複合体を表す。前述二量体は、二つのG-CSF-Fc複合体が含有するFc断片のペアリングによって構成される。一つの実施形態において、前述Fc断片は、その間に位置する複数のジスルフィド結合でペアリングする。もう一つの実施形態において、前述のジスルフィド結合の数は2又は4である。
【0059】
SEQ ID NO:4は、
図2aおよび
図2bに示されるように、G-CSF単量体(1〜174番目のアミノ酸残基)、ヒトIgG2のFc断片(181〜403番目のアミノ酸残基)および前述G-CSF単量体と前述Fc断片を連結するペプチド(175〜180番目のアミノ酸残基)を含む、G-CSF二量体を構成するG-CSF-Fc複合体を表す。SEQ ID NO:4は、SEQ ID NO:2よりも短い前述G-CSF単量体と前述Fc断片を連結するペプチド(10個未満のアミノ酸残基)を有する。そして、SEQ ID NO:
4では、ERKCCの短鎖配列が消されたため、二つのジスルフィド結合が除去されたことで、ヒンジのミスマッチの可能性が少なくなる。前述二量体は、二つのG-CSF-Fc複合体が含有するFc断片のペアリングによって構成される。一つの実施形態において、前述Fc断片は、その間に位置する複数のジスルフィド結合でペアリングする。もう一つの実施形態において、前述のジスルフィド結合の数は2又は4である。
【0060】
SEQ ID NO:5は、
図3aおよび
図3bに示されるように、G-CSF単量体(230〜403番目のアミノ酸残基)、ヒトIgG2のFc断片(1〜223番目のアミノ酸残基)および前述G-CSF単量体と前述Fc断片を連結するペプチド(224〜229番目のアミノ酸残基)を含む、G-CSF二量体を構成するG-CSF-Fc複合体を表す。SEQ ID NO:5は、SEQ ID NO:3よりも短い前述G-CSF単量体と前述Fc断片を連結するペプチド(10個未満のアミノ酸残基)を有する。そして、SEQ ID NO:5では、ERKCCの短鎖配列が消されたため、二つのジスルフィド結合が除去されたことで、ヒンジのミスマッチの可能性が少なくなる。前述二量体は、二つのG-CSF-Fc複合体が含有するFc断片のペアリングによって構成される。一つの実施形態において、前述Fc断片は、その間に位置する複数のジスルフィド結合でペアリングする。もう一つの実施形態において、前述のジスルフィド結合の数は2又は4である。
【0061】
SEQ ID NO:6は、
図2aおよび
図2bに示されるように、G-CSF単量体(1〜174番目のアミノ酸残基)、ヒトIgG2のFc断片(191〜413番目のアミノ酸残基)および前述G-CSF単量体と前述Fc断片を連結するペプチド(175〜190番目のアミノ酸残基)を含む、G-CSF二量体を構成するG-CSF-Fc複合体を表す。SEQ ID NO:6では、SEQ ID NO:2と比較すると、ERKCCの短鎖配列が消されたため、二つのジスルフィド結合が除去されたことで、ヒンジのミスマッチの可能性が少なくなる。前述二量体は、二つのG-CSF-Fc複合体が含有するFc断片のペアリングによって構成される。一つの実施形態において、前述Fc断片は、その間に位置する複数のジスルフィド結合でペアリングする。もう一つの実施形態において、前述のジスルフィド結合の数は2又は4である。
【0062】
SEQ ID NO:7は、
図3aおよび
図3bに示されるように、G-CSF単量体(240〜413番目のアミノ酸残基)、ヒトIgG2のFc断片(1〜223番目のアミノ酸残基)および前述G-CSF単量体と前述Fc断片を連結するペプチド(224〜239番目のアミノ酸残基)を含む、G-CSF二量体を構成するG-CSF-Fc複合体を表す。SEQ ID NO:7では、SEQ ID NO:3と比較すると、ERKCCの短鎖配列が消されたため、二つのジスルフィド結合が除去されたことで、ヒンジのミスマッチの可能性が少なくなる。前述二量体は、二つのG-CSF-Fc複合体が含有するFc断片のペアリングによって構成される。一つの実施形態において、前述Fc断片は、その間に位置する複数のジスルフィド結合でペアリングする。もう一つの実施形態において、前述のジスルフィド結合の数は2又は4である。
【0063】
SEQ ID NO:8は、G-CSF単量体の分子を表す。
【0064】
SEQ ID NO:9は、SEQ ID NO:2のDNA配列を表す。
【0065】
SEQ ID NO:10は、SEQ ID NO:6のDNA配列を表す。
【0066】
製造方法
本発明のG-CSF二量体または融合タンパク質をコードするDNA配列は、全部人工合成としてもよい。或いは、PCR増幅または合成で第一のG-CSF単量体及び/又は第二のG-CSF単量体のDNAコード配列を得た後、得られたものを連結し本発明のG-CSF二量体または融合タンパク質のDNAコード配列を形成してもよい。
【0067】
宿主細胞の発現量を向上させるため、G-CSF二量体のコード配列を修飾してもよい。例えば、宿主細胞のコドンバイアスを利用し、転写および翻訳に不利な配列を除去することができる。一つの好ましい実施形態において、酵母細胞または哺乳動物の細胞のコドンバイアスを利用し、DNAソフトを併用してDNA二量体の遺伝子を検出し、転写および翻訳に不利な配列を除去することができる。一つの好ましい実施形態において、前述除去される配列は、イントロンの切断部位、転写終止配列などでもよい。
【0068】
本発明の新規な融合タンパク質のDNAコード配列を得た後、まず、それを適切な発現ベクターに導入し、適切な宿主細胞に導入する。最後に、トランスフォームされた宿主細胞を培養、精製し、本発明の新規な融合タンパク質を得る。SEQ ID NO:2およびSEQ ID NO:6のDNA配列は、それぞれSEQ ID NO:9および10に示される。
【0069】
ここおよび請求項で用いられるように、「担体」は、プラスミド、コスミド、発現ベクター、クローニングベクター、ウイルスベクターなどを指す。
【0070】
本発明において、本分野で既知の各種類の担体、例えば市販の担体が用いられる。例えば、市販の担体を使用し、本発明の新規な融合タンパク質をコードするヌクレオチド配列を作業できるように発現調節配列に連結することで、タンパク質-発現担体を形成する。
【0071】
ここおよび請求項で用いられるように、「作業できるように連結する」とは、直鎖DNA配列のある部分が同一の直鎖DNA配列の他の部分の生物活性に影響することができることである。例えば、シグナルDNAが前駆体として発現されてポリペプチドの分泌に関与する場合、シグナルDNA(分泌リーダー配列)が前述ポリペプチドに「作業できるように連結する」を言う。プロモーターが配列の転写を制御する場合、前述プロモーターが前述コード配列に「作業できるように連結する」を言う。リボソーム結合部位が翻訳可能な位置に置かれる場合、前述リボソーム結合部位が前述コード配列に「作業できるように連結する」を言う。一般的に、「作業できるように連結する」とは、重要な残基に近いことを意味する。分泌リーダー配列の場合、「作業できるように連結する」とは、読み枠において近いことを意味する。
【0072】
ここおよび請求項で用いられるように、「宿主細胞」とは、原核細胞および真核細胞を指す。常用の原核宿主細胞は、大腸菌(E. coli)、枯草菌(B. subtilis)などを含む。常用の真核宿主細胞は、酵母細胞、昆虫細胞、哺乳動物細胞などを含む。一つの好ましい実施形態において、使用される宿主細胞は真核細胞である。もう一つの好ましい実施形態において、使用される宿主細胞は哺乳動物の細胞である。
【0073】
トランスフォームされた宿主細胞を得た後、本発明の融合タンパク質の発現に適する条件でこの細胞を培養することによって、融合タンパク質を発現させることができる。その後、発現された融合タンパク質を分離する。
【0074】
ここおよび請求項で用いられるように、「神経系障害」または「神経系疾患」とは、卒中、脊柱損傷および血液脳関門の損傷が伴う神経系疾患を指す。
【0075】
薬物組成物および使用方法
本発明のG-CSF二量体は、優れた血清半減期を有するため、G-CSF二量体および主な活性成分としてG-CSF二量体を含む薬物組成物は、神経損傷関連の疾患の治療、およびニューロンの保護に有用である。一つの好ましい実施形態において、前述の神経損傷関連の疾患は、卒中、脊柱損傷および血液脳関門の損傷が伴う神経系疾患からなる群から選ばれる。
【0076】
本発明の薬物組成物は、安全有効量の前述G-CSF二量体と薬理的に許容される賦形剤または担体を含む。「安全有効量」とは、化合物の量が必要とする患者の病状の顕著な改善に充分で、重度な副作用が生じないことを指す。通常、薬物組成物は、製剤毎に0.001〜1000mgのG-CSF二量体を含有する。一つの好ましい実施形態において、薬物組成物は、製剤毎に0.05〜300mgのG-CSF二量体を含有する。もう一つの好ましい実施形態において、薬物組成物は、製剤毎に0.5〜200mgのG-CSF二量体を含有する。
【0077】
本発明の化合物およびその薬学的に許容される塩は、異なる製剤とすることができるが、安全有効量の前述G-CSF二量体またはその薬学的に許容される塩と、薬学的に許容される賦形剤または担体とが含まれる。「安全有効量」とは、化合物の量が必要とする患者の病状の顕著な改善に充分で、重度な副作用が生じないことを指す。化合物の安全有効量は、治療する患者の年齢、病状、治療段階などの具体的な状況によって確定される。
【0078】
「薬学的に許容される賦形剤または担体」とは、ヒトに適用でき、且つ十分な純度および充分に低い毒性を持たなければならない、一種または複数の異なる種類の相溶性固体または液体フィラーまたはゲル物質を指す。ここで、「相溶性」とは、組成物における各成分が本発明の化合物と、またその同士の間で配合することができ、化合物の効果を顕著に低下させないことを指す。薬学的に許容される賦形剤または担体の一部の例として、セルロースおよびその誘導体(例えばカルボキシメチルセルロースナトリウム、エチルセルロースナトリウム、セルロースアセテートなど)、ゼラチン、タルク、固体潤滑剤(例えばステアリン酸、ステアリン酸マグネシウム)、硫酸カルシウム、植物油(例えば大豆油、ゴマ油、落花生油、オリーブオイルなど)、多価アルコール(例えばプロピレングリコール、グリセリン、マンニトール、ソルビトールなど)、乳化剤(例えばツイン(R))、湿潤剤(例えばドデシル硫酸ナトリウム)、着色剤、調味剤、安定剤、酸化防止剤、防腐剤、発熱性物質除去蒸留水などがある。
【0079】
本発明のG-CSF二量体を使用する場合、経口投与、直腸投与、胃腸外(静脈内、筋肉内、又は皮下)投与、および局部投与を含む。
【0080】
経口投与に用いられる固体剤型は、カプセル剤、錠剤、丸剤、散剤、および顆粒剤を含む。これらの固体剤型において、活性化合物は通常、少なくとも一種の不活性賦形剤(又は担体)、たとえばクエン酸ナトリウム、リン酸二カルシウムと混合されるが、或いは、(a)フィラー又は相溶剤、例えば、でん粉、乳糖、ショ糖、グルコース、マンニトールやケイ酸、(b)バインダー、例えば、ヒドロメチルセルロース、アルギン酸塩、ゼラチン、ポリビニルピロリドン、ショ糖やアラビアゴム、(c)保湿剤、例えば、グリセリン、(d)崩壊剤、例えば、寒天、炭酸カルシウム、馬鈴薯澱粉やタピオカ澱粉、アルギン酸、複合ケイ酸塩や炭酸ナトリウム、(e)緩衝剤、例えばパラフィン、(f)吸収促進剤、例えば、アンモニウム化合物、(g)湿潤剤、例えばセタノール、グリセリンモノステアレート、(h)吸着剤、例えば、カオリン、また(i)潤滑剤、例えば、タルク、ステアリン酸カルシウム、ステアリン酸マグネシウム、固体ポリエチレングリコール、ドデシル硫酸ナトリウム、又はこれらの混合物、のような成分のいずれかと混合される。カプセル剤、錠剤および丸剤においても、緩衝剤を含んでもよい。
【0081】
固体剤型、例えば錠剤、ピル、カプセル剤、丸剤や顆粒剤は、コーディングやシェル剤、例えば、腸衣および他の本分野で公知の材料で製造することができる。これらの材料は、不透明剤を含んでもよく、且つこのような組成物において、活性物または化合物の放出は遅延の様態で消化管のある部分で放出してもよい。使用できる包埋成分は、たとえば重合物質やワックス系物質が挙げられる。必要な場合、活性化合物も上述賦形剤のうちの一種または複数種とマイクロカプセルの様態に形成してもよい。
【0082】
経口投与に用いられる液体剤型は、薬学的に許容される乳液、溶液、懸濁液、シロップまたはチンキ剤を含む。活性化合物の他、液体剤型は、本分野で通常使用される不活性希釈剤、例えば、水または他の溶媒、相溶剤及び乳化剤、例えば、エタノール、イソプロパノール、炭酸エチル、酢酸エチル、プロピレングリコール、1,3-ブタンジオール、ジメチルホルムアミドおよび油、特に、綿実油、落花生油、ヒマシ油、オリーブ油、コーン油、ゴマ油またはこれらの混合物などを含んでもよい。
【0083】
これらの不活性希釈剤の他、組成物は添加剤、例えば、湿潤剤、乳化剤、懸濁剤、甘味料、矯味剤や香料を含んでもよい。
【0084】
活性化合物の他、懸濁液は、懸濁剤、例えば、エトキシ化イソオクタデカノール、ポリオキシエチレンソルビトールやソルビタンエステル、微晶質セルロース、メトキシアルミニウム、寒天、またはこれらの混合物などを含んでもよい。
【0085】
胃腸外投与用組成物は、生理学的に許容される無菌の水含有または無水溶液、分散液、懸濁液や乳液、及び再溶解して無菌の注射可能な溶液または分散液にするための無菌粉末を含む。適切な水含有または無水担体、希釈剤、溶媒または賦形剤は、水、エタノール、多価アルコールおよびその適切な混合物を含む。
【0086】
局部投与のための本発明のG-CSF二量体の剤型は、軟膏剤、散剤、湿布剤、噴霧剤や吸入剤を含む。活性成分は、無菌条件で生理学的に許容される担体および任意の防腐剤、緩衝剤、または必要よって駆出剤と一緒に混合される。
【0087】
本発明のG-CSF二量体は、単独で投与してもよいし、或いは任意の薬学的に許容される化合物と併用して投与してもよい。
【0088】
薬物組成物を使用する場合、安全有効量の本発明のG-CSF二量体を治療が必要な哺乳動物(例えばヒト)に投与するが、投与時の用量は薬学的に許容される有効な投与量である。体重60kgのヒトに対し、毎回の投与量は、通常0.01〜300mgである。一つの好ましい実施形態において、投与量は、0.5〜100mgである。実際の用量を決める時、さらに本分野の既知の要素、例えば投与経路、患者の健康状態などを考えなければならない。
【0089】
本発明のG-CSF二量体は、多くの利点があり、以下の点を含むが、これらに限定されない。
【0090】
1.より長い体内における生物半減期。
【0091】
2.神経細胞におけるより強いSTAT3を活性化させる生物活性。
【0092】
3.虚血動物モデルにおいて、一回又は二回の注射だけで、顕著な臨床効果がある。
【0093】
以下、具体的な実施例によって、さらに本発明を説明する。前述説明は、具体的な実施形態を参照したが、本発明がこれらの具体的な要素を変更して実施できることが当業者によって理解されるはずである。したがって、これらの実施例は、本発明の範囲を限定するものではない。下述実施例で具体的な条件が示されていない実験方法は、通常、例えばSambrookら、「モレキュラー・クローニング:研究室マニュアル」(ニューヨーク、コールド・スプリング・ハーバー研究所出版社、1989) に記載の条件などの通常の条件に、或いは、メーカーのお薦めの条件に従う。
【0094】
実施例
本発明のG-CSF二量体は、SEQ ID NO:1で示されるアミノ酸配列を有するか、またはSEQ ID NO:2〜7で示されるアミノ酸配列を含有するG-CSF-Fc複合体を含むもので、構造が
図1〜3の通りで、通常の方法で製造・精製される。実施例1〜3は、具体的な実施方法を説明する。
【0095】
実施例1 rh-G-CSF二量体を発現する哺乳動物ベクターの構築
ヒトG-CSF、リンカーペプチド、およびヒト免疫グロブリン(IgG2)のFc断片を含む全長のDNA配列を合成した。5’末端には、制限酵素HindIII部位、Kozak配列、及びシグナルペプチドを含む配列を、3’末端には、EcoRI部位を含む配列を導入した。G-CSF二量体の全長のDNA配列は、pUC19にクローンされ、pG-CSF-Fcを得た。プラスミドは、E. coli TG1で増殖し、HindIIIEcoRIで消化し、pcDNA3(Invitrogen社)ベクターにサブクローンし、発現ベクターとしてpEX-G-CSF-Fcを得た。pEX-G-CSF-Fcは、直鎖化を経てエレクトロポレーションでCHO細胞にトランスフェクションした。選択培地でトランスフェクションした細胞をスクリーニングし、そしてクローンした。ELISA法で単一クローンのタンパク質のレベルを測定した。G-CSF-Fc二量体の発現レベルが一番高いクローンを凍結して保存し、細胞ライブラリーを作り、且つ組換えタンパク質の生成に用いる。
【0096】
例を挙げて説明すると、上述のヒトG-CSF、リンカーペプチド、およびヒト免疫グロブリン(IgG2)のFc断片を含む全長のDNA配列は、SEQ ID NO:2〜7における相応のアミノ酸配列を有する。同様に、上述の手順に従って得られた発現ベクターのpEX-G-CSF-Fcは、SEQ ID NO:2〜7における相応のアミノ酸配列を有し、pEX-G-CSF-Fcは、直鎖化を経てエレクトロポレーションでCHO細胞にトランスフェクションした。選択培地でトランスフェクションした細胞をスクリーニングし、G-CSF-Fc単量体とG-CSF-Fc二量体の混合物が前述培地で発現され、ELISA法で単一クローンのタンパク質のレベルを測定した。優先的にG-CSF-Fc二量体を発現するクローンを選択し、G-CSF-Fc二量体の発現レベルが一番高いクローンを凍結して保存し、細胞ライブラリーを作り、且つ組換えタンパク質の生成に用いる。
【0097】
実施例2 哺乳動物の細胞で生産されるG-CSF二量体
前述細胞ライブラリーから一本のバイアルの細胞(約1×10
7細胞/mL)を解凍し、10cmの蓋付きシャーレの10mLの基礎培地に接種し、37℃、5%CO
2で約24時間培養した。
【0098】
種の増幅:培養物を振とうフラスコで連続して体積を3〜4倍(例えば10mLから30〜40mLに)増加させ、細胞の密度が1.0〜1.5×10
6細胞/mLで、且つ生存率≧90%の時点で、培養物の体積が300〜400mLとなった。振とうフラスコを120rpm、37℃、5%CO
2で培養した。
【0099】
生物反応器(3L〜10L)における培養物の増幅の第一段階:種が細胞の密度が1.0〜3.0×10
6細胞/mLで、300〜400mL、且つ生存率≧90%まで増幅した時、種増幅培養物を無菌の状態で基礎培地を有する3〜10Lの生物反応器に移し、培養の制御条件は、37℃、pH6.8、約50%溶解酸素、撹拌速度65〜100rpmであった。
【0100】
生物反応器(30L〜100L)における培養物の増幅の第二段階:3〜10Lの生物反応器における細胞の密度が1.0〜3.0×10
6細胞/mLとなって、且つ生存率≧90%となった時、培養物を無菌の状態で基礎培地を有する30〜100Lの生物反応器に移し、培養条件は、37℃、pH6.8、約50%溶解酸素、撹拌速度65〜100rpmであった。収穫の前に補充培地を添加し、12〜48時間培養してグルコースのレベルが1g/Lまたは1g/L未満に制御した。
【0101】
実施例3 組換えヒトG-CSF二量体タンパク質の精製
G-CSF二量体タンパク質は、Protein Aに結合できるヒトFc断片を有するため、アフィニティークロマトグラフィーでG-CSF二量体タンパク質を精製した。生物反応器から収集した上清にG-CSF-Fc多量体(または集合体)、二量体、およびG-CSF-Fc複合体と代謝物が含まれる。生物反応器の培養物から収穫した後、ろ過で細胞培養物の上清を獲得し、室温で一連のクロマトグラフィーカラムを使用して少しずつ精製し、精製した組換え産物を得た。例えば、典型的な組換えプロテインAのセファロースFF(GE Healthcare、製品番号:17-1279-04)カラムおよび50mMクエン酸/クエン酸ナトリウム、0.2M NaClを含む溶離液(pH 3.7〜3.8)を使用し、逆相HPLC分析での純度が>90%の精製G-CSF二量体タンパク質を得た。更なるクロマトグラフィー工程は、Capto Adhereクロマトグラフィーカラムおよび50mM NaAc/HAC、0.2M NaClを含む溶離液(pH 4.5〜5.0)を使用し、さらにSP Sepharose FF(GE Healthcare、製品番号:17-0729-04)を使用し、サンプル緩衝液が50mM NaAc/HAC(pH 4.5〜5.0)で、平衡緩衝液が10mM PB(pH 6.0±0.1)であることを含む。使用される溶離緩衝液が10mM PBおよび0.2M NaCl(pH 7.2±0.1)で、流速が10〜200cm/hrで且つカラムの大きさによって決まる。更なるプロセスは、低pH条件でのウイルスの
不活性化、ろ過、及び透析平衡に関する。
【0102】
G-CSF二量体タンパク質の純度が>95%(逆相HPLCによる検出)で、分子量が47±5Kd(還元型SDS-PAGE分析による検出)と推測された。G-CSF二量体タンパク質をオリゴ糖でグリコシル化し、オリゴ糖が全分子量の2〜10%を占めた。当該タンパク質は、等電点がpH5.8〜pH6.8の間で、最大UV吸収波長が280nmであった。
【0103】
G-CSF二量体融合タンパク質は、用量依存的なM-NSF-60細胞系における増殖の促進およびSTAT3の活性化を含む体外の生物学活性を示した。M-NSF-60細胞系におけるSTAT3の活性化および増殖のED50が0.1〜10ng/mLの間であった。G-CSF二量体のM-NSF-60細胞の増殖への促進は、抗ヒトG-CSF抗体に中和される。また、G-CSF二量体タンパク質は、一次ニューロン細胞のSTAT3を活性化することができる。G-CSF二量体融合タンパク質は、迅速に白血球(WBC)数、正常または好中性顆粒球減少症の動物(マウス、ラット及びサルを含む)の好中性顆粒球数を含む体内の生物学活性を示した。また、G-CSF二量体タンパク質は、体外で一次ニューロン細胞のSTAT3を活性化することができ、且つ急性虚血性卒中ラットモデルの脳梗塞の面積を降下させる。
【0104】
実施例4 G-CSF二量体の体内における半減期
ラットに皮下で100μg/kgの二つのG-CSF-Fc複合体(SEQ ID NO:3)からなる本発明のG-CSF二量体を一回注射し、動態学のパラメーターを算出し、表1に示す。
【0106】
表1から、G-CSF二量体のラット体内における半減期が約7.7時間であったことがわかったが、G-CSF単量体のラット体内における半減期が約2時間である。
【0107】
実施例5 G-CSF二量体の人体内における動態学的性能
健康の男性被験者は、逓増の用量30、60、120、240μg/kgのG-CSF二量体(G-CSF-D、二つのG-CSF-Fc複合体(SEQ ID NO:6)からなる)の一回の皮下注射を受けた。計24名の健康の男性被験者を募り、4つの連続の単回用量のG-CSF-D群(30、60、120、240μg/kg)に分けた。
【0108】
投与前および投与後の0.5、1、2、4、8、16、24、36、48、72、96時間と6(120時間)、7、9、11、13、15日目に、血液サンプルを採取した。血清は分離して-70℃未満で保存した。酵素結合免疫分析法(ELISA、Quantikine ヒトG-CSF ELISAキット、R&D Systerm社、ミネアポリス市、ミネソタ州、製品番号:PDCS50)でG-CSF-Dの血清濃度を検出した。
【0109】
標準の非コンパートメント解析プログラム(WinNonlin v 5.2、Pharsight社、米国)を使用して薬物動態学のパラメーターを算出した。サンプルを収集する実際の時間を薬物動態学のパラメーターの計算に使用した。C
max(サンプリング期間内に観察された最大血中薬物濃度)およびT
max(C
maxが現れた時間)はデータから直接取った。消失速度定数Kel(hr
-1)は少なくとも3点の線形回帰で算出した。血中薬物濃度-時間曲線下の面積(AUC)は、線形台形規則で算出し、ここで、AUC
lastは時間0点から最後の濃度点(last concentration point)のAUCである。AUC
(0-inf)はAUC
last+最後の濃度点/Kelである。できれば、半減期(t
1/2)は、t
1/2=0.693/Kelで算出する。見掛けクリアランス(CL)は用量/AUC
(0-inf)で算出した。
【0110】
表2で示される結果から、G-CSF二量体の人体内おけるt
1/2は43.9と62.8時間の間であったことがわかったが、G-CSF単量体の半減期が約3.5時間である。そのため、G-CSF二量体は顕著に向上した薬物動態学的特性を有する(12倍以上向上)。
【0112】
実施例6 G-CSF二量体のシグナル伝達兼転写活性化因子3(STAT3)に対する活性化作用
血液脳関門がケガまたは損傷を受けたマウスは、G-CSF二量体によって向上した活性化pSTAT3の生物活性を示すために用いられる。まず、被験マウスを異なる群に分けた。対照群では対照物を、G-CSF群ではG-CSF単量体を、G-CSF二量体群ではG-CSF二量体を受ける。この研究に使用されるG-CSF二量体は、二つの、アミノ酸配列がSEQ ID NO:2〜7からなる群から選ばれるいずれかの配列であるG-CSF-Fc複合体を含んでもよい。両群で等モルのG-CSFを受けるように、G-CSF群、G-CSF二量体群でそれぞれ注射するG-CSF、G-CSF二量体の量を決めることができる。試験終了後、マウスを殺め、脳組織を取って崩壊させることができる。通常の手段、例えばELISAキットでリン酸化されたSTAT3(pSTAT3)を検出することができる。
【0113】
上述操作をして得られたデータを分析したところ、G-CSF二量体群では、G-CSF単量体群よりも強いSTAT3を活性化する生物活性を有することが示された。
【0114】
実施例7 体外でのG-CSF二量体の一次ニューロンにおけるSTAT3に対する活性化作用
妊娠17日目の雌SDラットの胎児の大脳を取った。完全なラット胎児の大脳を氷の上に置いたD-Hanks液に入れた。解剖顕微鏡下で、大脳皮質を取り、約1mm
3の大きさに切った。切った大脳皮質を10mLの0.125%トリプシンに置いて37℃で15min消化した。ピペットで数回吹いて分散させ、上清を10%FBS含有DMEMに移してトリプシンによる消化を止めた。細胞を遠心で沈殿させ、12穴プレートで無血清のニューロン培養物の基礎培地(Invitrogen社、製品番号:21103049)およびB27(Invitrogen社、製品番号:17504044)に再懸濁させ、細胞数が5×10
5/穴で、37℃、5%CO
2で8日間インキュベートした。2日に1回培地を替えた。
【0115】
培養8日目の一次ニューロン細胞をそれぞれ対照溶媒、G-CSF、又はG-CSF二量体(G-CSF二量体は二つのG-CSF-Fc複合体(SEQ ID NO:6)からなり、G-CSFモル濃度が同様)で15分間処理した。次に、細胞をPBSで2回洗浄し、20 mM Tris-HCl(pH 7.5)、150 mM NaCl、1 mM Na
2EDTA、1 mM EGTA、1% Triton、2.5 mM ピロリン酸ナトリウム、1 mM β-グリセロリン酸塩、1 mM Na
3VO
4、1 μg/ml ロイペプチン、1 mM PMSF(Invitrogen社、製品番号:9803)を含む崩壊緩衝液で崩壊させた。崩壊液におけるタンパク質濃度をBradfordタンパク質分析法で測定し、細胞崩壊液におけるpSTAT3の含有量をSTAT3 ELISAキット(Invitrogen社、製品番号:KH00481)で検出した。
【0116】
結果は、
図5に示されるように、G-CSFおよびG-CSF二量体(
図5でG-CSF-Dと示す)はいずれもラットの一次ニューロン細胞でpSTAT3を活性化することができ、対照培養物と比べ、pSTAT3の含有量を顕著に向上させた。同じモル数のG-CSFでは、G-CSF二量体で活性化されたpSTAT3はG-CSF単量体で活性化されたものの2倍以上であった。よって、G-CSF二量体は、G-CSF単量体よりも強いSTAT3を活性化する生物活性を有する。
【0117】
実施例8 G-CSF二量体の局所脳虚血動物モデルにおける臨床効果
中大脳動脈MCAが人類の卒中しやすい部位である。中大脳動脈閉塞(MCAO)モデルは、局所脳虚血の研究のための標準動物モデルとされ、主な方法の一つは、中大脳動脈糸閉塞法(thread occlusion of the middle cerebral artery)である。
【0118】
本研究において、雄SDラット(250〜300g)を使用した。ペントバルビタールナトリウム(50〜60mg/kgの用量)を腹腔注射して麻酔した後、ラットを仰向きで固定した。右側の頚部の皮膚を切開し、胸鎖乳突筋と胸骨舌骨筋を鈍的に分離し、右側の総頚動脈(CCA)および迷走神経を露出させた。CCA、外頚動脈(exterial catotid artery、ECA)およびその分枝動脈を結紮した。鼓胞(tympanic bulla)で蝶口蓋動脈の頭蓋外分枝が見えるまで内頚動脈(interial carotid artery、ICA)を分離し、根部でこの分枝を結紮した。ICAの近端に糸を、遠端に動脈クランプを置いた。ECA結紮点(内頚動脈と外頚動脈の分岐部から5mmの箇所)で切り目を入れ、直径が0.22〜0.249mmのナイロン糸をECAを経て切り目に挿入した。挿入前に加熱して挿入端を鈍くし、且つ糸の長さの標識を入れた。糸を締め、動脈クランプを開放し、ナイロン糸をECA、ICAの分岐部を経てICAに入れた。前に17〜19mm進むと、前大脳動脈の開始部に到達した。MCAの開口を塞ぎ、脳組織の局所虚血とした。
【0119】
ラットは、3群に8匹ずつ分けた。局所虚血後30分の時にG-CSF二量体(二つのG-CSF-Fc複合体(SEQ ID NO:3)からなる)を100μg/kg皮下注射した。モデルを構築してから72時間の時に、もう一度G-CSF二量体を注射した。G-CSF群のラットは、組換えヒトG-CSFを毎日16μg/kg、連続5日間注射した。試験終了後、両群の動物に等モル数の用量のG-CSFを注射した。溶媒対照群のラットは、同じ用量のPBSを注射した。虚血90分間後、各群はゆっくりナイロン糸を出した。
【0120】
図4の結果から、等モルの用量では、G-CSF単量体はある程度の臨床効果があったが、G-CSF群と溶媒対照群との間は有意差がなかったことがわかった。一方、等モルの用量を注射する場合、
G-CSF二量体は顕著な臨床効果を示した。
【0121】
実施例9 G-CSF二量体のラット中大脳動脈閉塞(MCAO)モデルにおける効果
本研究にSDラット(雄、体重250〜300g)が用いられた。動物は、溶媒群(MCAO+溶媒、n=12)、G-CSF二量体(G-CSF-D、二つのG-CSF-Fc複合体(SEQ ID NO:6)からなる)(MCAO+G-CSF-D 30μg/kg、n=12)、G-CSF-D(MCAO+rhG-CSF-D 100μg/kg、n=12)、G-CSF(MCAO+40μg/kg、n=12)、仮手術群(外科手術+溶媒、n=12)の5群に分けた。血液再灌流後0.5時間、48時間のとき、G-CSF-Dを皮下注射した。血液再灌流後0.5、12、24、48時間のとき、G-CSFを皮下注射した。麻酔状態で、頚部の真ん中を通って切開し、それぞれ右側の総頚動脈(CCA)、内頚動脈(ICA)および外頚動脈(ECA)を露出させた。商用のモノフィラメント(シリコン被覆)を閉塞糸とし、外頚動脈から挿入した。閉塞糸は、頚動脈の分岐点を超え、内頚動脈に18±0.5mm入った。軽度の抵抗は閉塞糸が既に適当に前大脳動脈まで挿入し、且つ中大脳動脈(MCA)への血液を塞いだ。60分間後、閉塞糸を約10mm抜いて再灌流した。手術中は、ずっとヒーティングパッドでラットの体温を36.5℃に維持した。
【0122】
手術後72時間の時、ラットをもう一度麻酔して首を切った。大脳を取り、冠状切断して厚さが2mmになるように6枚のスライスとした。大脳のスライスを37℃で2%塩化トリフェニルテトラゾリウム(TTC)溶液に30分間インキュベートし、10%に緩衝したホルマリン溶液に入れて固定した。スライスを撮影し、未染色の領域が損傷体積とされる。損傷体積は、Image-Pro Plus 5.1で検出した。
【0123】
結果は、
図6に示されるように、等モル用量のG-CSFの場合、G-CSF二量体を2回投与した群の梗塞面積は、G-CSF単量体を4回投与した群の54%だけであった。ラット卒中モデルにおいて、G-CSF二量体は、G-CSF単量体よりも優れた治療効果を示した。
【0124】
このように、本発明の典型的な実施形態を全体的に説明した。前述説明は、具体的な実施形態を参照したが、本発明がこれらの具体的な要素を変更して実施できることが当業者によって理解されるはずである。そのため、本発明は、これらの実施形態に限定して解釈されるものではない。
【0125】
本出願は、35 U.S.C. § 119(a)に基づき、2010年5月25日に提出した中国特許出願(出願番号CN201010181623.5)の優先権を出張し、その全内容をここに引用し、本発明の明細書の開示として、取り入れる。
【0126】
配列表の引用
同時にハードコピーおよび相応のコンピュータで読み込み可能な形式で提出した配列表は、その全内容をここに引用し、本発明の明細書の開示として、取り入れる。