特許第6114739号(P6114739)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ブリヂストンの特許一覧

<>
  • 特許6114739-タイヤ 図000013
  • 特許6114739-タイヤ 図000014
  • 特許6114739-タイヤ 図000015
  • 特許6114739-タイヤ 図000016
  • 特許6114739-タイヤ 図000017
  • 特許6114739-タイヤ 図000018
  • 特許6114739-タイヤ 図000019
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6114739
(24)【登録日】2017年3月24日
(45)【発行日】2017年4月12日
(54)【発明の名称】タイヤ
(51)【国際特許分類】
   B60C 5/01 20060101AFI20170403BHJP
   B60C 1/00 20060101ALI20170403BHJP
【FI】
   B60C5/01 A
   B60C1/00 D
【請求項の数】6
【全頁数】48
(21)【出願番号】特願2014-502399(P2014-502399)
(86)(22)【出願日】2013年2月28日
(86)【国際出願番号】JP2013055584
(87)【国際公開番号】WO2013129629
(87)【国際公開日】20130906
【審査請求日】2015年12月16日
(31)【優先権主張番号】特願2012-44644(P2012-44644)
(32)【優先日】2012年2月29日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000005278
【氏名又は名称】株式会社ブリヂストン
(74)【代理人】
【識別番号】100079049
【弁理士】
【氏名又は名称】中島 淳
(74)【代理人】
【識別番号】100084995
【弁理士】
【氏名又は名称】加藤 和詳
(74)【代理人】
【識別番号】100099025
【弁理士】
【氏名又は名称】福田 浩志
(72)【発明者】
【氏名】筆本 啓之
(72)【発明者】
【氏名】原田 高志
(72)【発明者】
【氏名】高 瞳
(72)【発明者】
【氏名】本城 温子
【審査官】 増永 淳司
(56)【参考文献】
【文献】 特開2003−104008(JP,A)
【文献】 特開平03−143701(JP,A)
【文献】 特開2003−104006(JP,A)
【文献】 特開2000−336277(JP,A)
【文献】 特開2004−346137(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B60C 5/01
B60C 1/00
(57)【特許請求の範囲】
【請求項1】
樹脂を含む材料で形成される環状のタイヤ骨格体を有するタイヤであって、
前記樹脂材料が、第1の樹脂材料で構成される海相と、前記海相よりも硬く、第2の樹脂材料で構成される島相を含む海島構造を有し、
前記第1の樹脂材料の引張弾性率γ1(JIS K7113:1995に規定され、引張速度200mm/minの条件で測定される引張弾性率)および前記材料中の前記第1の樹脂材料の含有量W1、並びに、前記第2の樹脂材料の引張弾性率γ2(JIS K7113:1995に規定され、引張速度200mm/minの条件で測定される引張弾性率)および前記材料中の前記第2の樹脂材料の含有量W2、が下記式(1)を満たし、
前記第1の樹脂材料は、第1の熱可塑性樹脂を含み、前記第1の熱可塑性樹脂がポリアミド系熱可塑性エラストマーであり、前記第2の樹脂材料がポリエチレン樹脂またはポリフェニレンエーテルであるタイヤ。
0.25≦〔(γ1×W1)/(γ2×W2)〕≦2 式(1)
【請求項2】
前記第1の樹脂材料は、第1の熱硬化性樹脂および可塑剤を含む請求項1に記載のタイヤ。
【請求項3】
前記第1の熱可塑性樹脂と前記第2の樹脂材料との量比が、質量基準で、前記第1の熱可塑性樹脂:前記第2の樹脂材料=60:40〜90:10である請求項1または請求項2に記載のタイヤ。
【請求項4】
前記樹脂材料が、老化防止剤、紫外線吸収剤、難燃剤、及び、帯電防止剤から選択される少なくとも1つを含有する請求項1〜請求項3のいずれか1項に記載のタイヤ。
【請求項5】
前記第2の樹脂材料の引張弾性率が1000MPa以上である請求項1に記載のタイヤ。
【請求項6】
前記タイヤ骨格体の外周部に周方向へ巻回されてなる補強コードを有する請求項1〜請求項5のいずれか1項に記載のタイヤ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、リムに装着されるタイヤにかかり、特に、少なくとも一部が樹脂を含む材料で形成されたタイヤに関する。
【背景技術】
【0002】
従来、乗用車等の車両には、ゴム、有機繊維材料、スチール部材などから構成された空気入りタイヤが用いられている。
【0003】
近年では、軽量化や、成形の容易さ、リサイクルのしやすさから、樹脂材料、特に熱可塑性樹脂や熱可塑性エラストマーなどをタイヤ材料として用いることが検討されている。
例えば、特開2003−104008号公報および特開平03−143701号公報には、熱可塑性の高分子材料を用いて成形された空気入りタイヤが開示されている。
【発明の概要】
【発明が解決しようとする課題】
【0004】
熱可塑性の高分子材料を用いたタイヤは、ゴム製の従来タイヤと比べて、製造が容易で且つ低コストである。しかし、タイヤ骨格体がカーカスプライなどの補強部材を内装しない均一な熱可塑性高分子材料で形成されている場合には、ゴム製の従来タイヤと比べて耐応力、耐内圧等の観点で改良の余地がある。
また、熱可塑性の高分子材料を用いてタイヤを製造する場合、製造効率を高め低コストを実現しつつ従来のゴム製タイヤと比して遜色のない性能を実現することが求められる。
【0005】
上記事情から、樹脂材料を用いて形成され、耐熱性に優れるタイヤが求められている。
【課題を解決するための手段】
【0006】
本発明のタイヤは、樹脂を含む材料で形成される環状のタイヤ骨格体を有するタイヤであって、前記樹脂材料が、第1の樹脂材料で構成される海相と、前記海相よりも硬く、第2の樹脂材料で構成される島相を含む海島構造を有する。
【発明の効果】
【0007】
本発明によれば、耐熱性に優れるタイヤが提供される。
【図面の簡単な説明】
【0008】
図1A】本発明の一実施形態に係るタイヤの一部の断面を示す斜視図である。
図1B】本発明の一実施形態におけるリムに装着したビード部の断面図である。
図2】第1実施形態のタイヤのタイヤケースのクラウン部に補強コードが埋設された状態を示すタイヤ回転軸に沿った断面図である。
図3】コード加熱装置、およびローラ類を用いてタイヤケースのクラウン部に補強コードを埋設する動作を説明するための説明図である。
図4A】本発明の一実施形態に係るタイヤのタイヤ幅方向に沿った断面図である。
図4B】本発明の一実施形態におけるタイヤにリムを嵌合させた状態のビード部のタイヤ幅方向に沿った断面の拡大図である。
図5】第2実施形態のタイヤの補強層の周囲を示すタイヤ幅方向に沿った断面図である。
【発明を実施するための最良の形態】
【0009】
上述のように、本発明のタイヤは、樹脂を含む材料で形成される環状のタイヤ骨格体を有するタイヤであって、前記材料が、第1の樹脂材料で構成される海相と、前記海相よりも硬く、第2の樹脂材料で構成される島相を含む海島構造を有する。
ここで、本発明において、「樹脂を含む材料」は、樹脂を少なくとも含み、さらに樹脂以外の成分を含んでいてもよい物質をいい、樹脂を含む材料が樹脂以外の成分を含有しない場合、樹脂を含む材料は樹脂のみで構成される。以下、「樹脂を含む材料」を樹脂材料ともいう。
また、本明細書において「樹脂」とは、熱可塑性樹脂、熱硬化性樹脂、いわゆるエンジニアリングプラスチックを含む概念であるが、天然ゴムは含まない。さらに、熱可塑性樹脂には、熱可塑性エラストマーが含まれる。
ここで、「エラストマー」とは、結晶性で融点の高いハードセグメント若しくは高い凝集力のハードセグメントを構成するポリマーと非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる樹脂を意味する。
【0010】
本発明のタイヤは、タイヤ骨格体を構成する樹脂材料が、第1の樹脂材料で構成される海相と、前記海相よりも硬く、第2の樹脂材料で構成される島相を含む海島構造を有するため、耐熱性に優れたタイヤとすることができる。
これは、樹脂材料が単に柔らかい材料のみで形成されている場合に比べ、材料中により弾性率の高い材料が存在することにより、樹脂材料の強度が高まる。また、弾性率の高い樹脂材料は、一般に、融点も高い傾向にあり、樹脂材料が高温下に曝されても、軟化し難くい。このように、タイヤ骨格体を構成する樹脂材料が、第1の樹脂材料で構成される海相と、前記海相よりも硬く、第2の樹脂材料で構成される島相を含むことで、樹脂材料の強度が高まり、高温下でも軟化しにくいため、本発明のタイヤは耐熱性に優れると考えられる。
【0011】
タイヤの耐熱性は、例えば、タイヤ骨格体を構成する樹脂材料の貯蔵剪断弾性率G’から判断することができる。例えば、樹脂材料について、50℃における貯蔵剪断弾性率G’(50℃)および0℃における貯蔵剪断弾性率G’(0℃)を測定して、各樹脂材料におけるG’(50℃)/G’(0℃)を算出したとき、G’(50℃)/G’(0℃)が、対比対象の樹脂材料より小さい樹脂材料は、耐熱性に優れる。
【0012】
なお、本発明において、島相が海相よりも硬いとは、島相を構成する第2の樹脂材料の弾性率が、海相を構成する第1の樹脂材料の弾性率よりも大きいことを意味する。
また、上記弾性率は、JIS K7113:1995に規定される引張弾性率(以下、特に特定しない限り本明細書で「弾性率」とは引張弾性率を意味する。)を意味する。
【0013】
さらに、タイヤが樹脂材料で形成されているため、従来のゴム製タイヤで必須工程であった加硫工程を必須とせず、例えば、射出成形等でタイヤ骨格体を成形することができる。更に、樹脂材料をタイヤ骨格体に用いると、従来のゴム製タイヤに比してタイヤの構造を簡素化でき、その結果、タイヤの軽量化を実現することが可能となる。
以下、本発明におけるタイヤ骨格体を構成する樹脂材料について説明し、続いて本発明のタイヤの具体的な実施形態について図を用いて説明する。
【0014】
[樹脂材料]
前記タイヤ骨格体を構成する樹脂材料には、第1の樹脂材料で構成される海相と、前記海相よりも硬く、第2の樹脂材料で構成される島相を含む海島構造が含まれる。
従って、第1の樹脂材料と、第2の樹脂材料とは、それぞれ、海相(連続相)と、島相(非連続相)とに相分離している必要があり、タイヤ骨格体を構成する樹脂材料は、マトリックス相としての海相(第1の樹脂材料)に、島相(第2の樹脂材料)が分散している構造を有している。
【0015】
なお、第2の樹脂材料で構成される島相が第1の樹脂材料で構成される海相中に分散していることは、SEM(走査型電子顕微鏡、scanning electron microscope)を用いた写真観察から確認することができる。
【0016】
樹脂材料が形成する海島構造は、通常、樹脂材料中に占める体積が大きい方が連続相である海相を形成し、体積が小さい方が非連続相である島相を形成する傾向にある。従って、本発明において、海相を構成する第1の樹脂材料の体積(V)と、島相を構成する第2の樹脂材料の体積(V)との比(V/V)は1を超えることが好ましい。なお、通常、海相を構成する第1の樹脂材料の質量(M)と、島相を構成する第2の樹脂材料の質量(M)との比(M/M)も1を超える傾向にある。
【0017】
なお、既述のように、「樹脂材料」は、樹脂を少なくとも含み、さらに樹脂以外の成分を含んでいてもよい材料をいい、樹脂材料が樹脂以外の成分を含有しない場合、樹脂材料は樹脂のみで構成される。また、「樹脂」とは、熱可塑性樹脂、熱硬化性樹脂、いわゆるエンジニアリングプラスチック(スーパーエンジニアリングプラスチックを含む)も包含するが、天然ゴムは含まない。さらに、樹脂には、エラストマーが含まれる。前記「エラストマー」は、結晶性で融点の高いハードセグメント若しくは高い凝集力のハードセグメントを構成するポリマーと非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる樹脂を意味する。
【0018】
さらに、本発明においては、第2の樹脂材料で構成される島相が、第1の樹脂材料で構成される海相よりも硬い。すなわち、第2の樹脂材料が第1の樹脂材料よりも硬い関係であればよい。
【0019】
このように、本発明においては、第1の樹脂材料と第2の樹脂材料とが海島構造となる関係にあり、かつ、第2の樹脂材料が第1の樹脂材料よりも硬い関係であれば、第1の樹脂材料および第2の樹脂材料の種類は特に制限されない。
例えば、結晶性で融点の高いハードセグメントを構成するポリマーと非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料である熱可塑性エラストマーを海相となる第1の樹脂材料として用い、当該熱可塑性エラストマーのハードセグメントを構成するポリマーである熱可塑性樹脂を島相となる第2の樹脂材料として用いることが挙げられる。また、熱硬化性樹脂に対して可塑剤を適用した樹脂材料を海相となる第1の樹脂材料として用い、可塑剤を適用していない熱硬化性樹脂を島相となる第2の樹脂材料として用いることが挙げられる。
【0020】
例えば、前記第1の樹脂材料は、第1の熱可塑性樹脂と、第1の熱硬化性樹脂および可塑剤との少なくとも一方を含む構成とすることができる。
既述のように、タイヤ骨格体を樹脂材料で構成することで、射出成形、プレス成型等の簡易な方法でタイヤを形成することができる。ここで、一般に、熱硬化性樹脂は、加熱により硬化するものであるため、加熱により可塑化する熱可塑性樹脂に比べ、弾性率は高い傾向にある。しかし、熱硬化性樹脂であっても、樹脂材料が熱硬化性樹脂と可塑剤とを含有することで、第2の樹脂材料を柔らかくすることができる。
従って、島相よりも柔らかい海相を構成する第1の樹脂材料には、熱可塑性樹脂(熱可塑性エラストマーを含む)のほかに、熱硬化性樹脂および可塑剤を併用した材料、ならびに、熱可塑性樹脂(熱可塑性エラストマーを含む)と、熱硬化性樹脂および可塑剤との組み合わせを用いることができる。
【0021】
また、前記第2の樹脂材料は、第2の熱可塑性樹脂と第2の熱硬化性樹脂との少なくとも一方を含むことができる。
海相よりも硬い島相を構成する第2の樹脂材料は、特に制限されず、熱硬化性樹脂も、可塑剤により可塑化しなくてもよい。もっとも、熱硬化性樹脂に対する可塑剤の種類ないし量を適宜調整することにより、第1の樹脂材料が、第2の樹脂材料よりも柔らかくなるように調製すれば、第2の樹脂材料を、熱硬化性樹脂および可塑剤を含む樹脂材料としてもよい。
【0022】
前記第1の熱可塑性樹脂は、ポリオレフィン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、及び、動的架橋型熱可塑性エラストマーから選択される少なくとも1つであることが好ましい。
島相よりも柔らかい海相を構成する第1の樹脂材料は、熱可塑性樹脂の中でも弾力性に優れた熱可塑性エラストマーを含有していることが好ましく、中でも、ポリオレフィン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、及び、動的架橋型熱可塑性エラストマーから選択される少なくとも1つを用いることが好ましい。
特に、第1の樹脂材料がポリアミド系熱可塑性エラストマーであり、第2の熱可塑性樹脂がポリエチレン樹脂またはポリフェニレンエーテルである組み合わせが好ましく、ポリエチレン樹脂は、さらに高密度ポリエチレン樹脂であることが好ましい。この場合、第1の熱可塑性樹脂と第2の樹脂材料との量比は、質量基準で、第1の熱可塑性樹脂:第2の樹脂材料=60:40〜90:10であることが好ましく、70:20〜90:10であることがより好ましい。
また、タイヤの耐熱性をより向上する観点から、第1の樹脂材料がポリアミド系熱可塑性エラストマーであり、第2の樹脂材料が引張弾性率1000MPa以上の樹脂材料である組み合わせも好ましい。
【0023】
さらに、前記第1の樹脂材料の引張弾性率γ1および前記材料中の前記第1の樹脂材料の含有量W1、並びに、前記第2の樹脂材料の引張弾性率γ2および前記材料中の前記第2の樹脂材料の含有量W2は、下記式(1)を満たすことが好ましい。
0.25≦〔(γ1×W1)/(γ2×W2)〕≦2 式(1)
(γ1×W1)/(γ2×W2)で表される係数を、弾性率係数とも称する。弾性率係数が0.25〜2の範囲なるように第1の樹脂材料および第2の樹脂材料を選択して用いることで、より耐熱性に優れるタイヤとすることができる。
なお、第1の樹脂材料の引張弾性率γ1および前記第2の樹脂材料の引張弾性率γ2の単位は〔MPa〕であり、前記材料中の前記第1の樹脂材料の含有量W1および前記材料中の前記第2の樹脂材料の含有量W2の単位は〔質量%〕である。
以下、第1の樹脂材料ないし第2の樹脂材料として用い得る樹脂、及び樹脂以外の成分について説明する。
【0024】
〔樹脂〕
樹脂としては、熱可塑性樹脂(熱可塑性エラストマーを含む)、熱硬化性樹脂、及びその他の汎用樹脂のほか、エンジニアリングプラスチック(スーパーエンジニアリングプラスチックを含む)等が挙げられる。これらについて、順次説明する。
【0025】
−熱可塑性樹脂(熱可塑性エラストマーを含む)−
熱可塑性樹脂(熱可塑性エラストマーを含む)とは、温度上昇と共に材料が軟化、流動し、冷却すると比較的硬く強度のある状態になる高分子化合物をいう。
本明細書では、このうち、温度上昇と共に材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有する高分子化合物を熱可塑性エラストマーとし、温度上昇と共に材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有しない高分子化合物をエラストマーでない熱可塑性樹脂として、区別する。
【0026】
熱可塑性樹脂(熱可塑性エラストマーを含む)としては、ポリオレフィン系熱可塑性エラストマー(TPO)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリアミド系熱可塑性エラストマー(TPA)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリエステル系熱可塑性エラストマー(TPC)、及び、動的架橋型熱可塑性エラストマー(TPV)、ならびに、エラストマーでないポリオレフィン系熱可塑性樹脂、エラストマーでないポリスチレン系熱可塑性樹脂、エラストマーでないポリアミド系熱可塑性樹脂、及び、エラストマーでないポリエステル系熱可塑性樹脂等が挙げられる。
【0027】
(ポリオレフィン系熱可塑性エラストマー)
「ポリオレフィン系熱可塑性エラストマー」とは、少なくともポリオレフィンが結晶性で融点の高いハードセグメントを構成し、他のポリマー(例えば、前記ポリオレフィンないし他のポリオレフィン)が非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられる。前記ハードセグメントを形成するポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、アイソタクチックポリプロピレン、ポリブテン等が挙げられる。
ポリオレフィン系熱可塑性エラストマーを、単に「TPO」(ThermoPlastic Olefin elastomer)と称することもある。
【0028】
ポリオレフィン系熱可塑性エラストマーとしては、特に限定されるものではないが、結晶性のポリオレフィンが融点の高いハードセグメントを構成し、非晶性のポリマーがガラス転移温度の低いソフトセグメントを構成している共重合体が挙げられる。
【0029】
前記ポリオレフィン系熱可塑性エラストマーとしては、オレフィン−α−オレフィンランダム共重合体、オレフィンブロック共重合体等が挙げられ、例えば、プロピレンブロック共重合体、エチレン−プロピレン共重合体、プロピレン−1−ヘキセン共重合体、プロピレン−4−メチル−1ペンテン共重合体、プロピレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−4−メチル−ペンテン共重合体、エチレン−1−ブテン共重合体、1−ブテン−1−ヘキセン共重合体、1−ブテン−4−メチル−ペンテン、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−メタクリル酸エチル共重合体、エチレン−メタクリル酸ブチル共重合体、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体、エチレン−ブチルアクリレート共重合体、プロピレン−メタクリル酸共重合体、プロピレン−メタクリル酸メチル共重合体、プロピレン−メタクリル酸エチル共重合体、プロピレン−メタクリル酸ブチル共重合体、プロピレン−メチルアクリレート共重合体、プロピレン−エチルアクリレート共重合体、プロピレン−ブチルアクリレート共重合体、エチレン−酢酸ビニル共重合体、プロピレン−酢酸ビニル共重合体等が挙げられる。
【0030】
前記ポリオレフィン系熱可塑性エラストマーとしては、プロピレンブロック共重合体、エチレン−プロピレン共重合体、プロピレン−1−ヘキセン共重合体、プロピレン−4−メチル−1ペンテン共重合体、プロピレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−4−メチル−ペンテン共重合体、エチレン−1−ブテン共重合体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−メタクリル酸エチル共重合体、エチレン−メタクリル酸ブチル共重合体、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体、エチレン−ブチルアクリレート共重合体、プロピレン−メタクリル酸共重合体、プロピレン−メタクリル酸メチル共重合体、プロピレン−メタクリル酸エチル共重合体、プロピレン−メタクリル酸ブチル共重合体、プロピレン−メチルアクリレート共重合体、プロピレン−エチルアクリレート共重合体、プロピレン−ブチルアクリレート共重合体、エチレン−酢酸ビニル共重合体、プロピレン−酢酸ビニル共重合体が好ましく、エチレン−プロピレン共重合体、プロピレン−1−ブテン共重合体、エチレン−1−ブテン共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体が更に好ましい。
また、エチレンとプロピレンといったように2種以上のポリオレフィン樹脂を組み合わせて使用してもよい。また、前記ポリオレフィン系熱可塑性エラストマー中のポリオレフィン含率は、50質量%以上100質量%以下が好ましい。
【0031】
前記ポリオレフィン系熱可塑性エラストマーの数平均分子量としては、5,000〜10,000,000であることが好ましい。ポリオレフィン系熱可塑性エラストマーの数平均分子量が5,000〜10,000,000にあると、樹脂材料の機械的物性が十分であり、加工性にも優れる。同様の観点から、7,000〜1,000,000であることが更に好ましく、10,000〜1,000,000が特に好ましい。これにより、樹脂材料の機械的物性及び加工性を更に向上させることができる。また、前記ソフトセグメントを構成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、200〜6000が好ましい。更に、前記ハードセグメント(x)及びソフトセグメント(y)の質量比(x:y)は、成形性の観点から、50:50〜95:5が好ましく、50:50〜90:10が更に好ましい。
【0032】
ポリオレフィン系熱可塑性エラストマーは、上記ハードセグメントを形成するポリマーおよびソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
【0033】
−酸変性オレフィン系熱可塑性エラストマー−
「酸変性ポリオレフィン系熱可塑性エラストマー」は、未変性のポリオレフィン系熱可塑性エラストマーに、カルボン酸基、硫酸基、燐酸基等の酸性基を有する不飽和化合物を結合させて酸変性させたポリオレフィン系熱可塑性エラストマーを意味する。酸変性ポリオレフィン系熱可塑性エラストマーは、例えば、不飽和カルボン酸や不飽和カルボン酸無水物の不飽和結合部位をポリオレフィン系熱可塑性エラストマーに結合(例えば、グラフト重合)させることで得ることができる。
【0034】
酸性基を有する(不飽和)化合物としては、熱可塑性エラストマーの劣化抑制の観点からは、弱酸基であるカルボン酸基を有する化合物が好ましく、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等が挙げられる。
【0035】
上記のようなポリオレフィン系熱可塑性エラストマーとしては、例えば、市販品の三井化学社製の「タフマー」シリーズ(例えば、A0550S、A1050S、A4050S、A1070S、A4070S,A35070S、A1085S、A4085S、A7090、A70090、MH7007、MH7010、XM−7070,XM−7080、BL4000、BL2481、BL3110、BL3450、P−0275、P−0375、P−0775、P−0180、P−0280、P−0480、P−0680)、三井・デュポンポリケミカル(株)「ニュクレル」シリーズ(例えば、AN4214C、AN4225C、AN42115C、N0903HC、N0908C、AN42012C、N410、N1050H、N1108C、N1110H、N1207C、N1214、AN4221C、N1525、N1560、N0200H、AN4228C、AN4213C、N035C、「エルバロイAC」シリーズ(例えば、1125AC、1209AC、1218AC、1609AC、1820AC、1913AC、2112AC、2116AC、2615AC、2715AC、3117AC、3427AC、3717AC)、住友化学(株)「アクリフト」シリーズ、「エバテート」シリーズ、東ソー(株)「ウルトラセン」シリーズ等を用いることができる。
更に、前記ポリオレフィン系熱可塑性エラストマーとしては、例えば、市販品のプライムポリマー製の「プライムTPO」シリーズ(例えば、E−2900H、F-3900H、E−2900、F−3900、J−5900、E−2910、F−3910、J−5910、E−2710、F−3710、J−5910、E−2740、F−3740、R110MP、R110E、T310E、M142E等)等も用いることができる。
【0036】
(ポリスチレン系熱可塑性エラストマー)
ポリスチレン系熱可塑性エラストマーは、少なくともポリスチレンがハードセグメントを構成し、他のポリマー(例えば、ポリブタジエン、ポリイソプレン、ポリエチレン、水添ポリブタジエン、水添ポリイソプレン等)がガラス転移温度の低いソフトセグメントを構成している材料が挙げられる。また、ポリスチレン系熱可塑性エラストマーとしては、加硫されたSBR樹脂等の合成ゴムを用いてもよい。
ポリスチレン系熱可塑性エラストマーを「TPS」(ThermoPlastic Styrene elastomer)と称することもある。
【0037】
ポリスチレン系熱可塑性エラストマーとしては、酸基によって変性されている酸変性ポリスチレン系熱可塑性エラストマー、または、未変性のポリスチレン系熱可塑性エラストマーのいずれをも用いることができる。
【0038】
前記ハードセグメントを形成するポリスチレンとしては、例えば、公知のラジカル重合法、イオン性重合法で得られるものが好適に使用でき、例えばアニオンリビング重合を持つポリスチレンが挙げられる。また、前記ソフトセグメントを形成するポリマーとしては、例えば、ポリブタジエン、ポリイソプレン、ポリ(2,3−ジメチル−ブタジエン)等が挙げられる。また、酸変性ポリスチレン系熱可塑性エラストマーは、後述するように未変性のポリスチレン系熱可塑性エラストマーを酸変性することで得られる。
【0039】
上述のハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。この中でもポリスチレン/ポリブタジエンの組合せ、ポリスチレン/ポリイソプレンの組合せが好ましい。また、熱可塑性エラストマーの意図しない架橋反応を抑制するため、ソフトセグメントは水素添加されていることが好ましい。
【0040】
前記ハードセグメントを構成するポリマー(ポリスチレン)の数平均分子量としては、5000〜500000が好ましく、10000〜200000が好ましい。
また、前記ソフトセグメントを構成するポリマーの数平均分子量としては、5000〜1000000が好ましく、10000〜800000が更に好ましく、30000〜500000が特に好ましい。更に、前記ハードセグメント(x)およびソフトセグメント(y)との体積比(x:y)は、成形性の観点から、5:95〜80:20が好ましく、10:90〜70:30が更に好ましい。
【0041】
前記ポリスチレン系熱可塑性エラストマーは、前記ハードセグメントを形成するポリマーおよびソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
前記ポリスチレン系熱可塑性エラストマーとしては、スチレン−ブタジエン系共重合体[SBS(ポリスチレン−ポリ(ブチレン)ブロック−ポリスチレン)、SEBS(ポリスチレン−ポリ(エチレン/ブチレン)ブロック−ポリスチレン)]、スチレン−イソプレン共重合体[ポリスチレン−ポリイソプレンブロック−ポリスチレン)、スチレン−プロピレン系共重合体[SEP(ポリスチレン−(エチレン/プロピレン)ブロック)、SEPS(ポリスチレン−ポリ(エチレン/プロピレン)ブロック−ポリスチレン)、SEEPS(ポリスチレン−ポリ(エチレン−エチレン/プロピレン)ブロック−ポリスチレン)、SEB(ポリスチレン(エチレン/ブチレン)ブロック)等が挙げられ、SEBSが特に好ましい。
【0042】
前記未変性ポリスチレン系熱可塑性エラストマーとしては、例えば、市販品の旭化成社製の「タフテック」シリーズ(例えば、H1031、H1041、H1043、H1051、H1052、H1053、H1062、H1082、H1141、H1221、H1272)、(株)クラレ製のSEBS(「ハイブラー」5127、5125等)、SEPS(「セプトン」2002、2063、S2004、S2006等)等を用いることができる。
【0043】
−酸変性ポリスチレン系熱可塑性エラストマー−
「酸変性ポリスチレン系熱可塑性エラストマー」は、未変性のポリスチレン系熱可塑性エラストマーに、カルボン酸基、硫酸基、燐酸基等の酸性基を有する不飽和化合物を結合させて酸変性させたポリスチレン系熱可塑性エラストマーを意味する。酸変性ポリスチレン系熱可塑性エラストマーは、例えば、不飽和カルボン酸や不飽和カルボン酸無水物の不飽和結合部位をポリスチレン系熱可塑性エラストマーに結合(例えば、グラフト重合)させることで得ることができる。
【0044】
酸性基を有する(不飽和)化合物としては、熱可塑性エラストマーの劣化抑制の観点からは、弱酸基であるカルボン酸基を有する化合物が好ましく、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等が挙げられる。
【0045】
前記酸変性ポリスチレン系熱可塑性エラストマーとしては、例えば、旭化成社製、タフテック、例えば、M1943、M1911、M1913、Kraton社製、FG19181G等が挙げられる。
【0046】
酸変性ポリスチレン系熱可塑性エラストマーの酸価は、0mg(CHONa)/gを超え20mg(CHONa)/g以下であることが好ましく、0mg(CHONa)/gを超え17mg(CHONa)/g以下であることがさらに好ましく、0mg(CHONa)/gを超え15mg(CHONa)/g以下であることが特に好ましい。
【0047】
(ポリアミド系熱可塑性エラストマー)
本発明において、「ポリアミド系熱可塑性エラストマー」とは、結晶性で融点の高いハードセグメントを構成するポリマーと非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料であって、ハードセグメントを構成するポリマーの主鎖にアミド結合(−CONH−)を有するものを意味する。
ポリアミド系熱可塑性エラストマーを、単に「TPA」(ThermoPlastic Amid elastomer)と称することもある。
【0048】
前記ポリアミド系熱可塑性エラストマーは、少なくともポリアミドが結晶性で融点の高いハードセグメントを構成し、他のポリマー(例えば、ポリエステルまたはポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられる。また、ポリアミド系熱可塑性エラストマーはハードセグメントおよびソフトセグメントの他に、ジカルボン酸等の鎖長延長剤を用いてもよい。前記ハードセグメントを形成するポリアミドとしては、例えば、下記一般式(1)または一般式(2)で表されるモノマーによって生成されるポリアミドを挙げることができる。
【0049】
【化1】
【0050】
一般式(1)中、Rは、炭素数2〜20の炭化水素の分子鎖、または、炭素数2〜20のアルキレン基を表す。
【0051】
【化2】
【0052】
一般式(2)中、Rは、炭素数3〜20の炭化水素の分子鎖、または、炭素数3〜20のアルキレン基を表す。
【0053】
一般式(1)中、Rとしては、炭素数3〜18の炭化水素の分子鎖または炭素数3〜18のアルキレン基が好ましく、炭素数4〜15の炭化水素の分子鎖または炭素数4〜15のアルキレン基が更に好ましく、炭素数10〜15の炭化水素の分子鎖または炭素数10〜15のアルキレン基が特に好ましい。また、一般式(2)中、Rとしては、炭素数3〜18の炭化水素の分子鎖または炭素数3〜18のアルキレン基が好ましく、炭素数4〜15の炭化水素の分子鎖または炭素数4〜15のアルキレン基が更に好ましく、炭素数10〜15の炭化水素の分子鎖または炭素数10〜15のアルキレン基が特に好ましい。
前記一般式(1)または一般式(2)で表されるモノマーとしては、ω−アミノカルボン酸やラクタムが挙げられる。また、前記ハードセグメントを形成するポリアミドとしては、これらω−アミノカルボン酸やラクタムの重縮合体や、ジアミンとジカルボン酸との共縮重合体等が挙げられる。
【0054】
前記ω−アミノカルボン酸としては、6−アミノカプロン酸、7−アミノヘプタン酸、8−アミノオクタン酸、10−アミノカプリン酸、11−アミノウンデカン酸、12−アミノドデカン酸などの炭素数5〜20の脂肪族ω−アミノカルボン酸等を挙げることができる。また、ラクタムとしては、ラウリルラクタム、ε−カプロラクタム、ウデカンラクタム、ω−エナントラクタム、2−ピロリドンなどの炭素数5〜20の脂肪族ラクタムなどを挙げることができる。
前記ジアミンとしては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4−トリメチルヘキサメチレンジアミン、2,4,4−トリメチルヘキサメチレンジアミン、3−メチルペンタメチレンジアミン、メタキシレンジアミンなどの炭素数2〜20の脂肪族ジアミンなどのジアミン化合物を挙げることができる。また、ジカルボン酸は、HOOC−(R)m−COOH(R:炭素数3〜20の炭化水素の分子鎖、m:0または1)で表すことができ、例えば、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸などの炭素数2〜20の脂肪族ジカルボン酸を挙げることができる。
前記ハードセグメントを形成するポリアミドとしては、ラウリルラクタム、ε−カプロラクタムまたはウデカンラクタムを開環重縮合したポリアミドを好ましく用いることができる。
【0055】
また、前記ソフトセグメントを形成するポリマーとしては、例えば、ポリエステル、ポリエーテルが挙げられ、例えば、ポリエチレングリコール、プリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ABA型トリブロックポリエーテル等が挙げられ、これらを単独でまたは2種以上を用いることができる。また、ポリエーテルの末端にアニモニア等を反応させることによって得られるポリエーテルジアミン等を用いることができる。
ここで、「ABA型トリブロックポリエーテル」とは、下記一般式(3)に示されるポリエーテルを意味する。
【0056】
【化3】
【0057】
一般式(3)中、xおよびzは、1〜20の整数を表す。yは、4〜50の整数を表す。
【0058】
前記一般式(3)において、xおよびzとしては、それぞれ、1〜18の整数が好ましく、1〜16の整数が更に好ましく、1〜14の整数が特に好ましく、1〜12の整数が最も好ましい。また、前記一般式(3)において、yとしては、それぞれ、5〜45の整数が好ましく、6〜40の整数が更に好ましく、7〜35の整数が特に好ましく、8〜30の整数が最も好ましい。
【0059】
前記ハードセグメントと前記ソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。この中でも、ラウリルラクタムの開環重縮合体/ポリエチレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリプロピレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリテトラメチレンエーテルグリコールの組合せ、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せ、が好ましく、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せが特に好ましい。
【0060】
前記ハードセグメントを構成するポリマー(ポリアミド)の数平均分子量としては、溶融成形性の観点から、300〜30000が好ましい。また、前記ソフトセグメントを構成するポリマーの数平均分子量としては、強靱性および低温柔軟性の観点から、200〜20000が好ましい。更に、前記ハードセグメント(x)およびソフトセグメント(y)との質量比(x:y)は、成形性の観点から、50:50〜90:10が好ましく、50:50〜80:20が更に好ましい。
【0061】
前記ポリアミド系熱可塑性エラストマーは、前記ハードセグメントを形成するポリマーおよびソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
【0062】
前記ポリアミド系熱可塑性エラストマーとしては、例えば、市販品の宇部興産(株)の「UBESTA XPA」シリーズ(例えば、XPA9063X1、XPA9055X1、XPA9048X2、XPA9048X1、XPA9040X1、XPA9040X2XPA9044等)、ダイセル・エポニック(株)の「べスタミド」シリーズ(例えば、E40−S3、E47−S1、E47−S3、E55−S1、E55−S3、EX9200、E50−R2)等を用いることができる。
【0063】
(ポリウレタン系熱可塑性エラストマー)
ポリウレタン系熱可塑性エラストマーは、少なくともポリウレタンが物理的な凝集によって疑似架橋を形成しているハードセグメントを構成し、他のポリマーが非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられる。
ポリウレタン系熱可塑性エラストマーを、単に「TPU」(ThermoPlastic Urethan elastomer)と称することもある。
【0064】
ポリウレタン系熱可塑性エラストマーとしては、具体的には、例えば、下記構成単位(U−1)で表される単位構造を含むソフトセグメントと、下記構成単位(U−2)で表される単位構造を含むハードセグメントとを含む共重合体として表すことができる。
【0065】
【化4】
【0066】
前記構成単位(U−1)および構成単位(U−2)中、Pは、長鎖脂肪族ポリエーテルまたは長鎖脂肪族ポリエステルを表す。Rは、脂肪族炭化水素、脂環族炭化水素、芳香族炭化水素を表す。P’は、短鎖脂肪族炭化水素、脂環族炭化水素、または、芳香族炭化水素を表す。
【0067】
前記構成単位(U−1)中、Pで表される長鎖脂肪族ポリエーテルおよび長鎖脂肪族ポリエステルとしては、例えば、分子量500〜5000のものを使用することができる。前記Pは、前記Pで表される長鎖脂肪族ポリエーテルおよび長鎖脂肪族ポリエステルを含むジオール化合物に由来する。このようなジオール化合物としては、例えば、分子量が前記範囲内にある、ポリエチレングリコール、プリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリ(ブチレンアジベート)ジオール、ポリ−ε−カプロラクトンジオール、ポリ(ヘキサメチレンカーボネート)ジオール、前記ABA型トリブロックポリエーテル〔前記一般式(3)に示されるポリエーテル〕等が挙げられる。
これらは単独で使用されてもよく、また2種以上が併用されてもよい。
【0068】
前記構成単位(U−1)および構成単位(U−2)中、前記Rは、前記Rで表される脂肪族炭化水素、脂環族炭化水素または芳香族炭化水素を含むジイソシアネート化合物に由来する。前記Rで表される脂肪族炭化水素を含む脂肪族ジイソシアネート化合物としては、例えば、1,2−エチレンジイソシアネート、1,3−プロピレンジイソシアネート、1,4−ブタンジイソシアネート、および1,6−ヘキサメチレンジイソシアネート等が挙げられる。
また、前記Rで表される脂環族炭化水素を含むジイソシアネート化合物としては、例えば、1,4−シクロヘキサンジイソシアネートおよび4,4−シクロヘキサンジイソシアネート等が挙げられる。更に、前記Rで表される芳香族炭化水素を含む芳香族ジイソシアネート化合物としては例えば、4,4’−ジフェニルメタンジイソシアネート、トリレンジイソシアネートが挙げられる。
これらは単独で使用されてもよく、また2種以上が併用されてもよい。
【0069】
前記構成単位(U−2)中、P’ で表される短鎖脂肪族炭化水素、脂環族炭化水素、または、芳香族炭化水素としては、例えば、分子量500未満のものを使用することができる。また、前記P’は、前記P’ で表される短鎖脂肪族炭化水素、脂環族炭化水素または芳香族炭化水素を含むジオール化合物に由来する。前記P’で表される短鎖脂肪族炭化水素を含む脂肪族ジオール化合物としては、グリコールおよびポリアルキレングリコールが挙げられ、例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,4−ブタンジオール、1,3−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオールおよび1,10−デカンジオールが挙げられる。
また、前記P’で表される脂環族炭化水素を含む脂環族ジオール化合物としては、例えば、シクロペンタン−1,2−ジオール、シクロヘキサン−1,2−ジオール、シクロヘキサン−1,3−ジオール、シクロヘキサン−1,4−ジオール、およびシクロヘキサン−1,4−ジメタノール等が挙げられる。
更に、前記P’で表される芳香族炭化水素を含む芳香族ジオール化合物としては、例えば、ヒドロキノン、レゾルシン、クロロヒドロキノン、ブロモヒドロキノン、メチルヒドロキノン、フェニルヒドロキノン、メトキシヒドロキノン、フェノキシヒドロキノン、4,4’−ジヒドロキシビフェニル、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシジフェニルサルファイド、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシベンゾフェノン、4,4’−ジヒドロキシジフェニルメタン、ビスフェノールA、1,1−ジ(4−ヒドロキシフェニル)シクロヘキサン、1,2−ビス(4−ヒドロキシフェノキシ)エタン、1,4−ジヒドロキシナフタリン、および2,6−ジヒドロキシナフタリン等が挙げられる。
これらは単独で使用されてもよく、また2種以上が併用されてもよい。
【0070】
前記ハードセグメントを構成するポリマー(ポリウレタン)の数平均分子量としては、溶融成形性の観点から、300〜1500が好ましい。また、前記ソフトセグメントを構成するポリマーの数平均分子量としては、ポリウレタン系熱可塑性エラストマーの柔軟性および熱安定性の観点から、500〜20000が好ましく、500〜5000が更に好ましく、特に好ましくは500〜3000である。また、前記ハードセグメント(x)およびソフトセグメント(y)との質量比(x:y)は、成形性の観点から、15:85〜90:10が好ましく、30:70〜90:10が更に好ましい。
前記ポリウレタン系熱可塑性エラストマーは、前記ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。前記ポリウレタン系熱可塑性エラストマーとしては、例えば、特開平5−331256に記載の熱可塑性ポリウレタンを用いることができる。
前記ポリウレタン系熱可塑性エラストマーとして、具体的には、芳香族ジオールと芳香族ジイソシアネートとからなるハードセグメントと、ポリ炭酸エステルからなるソフトセグメントの組合せが好ましく、トリレンジイソシアネート(TDI)/ポリエステル系ポリオール共重合体、TDI/ポリエーテル系ポリオール共重合体、TDI/カプロラクトン系ポリオール共重合体、TDI/ポリカーボネート系ポリオール共重合体、4,4’−ジフェニルメタンジイソシアネート(MDI)/ポリエステル系ポリオール共重合体、MDI/ポリエーテル系ポリオール共重合体、MDI/カプロラクトン系ポリオール共重合体、MDI/ポリカーボネート系ポリオール共重合体、MDI+ヒドロキノン/ポリヘキサメチレンカーボネート共重合体が好ましく、TDI/ポリエステル系ポリオール共重合体、TDI/ポリエーテル系ポリオール共重合体、MDI/ポリエステルポリオール共重合体、MDI/ポリエーテル系ポリオール共重合体、MDI+ヒドロキノン/ポリヘキサメチレンカーボネート共重合体が更に好ましい。
【0071】
また、前記ポリウレタン系熱可塑性エラストマーとしては、例えば、市販品のBASF社製の「エラストラン」シリーズ(例えば、ET680、ET880、ET690、ET890等)、(株)クラレ社製「クラミロンU」シリーズ(例えば、2000番台、3000番台、8000番台、9000番台)、日本ミラクトラン(株)製の「ミラクトラン」シリーズ(例えば、XN−2001、XN−2004、P390RSUP、P480RSUI、P26MRNAT、E490、E590、P890)等を用いることができる。
【0072】
(ポリエステル系熱可塑性エラストマー)
ポリエステル系熱可塑性エラストマーは、少なくともポリエステルが結晶性で融点の高いハードセグメントを構成し、他のポリマー(例えば、ポリエステルまたはポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられる。
ポリエステル系熱可塑性エラストマーを「TPC」(ThermoPlastic polyester elastomer)と称することもある。
【0073】
前記ハードセグメントを形成するポリエステルとしては、芳香族ポリエステルを用いることができる。芳香族ポリエステルは、例えば、芳香族ジカルボン酸またはそのエステル形成性誘導体と脂肪族ジオールとから形成することができる。前記芳香族ポリエステルとしては、好ましくは、テレフタル酸およびまたはジメチルテレフタレートと1,4−ブタンジオールから誘導されるポリブチレンテレフタレートであり、更に、イソフタル酸、フタル酸、ナフタレン−2,6−ジカルボン酸、ナフタレン−2,7−ジカルボン酸、ジフェニル−4,4’−ジカルボン酸、ジフェノキシエタンジカルボン酸、5−スルホイソフタル酸、あるいはこれらのエステル形成性誘導体などのジカルボン酸成分と、分子量300以下のジオール、例えば、エチレングリコール、トリメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、デカメチレングリコールなどの脂肪族ジオール、1,4−シクロヘキサンジメタノール、トリシクロデカンジメチロールなどの脂環式ジオール、キシリレングリコール、ビス(p−ヒドロキシ)ジフェニル、ビス(p−ヒドロキシフェニル)プロパン、2,2−ビス[4−(2−ヒドロキシエトキシ)フェニル]プロパン、ビス[4−(2−ヒドロキシ)フェニル]スルホン、1,1−ビス[4−(2−ヒドロキシエトキシ)フェニル]シクロヘキサン、4,4’−ジヒドロキシ−p−ターフェニル、4,4’−ジヒドロキシ−p−クオーターフェニルなどの芳香族ジオールなどから誘導されるポリエステル、あるいはこれらのジカルボン酸成分およびジオール成分を2種以上併用した共重合ポリエステルであってもよい。また、3官能以上の多官能カルボン酸成分、多官能オキシ酸成分および多官能ヒドロキシ成分などを5モル%以下の範囲で共重合することも可能である。
前記ハードセグメントを形成するポリエステルとしては、例えば、ポリエチレンテレフタレート、プリブチレンテレフタレート、ポリメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられ、ポリブチレンテレフタレートが好ましい。
【0074】
また、前記ソフトセグメントを形成するポリマーとしては、例えば、脂肪族ポリエステル、脂肪族ポリエーテルが挙げられる。
前記脂肪族ポリエーテルとしては、ポリ(エチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドの共重合体、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加重合体、エチレンオキシドとテトラヒドロフランの共重合体等が挙げられる。
前記脂肪族ポリエステルとしては、ポリ(ε−カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペートなどが挙げられる。
これらの脂肪族ポリエーテルおよび脂肪族ポリエステルのなかでも、得られるポリエステルブロック共重合体の弾性特性の観点から、ポリ(テトラメチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物、ポリ(ε−カプロラクトン)、ポリブチレンアジペート、ポリエチレンアジペートなどが好ましい。
【0075】
また、前記ソフトセグメントを構成するポリマーの数平均分子量としては、強靱性および低温柔軟性の観点から、300〜6000が好ましい。更に、前記ハードセグメント(x)およびソフトセグメント(y)との質量比(x:y)は、成形性の観点から、99:1〜20:80が好ましく、98:2〜30:70が更に好ましい。
【0076】
上述のハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。この中でもハードセグメントがポリブチレンテレフタレート、ソフトセグメント脂肪族ポリエーテルの組み合わせが好ましく、ハードセグメントがポリブチレンテレフタレート、ソフトセグメントがポリ(エチレンオキシド)グリコールが更に好ましい。
【0077】
前記ポリエステル系熱可塑性エラストマーとしては、例えば、市販品の東レ・デュポン製の「ハイトレル」シリーズ(例えば、3046、5557、6347、4047、4767等)、東洋紡社製「ベルプレン」シリーズ(P30B、P40B、P40H、P55B、P70B、P150B、P280B、P450B、P150M、S1001、S2001、S5001、S6001、S9001等))を用いることができる。
【0078】
上述の熱可塑性エラストマーは、前記ハードセグメントを形成するポリマーおよびソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
【0079】
次に、エラストマーでない各種熱可塑性樹脂について説明する。
【0080】
(エラストマーでないポリオレフィン系熱可塑性樹脂)
エラストマーでないポリオレフィン系樹脂は、既述のポリオレフィン系熱可塑性エラストマーよりも弾性率の高いポリオレフィン系樹脂である。
エラストマーでないポリオレフィン系熱可塑性樹脂としては、プロピレン、エチレン等のα−オレフィン、シクロオレフィン等の環状オレフィンの単独重合体、ランダム共重合体、ブロックコポリマー等が挙げられる。具体的には、ポリエチレン系熱可塑性樹脂、ポリプロピレン系熱可塑性樹脂、ポリブタジエン系熱可塑性樹脂などが挙げられ、特に、耐熱性、加工性の点から、ポリプロピレン系熱可塑性樹脂が好ましい。
【0081】
上記のエラストマーでないポリプロピレン系熱可塑性樹脂の具体例としては、プロピレンホモ重合体、プロピレン−α−オレフィンランダム共重合体、プロピレン−α−オレフィンブロック共重合体などが挙げられる。α−オレフィンとしては、例えば、プロピレン、1−ブテン、1―ペンテン、3―メチル−1―ブテン、1―ヘキセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、1−ヘプテン、1―オクテン、1―デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセン等の炭素数3〜20程度のα−オレフィン等が挙げられる。
【0082】
なお、ポリオレフィン系熱可塑性樹脂は、分子中の水素原子の一部ないし全部が塩素原子に置き換えられた塩素化ポリオレフィン系樹脂であってもよい。塩素化ポリオレフィン系樹脂としては、例えば、塩素化ポリエチレン系樹脂が挙げられる。
【0083】
(エラストマーでないポリスチレン系熱可塑性樹脂)
エラストマーでないポリスチレン系熱可塑性樹脂は、既述のポリスチレン系熱可塑性エラストマーよりも弾性率の高いポリスチレン系熱可塑性樹脂である。
前記エラストマーでないポリスチレン系熱可塑性樹脂としては、例えば、公知のラジカル重合法、イオン性重合法で得られるものが好適に使用でき、例えばアニオンリビング重合を持つポリスチレンが挙げられる。また、前記ポリスチレン系熱可塑性樹脂としては、スチレン分子骨格を含む重合体や、スチレンとアクリロニトリルとの共重合体等を挙げることができる。
この中でもアクリロニトリル/ブタジエン/スチレン共重合体およびその水素添加物;アクリロニトリル/スチレン共重合体とポリブタジエンとのブレンド体またはその水素添加物が好ましい。前記ポリスチレン系熱可塑性樹脂として、具体的には、ポリスチレン(所謂PS樹脂)、アクリロニトリル/スチレン樹脂(所謂AS樹脂)、アクリル−スチレン−アクリロニトリル樹脂(所謂ASA樹脂)、アクリロニトリル/ブタジエン/スチレン樹脂(所謂ABS樹脂(ブレンド系及び共重合系を含む)、ABS樹脂の水素添加物(所謂AES樹脂)、アクリロニトリル−塩素化ポリエチレン−スチレン共重合体(所謂ACS樹脂)等が挙げられる。
【0084】
AS樹脂は、既述のように、アクリロニトリル/スチレン樹脂であり、スチレンとアクリロニトリルを主成分とする共重合体であるが、αーメチルスチレン、ビニルトルエン、ジビニルベンゼンなどの芳香族ビニル化合物、シメタクリロニトリルなどのシアン化ビニル化合物、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸nーブチル、アクリル酸メチル、アクリル酸エチル、アクリル酸nーブチル、アクリル酸ステアリルなどの(メタ)アクリル酸アルキルエステル、マレイミド、Nーメチルマレイミド、Nーエチルマレイミド、Nーフェニルマレイミド、Nーシクロヘキシルマレイミドなどのマレイミド系単量体、ジエン化合物、マレイン酸ジアルキルエステル、アリルアルキルエーテル、不飽和アミノ化合物、ビニルアルキルエーテルなどをさらに共重合してもよい。
【0085】
また、AS樹脂としては、さらに不飽和モノカルボン酸類、不飽和ジカルボン酸類、不飽和酸無水物あるいはエポキシ基含有ビニル系単量体をグラフト重合もしくは共重合したものが好ましく、不飽和酸無水物あるいはエポキシ基含有ビニル系単量体をグラフト重合もしくは共重合したものがさらに好ましい。
【0086】
かかるエポキシ基含有ビニル系単量体は、一分子中にラジカル重合可能なビニル基とエポキシ基の両者を共有する化合物であり、具体例としてはアクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジルなどの不飽和有機酸のグリシジルエステル類、アリルグリシジルエーテルなどのグリシジルエーテル類および2−メチルグリシジルメタクリレートなどの上記の誘導体類が挙げられ、なかでもアクリル酸グリシジル、メタクリル酸グリシジルが好ましく使用できる。またこれらは単独ないし2種以上を組み合わせて使用することができる。
【0087】
また、不飽和酸無水物類は、一分子中にラジカル重合可能なビニル基と酸無水物の両者を共有する化合物であり、具体例としては無水マレイン酸等が好ましく挙げられる。
【0088】
ASA樹脂は、アクリレートモノマー、スチレンモノマー及びアクリロニトリルモノマーを含むものであり、ゴム的性質及び熱可塑性を有する。
【0089】
ABS樹脂としては、例えば、アクリロニトリル−スチレン系樹脂にオレフィン系ゴム(例えば、ポリブタジエンゴム)を40質量%以下程度にグラフト重合した樹脂が挙げられる。また、AES樹脂としては、例えば、アクリロニトリル−スチレン系樹脂にエチレン−プロピレン共重合体ゴム(例えば、EPゴム)を40質量%以下程度グラフト重合した樹脂が挙げられる。
【0090】
(エラストマーでないポリアミド系熱可塑性樹脂)
エラストマーでないポリアミド系樹脂は、既述のポリアミド系熱可塑性エラストマーよりも弾性率の高いポリアミド系樹脂である。
エラストマーでないポリアミド系熱可塑性樹脂としては、既述のポリアミド系熱可塑性エラストマーのハードセグメントを構成するポリアミドを挙げることができる。前記ポリアミド系熱可塑性樹脂としては、例えば、ε-カプロラクタムを開環重縮合したポリアミド(アミド6)、ウンデカンラクタムを開環重縮合したポリアミド(アミド11)、ラウリルラクタムを開環重縮合したポリアミド(アミド12)、ジアミンと二塩基酸とを重縮合ポリアミド(アミド66)又はメタキシレンジアミンを構成単位として有するポリアミド(アミドMX)等を挙げることができる。
【0091】
前記アミド6は、例えば、{CO−(CH−NH}(nは繰り返し単位数を表す)で表すことができる。
前記アミド11は、例えば、{CO−(CH10−NH}(nは繰り返し単位数を表す)で表すことができる。
前記アミド12は、例えば、{CO−(CH11−NH}(nは繰り返し単位数を表す)で表すことができる。
前記アミド66は、例えば、{CO(CHCONH(CHNH}(nは繰り返し単位数を表す)で表すことができる。
【0092】
また、メタキシレンジアミンを構成単位として有するアミドMXは、例えば、下記構成単位(A−1)〔(A−1)中、nは繰り返し単位数を表す〕で表わすことができる。
【0093】
【化5】
【0094】
前記エラストマーでないポリアミド系熱可塑性樹脂は、前記構成単位のみで構成されるホモポリマーであってもよく、前記構成単位(A−1)と他のモノマーとのコポリマーであってもよい。コポリマーの場合、各ポリアミド系熱可塑性樹脂において、前記構成単位(A−1)の含有率が60質量%以上であることが好ましい。
【0095】
エラストマーでないポリアミド系熱可塑性樹脂の数平均分子量としては、300〜30000が好ましい。また、前記ソフトセグメントを構成するポリマーの数平均分子量としては、強靱性および低温柔軟性の観点から、200〜20000が好ましい。
【0096】
エラストマーでないポリアミド系樹脂は、市販の製品を用いてもよい。
前記アミド6としては、例えば、市販品の宇部興産社製「UBEナイロン」1022B、1011FB等を用いることができる。
前記アミド12としては、宇部興産社製「UBEナイロン」、例えば、3024U等を用いることができる。前記アミド66としては、「UBEナイロン」例えば、2020B等を用いることができる。また、前記アミドMXとしては、例えば、市販品の三菱ガス化学社製のMXナイロン(S6001、S6021,S6011)等を用いることができる。
【0097】
(エラストマーでないポリエステル系熱可塑性樹脂)
エラストマーでないポリエステル系樹脂は、既述のポリエステル系熱可塑性エラストマーよりも弾性率が高く、主鎖にエステル結合を有する樹脂である。
エラストマーでないポリエステル系熱可塑性樹脂としては、特に限定されるものではないが、既述のポリエステル系熱可塑性エラストマーにおけるハードセグメントが含むポリエステル系熱可塑性樹脂と同種の樹脂であることが好ましい。また、エラストマーでないポリエステル系樹脂は、結晶性でも非晶性でもよく、脂肪族系ポリエステル、芳香族ポリエステル等が挙げられる。脂肪族系ポリエステルは、飽和脂肪族系ポリエステルであっても、不飽和脂肪族系ポリエステルであってもよい。
【0098】
芳香族ポリエステルは、通常、結晶性であり、例えば、芳香族ジカルボン酸又はそのエステル形成性誘導体と脂肪族ジオールとから形成することができる。
芳香族ポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリスチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられ、ポリブチレンテレフタレートが好ましい。
【0099】
芳香族ポリエステルの一つとしては、テレフタル酸及び/又はジメチルテレフタレートと1,4−ブタンジオールから誘導されるポリブチレンテレフタレートが挙げられ、更に、イソフタル酸、フタル酸、ナフタレン−2,6−ジカルボン酸、ナフタレン−2,7−ジカルボン酸、ジフェニル−4,4'−ジカルボン酸、ジフェノキシエタンジカルボン酸、5−スルホイソフタル酸、あるいはこれらのエステル形成性誘導体などのジカルボン酸成分と、分子量300以下のジオール〔例えば、エチレングリコール、トリメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、デカメチレングリコールなどの脂肪族ジオール、1,4−シクロヘキサンジメタノール、トリシクロデカンジメチロールなどの脂環式ジオール、キシリレングリコール、ビス(p−ヒドロキシ)ジフェニル、ビス(p−ヒドロキシフェニル)プロパン、2,2−ビス[4−(2−ヒドロキシエトキシ)フェニル]プロパン、ビス[4−(2−ヒドロキシ)フェニル]スルホン、1,1−ビス[4−(2−ヒドロキシエトキシ)フェニル]シクロヘキサン、4,4'−ジヒドロキシ−p−ターフェニル、4,4'−ジヒドロキシ−p−クオーターフェニルなどの芳香族ジオール〕などから誘導されるポリエステル、あるいはこれらのジカルボン酸成分およびジオール成分を2種以上併用した共重合ポリエステルであってもよい。また、3官能以上の多官能カルボン酸成分、多官能オキシ酸成分及び多官能ヒドロキシ成分などを5モル%以下の範囲で共重合することも可能である。
【0100】
上記のようなエラストマーでないポリエステル系熱可塑性樹脂としては、市販品を用いることもでき、例えば、ポリプラスチック(株)製の「ジュラネックス」シリーズ(例えば、2000、2002等)、三菱エンジニアリングプラスチック(株)製のノバデュランシリーズ(例えば、5010R5、5010R3−2等)、東レ(株)製の「トレコン」シリーズ(例えば、1401X06、1401X31等)が挙げられる。
【0101】
脂肪族ポリエステルとしては、ジカルボン酸/ジオール縮合系、およびヒドロキシカルボン酸縮合系の何れも用いられる。例えば、ポリ乳酸、ポリヒドロキシ−3−ブチル酪酸、ポリヒドロキシ−3−ヘキシル酪酸、ポリ(ε−カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペート等が挙げられる。なお、ポリ乳酸は、生分解性プラスチックとして代表的な樹脂であり、ポリ乳酸の好ましい態様は後述する。
【0102】
(動的架橋型熱可塑性エラストマー)
また、樹脂材料として、動的架橋型熱可塑性エラストマーを用いてもよい。
動的架橋型熱可塑性エラストマーとは、溶融状態にある熱可塑性樹脂にゴムを混入し、架橋剤を加えて混練り条件下、ゴム成分の架橋反応を行い作製した熱可塑性エラストマーである。
以下、動的架橋型熱可塑性エラストマーを、単に「TPV」(ThermoPlastic Vulcanizates elastomer)と称することもある。
【0103】
TPVの製造に用い得る熱可塑性樹脂としては、既述の熱可塑性樹脂(熱可塑性エラストマーを含む)が挙げられる。
TPVの製造に用い得るゴム成分としては、ジエン系ゴムおよびその水添物(例えば、NR,IR、エポキシ化天然ゴム、SBR,BR(高シスBRおよび低シスBR)、NBR、水素化NBR、水素化SBR)、オレフィン系ゴム(例えば、エチレンプロピレンゴム(EPDM,EPM)、マレイン酸変性エチレンプロピレンゴム(M−EPM)、IIR、イソブチレンと芳香族ビニルまたはジエン系モノマー共重合体、アクリルゴム(ACM)、アイオノマー)、含ハロゲンゴム(例えば、Br−IIR,Cl−IIR、イソブチレンパラメチルスチレン共重合体の臭素化物(Br−IPMS)、クロロプレンゴム(CR)、ヒドリンゴム(CHR)、クロロスルホン化ポリエチレン(CSM)、塩素化ポリエチレン(CM)、マレイン酸変性塩素化ポリエチレン(M−CM)、シリコーンゴム(例えば、メチルビニルシリコーンゴム、ジメチルシリコーンゴム、メチルフェニルビニルシリコーンゴム)、含イオウゴム(例えば、ポリスルフィドゴム)、フッ素ゴム(例えば、ビニリデンフルオライド系ゴム、含フッ素ビニルエーテル系ゴム、テトラフルオロエチレン−プロピレン系ゴム、含フッ素シリコーン系ゴム、含フッ素ホスファゼン系ゴム)等が用いられ、特に、変性ポリイソブチレン系ゴムとしての、ハロゲン基を導入したイソブチレン−イソプレン共重合ゴム、および/またはハロゲン基を導入したイソブチレン−パラメチルスチレン共重合ゴムのようなイソモノオレフィンとp−アルキルスチレンのハロゲン含有共重合ゴムが有効に用いられる。後者には、エクソン社製の“Exxpro”が好適に用いられる。
【0104】
−熱硬化性樹脂−
次に、熱硬化性樹脂について説明する。
熱硬化性樹脂とは、温度上昇と共に3次元的網目構造を形成し、硬化する高分子化合物をいう。
熱硬化性樹脂としては、例えば、フェノール樹脂、エポキシ樹脂、メラミン樹脂、ユリア樹脂等が挙げられる。
具体的には、次のものが挙げられる。
【0105】
(フェノール樹脂)
フェノール樹脂としては、レゾルシン、ビスフェノールなど、フェノール、クレゾール、キシレノール、パラアルキルフェノール、パラフェニルフェノールなどの水酸基を1個含む置換フェノール類、カテコール、レゾルシノール、ヒドロキノンなどの水酸基を2個含む置換フェノール類、ビスフェノールA、ビスフェノールZなどのビスフェノール類、ビフェノール類などの、フェノール構造を有する化合物と、ホルムアルデヒド、パラホルムアルデヒドなどとを、酸またはアルカリ触媒下で反応させた、モノメチロールフェノール類、ジメチロールフェノール類、トリメチロールフェノール類などのモノマ、及びそれらの混合物、またはそれらがオリゴマ化されたもの、及びモノマとオリゴマの混合物であることが好ましい。また、アミン等の硬化剤を含んでもよい。
【0106】
(エポキシ樹脂)
エポキシ樹脂としては、1分子内にエポキシ基を2個以上有するモノマ、オリゴマ、ポリマ全般を言い、その分子量、分子構造を特に限定するものではないが、例えば、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂(フェニレン骨格、ジフェニレン骨格などを有する)などが挙げられ、これらは単独で用いても混合して用いてもよい。これらの中でも、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂が好ましく、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂がさらに好ましく、ビスフェノール型エポキシ樹脂が特に好ましい。また、アミン等硬化剤を含んでもよい。
【0107】
(メラミン樹脂)
メラミン樹脂としては、例えば、アルコキシメチルメラミン樹脂を用いることができる。具体的には、アルコキシ基としてメトキシ基、エトキシ基、n−ブトキシ基、イソブトキシ基等を用いたメチル化メラミン樹脂、エチル化メラミン樹脂、n−ブチル化メラミン樹脂、イソブチル化メラミン樹脂等が挙げられる。
【0108】
上記メラミン樹脂の平均重合度は質量平均重合度として1.1〜3の範囲であることが好ましい。上記平均重合度が1.1未満であると、耐汚染性が低下する場合がある。一方、上記平均重合度が3を越えると、加工性が低下する場合がある。前記平均重合度は1.1〜2.6の範囲であることが好ましい。
【0109】
(ユリア樹脂)
ユリア樹脂(尿素樹脂)としては、 モノメチロール尿素、ジメチロール尿素、トリメチロール尿素などのメチロール尿素が挙げられる。
【0110】
−その他汎用樹脂−
樹脂材料には、既述の熱可塑性樹脂(熱可塑性エラストマーを含む)及び熱硬化性樹脂のほか、(メタ)アクリル系樹脂、EVA樹脂、塩化ビニル樹脂、フッ素系樹脂、シリコーン系樹脂等の汎用樹脂を用いてもよい。
【0111】
((メタ)アクリル系樹脂)
(メタ)アクリル系樹脂とは、メタクリル系樹脂およびアクリル系樹脂を意味する。
また、メタクリル系樹脂には、メタクリル酸メチル等のメタクリル酸エステルを繰り返し単位として含むメタクリル酸エステル樹脂、及び、カルボキシ基がエステルとなっていないメタクリル酸樹脂が含まれる。同様に、アクリル系樹脂には、アクリル酸メチル等のアクリル酸エステルを繰り返し単位として含むアクリル酸エステル樹脂、及び、カルボキシ基がエステルとなっていないアクリル酸樹脂が含まれる。
【0112】
メタクリル系樹脂としては、メタクリル酸、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルメタクリレート、2-メタクリロイロキシエチルコハク酸、2-メタクリロイロキシエチルヘキサヒドロフタル酸、モノ2-メタクリロイロキシエチルアシッドホスフェート、ジ2-メタクリロイロキシエチルアシッドホスフェート、グリセリンジメタクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、2-ヒドロキシ-3アクリロイロキシプロピルメタクリレート、ビスフェノールAジグリシジルエーテルメタクリル酸付加物、ジグリセリンポリグリシジルエーテルメタクレート、3-クロロ-2-ヒドロキシプロピルメタクレート等のメタクリル系モノマー、これらメタクリル系モノマーのホモ重合体、メタクリル系モノマーとスチレン、シリコン、ポリエステル等との共重合物が挙げられる。
さらに、ジ2-メタクリロイロキシエチルアシッドホスフェート、ジ2-アクリロイロキシエチルアシッドホスフェートなどの(メタ)アクリル基を含むリン酸エステル、(メタ)アクリル酸のアルカリ金属塩、アンモニウム塩、ホスホニウム塩、エステルなどを使用することも可能である。
メタクリル系樹脂は、上記のうち1種のみを用いてもよいし、2種以上を併用してもよい。
【0113】
アクリル系樹脂としては、アクリル酸、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、2-アクリロイロキシエチルコハク酸、2-アクリロイロキシエチルフタル酸、2-アクリロイロキシエチル2-ヒドロキシエチル-フタル酸、モノ2-アクリロイルオキシエチルアシッドフォスフェート、ジ2-アクリロイルオキシエチルアシッドフォスフェート2-ヒドロキシブチルアクリレート、2-アクリロイロキシエチルヘキサヒドロフタル酸、グリセリンジグリシジルエーテル、2-ヒドロキシ-3フェノキシプロピルアクリレート、ビスフェノールAジグリシジルエーテルアクリル酸付加物、O-フェニルフェノールグリシジルエーテルアクリレート、1,4-ブタンジオールジグリシジルエーテルジアクリレート、1,6-ヘキサンジオールジグリシジルエーテルジアクリレート、ジプロピレングリコールジグリシジルエーテルジアクリレート、ペンタエリスリトールポリグリシジルエーテルアクリレート、2-チル2エチル1,3プロパンジオールジグリシジルエーテルアクリレート、シクロヘキサンジメタノールジグリシジルエーテルアクリレート、1,6ヘキサンジオールジグリシジルエーテルアクリレート、グリセリンポリグリシジルエーテルアクリレート、エチレングリコールジグリシジルエーテルアクリレート、ポリエチレングリコールジグリシジルエーテルアクリレート、ジプロピレングリコールジグリシジルエーテルアクリレート、ポリプロピレングリコールジグリシジルエーテルアクリレート、2-ヒドロキシ、1-アクリロキシ、3-メタクリロキシプロパン、β-カルボキシエチルアクリレート等のアクリル系モノマー、これらアクリル系モノマーのホモ重合体、アクリル系モノマーとスチレン、シリコン、ポリエステル等との共重合体が挙げられる。
アクリル系樹脂は、上記のうち1種のみを用いてもよいし、2種以上を併用してもよい。
【0114】
また、(メタ)アクリル系樹脂が有するカルボキシ基は、ナトリウム(Na)等の金属で架橋されたアイオノマー樹脂であってもよい。
【0115】
(メタ)アクリル系樹脂は、メタクリル系樹脂およびアクリル系樹脂のいずれか一方のみを用いてもよいし、いずれか一方のみを用いてもよい。
【0116】
(EVA樹脂)
EVA樹脂は、エチレンと酢酸ビニルとの共重合体(エチレン−酢酸ビニル共重合体)であり、エチレンと酢酸ビニルとの含有比率を調整することで、柔軟性を容易に制御することができる。
EVA樹脂は、種々の製品が市販されており、例えば、住友化学社製のエバテート、日本ポリエチレン社製のノバテック、三井・デュポン ポリケミカル社製のエバフレックス等として入手できる。
【0117】
(塩化ビニル樹脂)
塩化ビニル樹脂としては塩化ビニルモノマーに種々のモノマーと共重合したものが用いられる。
共重合モノマーとしては酢酸ビニル、プロピオン酸ビニルなどの脂肪酸ビニルエステル類、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ベンジル(メタ)アクリレートなどのアクリレート、メタクリレート類、アリルメチルエーテル、アリルエチルエーテル、アリルプロピルエーテル、アリルブチルエーテルなどのアルキルアリルエーテル類、その他スチレン、α−メチルスチレン、塩化ビニリデン、アクリロニトリル、エチレン、ブタジエン、アクリルアミド、さらに官能基をもつ共重合モノマーとしてビニルアルコール、2−ヒドロキシエチル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、2−ヒドロキシエチルアリルエーテル、2−ヒドロキシプロピルアリルエーテル、3−ヒドロキシプロピルアリルエーテル、p−ビニルフェノール、マレイン酸、無水マレイン酸、アクリル酸、メタクリル酸、グリシジル(メタ)アクリレート、アリルグリシジルエーテル、ホスホエチル(メタ)アクリレート、スルホエチル(メタ)アクリレート、p−スチレンスルホン酸、及びこれらのNa塩、K塩などが用いられる。
これらの樹脂は単独で用いてもよいし、必要に応じて2種以上ブレンドして用いてもよい。
【0118】
塩化ビニル樹脂は、市販の製品を用いてもよく、例えば、G351、G576(以上日本ゼオン(株)製)などを挙げることができる。
【0119】
(フッ素系樹脂)
フッ素系樹脂とは、分子中にフッ素原子を含有する樹脂であり、既述の熱可塑性樹脂(熱可塑性エラストマーを含む)及び熱硬化性樹脂が有する、例えば、水素原子をフッ素原始で置換した樹脂が挙げられる。
例えば、4フッ化エチレン樹脂、3フッ化塩化エチレン樹脂、6フッ化プロピレン樹脂、フッ化ビニル樹脂、フッ化ビニリデン樹脂、2フッ化2塩化エチレン樹脂、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ペルフルオロアルコキシフッソ樹脂、及びこれらの共重合体が挙げられる。
【0120】
また、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−パーフルオロメチルビニルエーテル共重合体(MFA)、テトラフルオロエチレン−パーフルオロエチルビニルエーテル共重合体(EFA)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、ポリエチレン−テトラフルオロエチレン(ETFE)、ポリフッ化ビニリデン(PVDF)、ポリクロロ三フッ化エチレン(PCTFE)、フッ化ビニル(PVF)等のフッ素樹脂挙げられる。
【0121】
特に耐熱性、機械特性等の面からポリテトラフルオロエチレン(PTFE)、及びテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)テトラフルオロエチレン−パーフルオロメチルビニルエーテル共重合体(MFA)、テトラフルオロエチレン−パーフルオロエチルビニルエーテル(EFA)共重合体が好適に用いられる。
【0122】
フッ素樹脂は、これらの中から1種を単独で又は2種以上を選択して使用することができる。
【0123】
(シリコーン系樹脂)
シリコーン系樹脂は、主鎖又は側鎖にシロキサン結合を有する高分子化合物である。
例えば、メチルシリコーン、フェニルシリコーン、フェニルメチルシリコーン等が挙げられ、これらの中から1種を単独で又は2種以上を選択して使用することができる。
シリコーン系樹脂は市販製品を用いてもよく、例えば、富士ケミカル社製、グリンベル等を好適に用いることができる。
【0124】
−エンジニアリングプラスチック及びスーパーエンジニアリングプラスチック−
樹脂材料は、上記の樹脂のほか、いわゆるエンジニアリングプラスチックやスーパーエンジニアリングプラスチックを用いてもよい。
エンジニアリングプラスチックとは、耐熱限界温度(荷重たわみ温度)が100℃以上の樹脂をいう。従って、既述の熱可塑性樹脂や、熱硬化性樹脂のうち、耐熱限界温度が100℃以上となる樹脂は、エンジニアリングプラスチックとも称される。
エンジニアリングプラスチックのうち、さらに、強度が49.0MPaであり、曲げ弾性率が2.4GPa以上のプラスチックのうち、耐熱限界温度が150℃以上であるものを、通常、スーパーエンジニアリングプラスチックいう。
以下、既述の樹脂のほか、特にエンジニアリングプラスチックに分類される樹脂を説明する。
【0125】
エンジニアリングプラスチック(スーパーエンジニアリングプラスチックを含む)としては、例えば、ポリカーボネート、液晶ポリマー、ポリフェニレンエーテル、ポリフェニレンサルファイド、非晶ポリアリレート、ポリスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリアセタール等が挙げられる。
【0126】
(ポリカーボネート)
ポリカーボネートとは、脂肪族または芳香族のポリカーボネート樹脂であり、芳香族ポリカーボネートとしては、芳香族二価フェノール系化合物とホスゲン、または炭酸ジエステルとを反応させることにより得られる芳香族ホモまたはコポリカーボネートなどの芳香族ポリカーボネートが挙げられ、示差熱量計で測定されるガラス転移温度が100〜155℃の範囲にあるものが好ましく用いられる。
【0127】
また、芳香族二価フェノール系化合物としては、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシ−3,5−ジフェニル)ブタン、2,2−ビス(4−ヒドロキシ−3,5−ジエチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジエチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1−フェニル−1,1−ビス(4−ヒドロキシフェニル)エタン等が使用でき、これら単独あるいは混合物として使用することができる。また、ヒンダードフェノール系、イオウ系およびリン系の酸化防止剤などの化合物を一種以上含有していてもよい。
【0128】
(液晶ポリマー)
液晶ポリマーとしては、例えば、エチレンテレフタレートとp−ヒドロキシ安息香酸との重縮合体、フェノールとフタル酸とp−ヒドロキシ安息香酸との重縮合体、2,6−ヒドロキシナフトエ酸とp−ヒドロキシ安息香酸との重縮合体が挙げられる。
【0129】
(ポリフェニレンエーテル)
ポリフェニレンエーテルとは、下記繰り返し単位(PPE−1)または下記繰り返し単位(PPE−2)の単独重合体、下記繰り返し単位(PPE−1)および下記繰り返し単位(PPE−2)の少なくとも一方を含む共重合体をいう。
一般に、下記繰り返し単位(PPE−1)を含み、下記繰り返し単位(PPE−2)を含まないポリフェニレンエーテルを変性ポリフェニレンエーテルと称する。変性ポリフェニレンエーテルは、さらに、分子内にカルボキシ基等の酸基を有する酸変性体であってもよい。
【0130】
【化6】
【0131】
【化7】
【0132】
繰り返し単位(PPE−2)におけるR〜Rは、それぞれ独立に、アルキル基またはアリール基を表す。
繰り返し単位(PPE−1)および繰り返し単位(PPE−2)中、nは、繰り返し単位数である。
【0133】
ポリフェニレンエーテルの単独重合体の代表例としては、ポリ(1,4−フェニレン)エーテル、ポリ(2,6−ジメチル−1,4−フェニレン)エーテル、ポリ(2,5−ジメチル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−エチル−1,4−フェニレン)エーテル、ポリ(2,6−ジエチル−1,4−フェニレン)エーテル、ポリ(2,6−ジフェニル−1,4−フェニレン)エーテル、ポリ(2,3,6−トリメチル−1,4−フェニレン)エーテル等が挙げられる。この内、特に好ましいものは、ポリ(2,6−ジメチル−1,4−フェニレン)エーテルである。ポリフェニレンエーテル共重合体としては、例えば、2,6−ジメチルフェノールと他のフェノール類(例えば、2,3,6−トリメチルフェノール、2,6−ジフェニルフェノールあるいは2−メチルフェノール(o−クレゾール))との共重合体などが挙げられる。
【0134】
ポリフェニレンエーテルは、市販製品を用いてもよい。例えば旭化成ケミカルズ(株)製ザイロン(熱可塑性ポリフェニレンエーテルとポリスチレン系熱可塑性樹脂とのポリマーアロイ)、GEプラスチック社製ノリルPX9701(ポリ(2,6−ジメチル−1,4−フェニレン)エーテル)が挙げられる。
【0135】
(ポリフェニレンサルファイド)
ポリフェニレンサルファイドとしては、p−フェニレンサルファイド基を主たる繰返し単位とするものであり、直鎖型、分岐型、架橋型、又はこれらの混合物であっても、m−フェニレンサルファイド基等の繰返し単位との共重合体であってもよい。
【0136】
(非晶ポリアリレート)
非晶ポリアリレートとしては、ビスフェノールA/テレフタル酸、ビスフェノールA/イソフタル酸、ビスフェノールA/テレフタル酸/イソフタルなどが挙げられる。
【0137】
(ポリスルホン)
ポリスルホンとしては、主鎖に、芳香環、スルフォニル基、および、エーテル基を繰り返し単位として含む樹脂であり、ポリエーテルスルホンとも称される。
ポリスルホンは、具体的には、例えば、下記繰り返し単位(S−1)または(S−2)を有する高分子化合物として表される。なお、繰り返し単位(S−1)及び(S−2)に示されるnは、繰り返し単位数であり、例えば50〜80の整数である。
【0138】
【化8】
【0139】
【化9】
【0140】
ポリスルホンの具体例としては、ユーデルポリスルホンPー1700、Pー3500(テイジンアモコ社製)、ウルトラソンS3010、S6010(BASF社製)、ビクトレックス(住友化学)、レーデルA(テイジンアモコ社製)、ウルトラソンE(BASF社製)等のポリスルホンが挙げられる。
ポリスルホンは上記繰り返し単位(S−1)および(S−2)の少なくとも一方のみからなる化合物であることが好ましいが、本発明の効果を損なわない限度において、他のモノマーと共重合していてもよい。
【0141】
(ポリエーテルエーテルケトン)
ポリエーテルエーテルケトンとしては、例えば、下記繰り返し単位(EEK−1)を有する樹脂を挙げることができる。
【0142】
【化10】
【0143】
上記繰り返し単位(EEK−1)に示されるnは、繰り返し単位数である。
上記繰り返し単位(EEK−1)で表される繰返し単位を有するポリエーテルエーテルケトンとしては、例えば、ビクトレックス社製の商品名「Victrex PEEK」等を挙げることができる。
【0144】
(ポリエーテルイミド)
ポリエーテルイミドとしては、脂肪族、脂環族または芳香族系のエーテル単位と環状イミド基を繰り返し単位として含有するポリマーであり、溶融成形性を有するポリマーであれば、特に限定されない。例えば、米国特許第4141927号、特許第2622678号、特許第2606912号、特許第2606914号、特許第2596565号、特許第2596566号、特許第2598478号のポリエーテルイミド、特許第2598536号、特許第2599171号、特開平9−48852号公報、特許第2565556号、特許第2564636号、特許第2564637号、特許第2563548号、特許第2563547号、特許第2558341号、特許第2558339号、特許第2834580号に記載のポリマーである。本発明の効果を阻害しない範囲であれば、ポリエーテルイミドの主鎖に環状イミド、エーテル単位以外の構造単位、例えば、芳香族、脂肪族、脂環族エステル単位、オキシカルボニル単位等が含有されていてもよい。
【0145】
ポリエーテルイミドは、市販製品を用いてもよい。
例えば、2,2−ビス[4−(2,3−ジカルボキシフェノキシ)フェニル]プロパン二無水物とm−フェニレンジアミンまたはp−フェニレンジアミンとの縮合物であるポリエーテルイミドは、“Ultem”(登録商標)の商標名で、General Electric社より入手可能である。
【0146】
(ポリアミドイミド)
ポリアミドイミドとしては、より具体的には、例えば、シロキサン成分を重合成分として含むポリアミドイミドや、環式炭化水素基(脂環式炭化水素基および/または芳香族炭化水素基)を有するジイソシアネート成分またはジアミン成分と、酸無水物、多価カルボン酸、酸クロリドなどの酸成分とを重合成分として含むポリアミドイミド、このポリアミドイミドにポリカプロラクトンなどのポリエステルなどが共重合されたものなどを例示することができる。
これらは1種または2種以上含まれていてもよい。
【0147】
(ポリイミド)
ポリイミドは、主鎖にイミド結合を有する樹脂である。
例えば、テトラカルボン酸二無水物と、ジアミンまたはトリアミン化合物と、が溶媒中で重合して得られるポリアミック酸を前駆体とし、そのポリアミック酸がイミド化して得られたものが挙げられる。
【0148】
上記テトラカルボン酸二無水物としては、例えば、脂肪族環状構造をもつテトラカルボン酸二無水物が挙げられる。
脂肪族環状構造をもつテトラカルボン酸二無水物としては、具体的には、例えば、1,2,3,4−ブタンテトラカルボン酸二無水物、3,5,6−トリカルボキシノルボナン−2−酢酸二無水物、2,3,4,5−テトラヒドロフランテトラカルボン酸二無水物、ビシクロ[2,2,2]−オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、4−(2,5−ジオキソテトラヒドロフラン−3−イル)−1,2,3,4−テトラヒドロナフタレン−1,2−ジカルボン酸二無水物、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−シクロヘキサン−1,2−ジカルボン酸二無水物、2,3,5−トリカルボキシシクロペンチル酢酸二無水物、等が挙げられる。
【0149】
また、上記テトラカルボン酸二無水物として、分子中に屈曲構造を有する芳香族テトラカルボン酸無水物を使用してもよい。
分子中に屈曲構造を有する芳香族テトラカルボン酸無水物としては、具体的には、例えば、3,3’,4,4’−ジフェニルエーテルテトラカルボン酸二無水物、ビス3,3’,4,4’−テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4−フランテトラカルボン酸二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’−パーフルオロイソプロピリデンジフタル酸二無水物、等が挙げられる。
これらのテトラカルボン酸二無水物は、単独で用いてもよく、2種以上組み合わせて用いてもよい。
【0150】
ジアミンまたはトリアミン化合物としては、例えば、芳香族系ジアミンまたはトリアミン化合物、脂肪族系ジアミンまたはトリアミン化合物が挙げられる。また、カルボキシル基、ヒドロキシ基などの極性基を含んでもよい。
芳香族系ジアミンまたはトリアミン化合物としては、具体的には、例えば、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルメタン、3,3’−ジクロロベンジジン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルフォン、1,5−ジアミノナフタレン、m−フェニレンジアミン、p−フェニレンジアミン、3,3’−ジメチル4,4’−ビフェニルジアミン、3,3’−ジメチルベンジジン、3,3’−ジメトキシベンジジン、4,4’−ジアミノジフェニルスルフォン、4,4’−ジアミノジフェニルプロパン、2,4−ビス(β−アミノ第三ブチル)トルエン、ビス(p−β−アミノ−第三ブチルフェニル)エーテル、ビス(p−β−メチル−δ−アミノフェニル)ベンゼン、ビス−p−(1,1−ジメチル−5−アミノ−ベンチル)ベンゼン、1−イソプロピル−2,4−m−フェニレンジアミン、m−キシリレンジアミン、p−キシリレンジアミン、3,5−ジアミノ安息香酸、3,3‘−ジカルボキシ−4,4’−ジアミノフフェニルメタン、2,4,4’−ビフェニルトリアミン、ピリジン−2,3,6−トリアミン、1,3,5−トリアミノベンゼン等が挙げられる。
【0151】
脂肪族ジアミンまたはトリアミン化合物としては、例えば、1,1−メタキシリレンジアミン、1,3−プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、4,4−ジアミノヘプタメチレンジアミン、1,4−ジアミノシクロヘキサン、イソフォロンジアミン、テトラヒドロジシクロペンタジエニレンジアミン、ヘキサヒドロ−4,7−メタノインダニレンジメチレンジアミン、トリシクロ[6,2,1,02.7]−ウンデシレンジメチルジアミン、4,4’−メチレンビス(シクロヘキシルアミン)、ペンタン−1,2,5−トリアミン、ビス(ヘキサメチレン)トリアミン等の脂肪族ジアミンまたはトリアミン及び脂環式ジアミン等が挙げられる。
上記ジアミンまたはトリアミン化合物は、単独で用いてもよく、2種以上組み合わせて用いてもよい。
【0152】
ポリイミドの合成は、先に例示したテトラカルボン酸二無水物と、ジアミンまたはトリアミン化合物とを等当量溶媒中で反応させることで得られるポリアミック酸を、加熱処理等によって脱水閉環反応させてイミド化処理することで得られる。
【0153】
上記イミド化処理としては、例えば熱イミド化方法及び化学イミド化方法が挙げられる。
熱イミド化方法としては、例えば、ポリアミック酸溶液を100℃から250℃に加熱する方法が挙げられる。
一方、化学イミド化方法としては、例えば、ポリアミック酸溶液に3級アミンなどの触媒と、無水酢酸等の脱水剤を添加する方法が挙げられる。上記化学イミド化方法を用いる場合、反応は室温(例えば25℃)でも進行するが、化学反応促進のため、60℃から150℃で反応を行ってもよい。また反応後、触媒及び脱水剤を除去してもよいが、そのまま共存させたまま使用しても良い。触媒及び脱水剤を除去する方法としては、例えば、反応液を減圧・加熱して除去する方法や、反応液を貧溶媒中に加えてポリイミド樹脂を再沈殿させて除去する方法が挙げられる。
【0154】
(ポリアセタール)
ポリアセタールは、オキシメチレン単位を主たる繰り返し単位とする樹脂である。
ポリアセタールとしては、例えば、ホルムアルデヒドもしくはトリオキサンを主原料として、重合反応によって得られる、いわゆるポリアセタールホモポリマーが挙げられる。また、ポリアセタールコポリマーであってもよい。ポリアセタールコポリマーは、主としてオキシメチレン単位からなり、主鎖中に2〜8個の隣接する炭素原子を有するオキシアルキレン単位を15質量%以下含有する。
また他の構成単位を含有するコポリマー、すなわち、ブロックコポリマー、ターポリマー、架橋ポリマーのいずれであってもよく、これらは1種または2種以上で用いることができるが、熱安定性の観点からはポリアセタールコポリマーであることが好ましい。
【0155】
−その他の樹脂−
以上のほか、ジアリフタレート樹脂、メチルペルテン樹脂、生分解性プラスチック等を用いてもよい。
なお、生分解性プラスチックとは、燃焼エネルギーが低く、有毒ガスが発生しないという特徴があり、経時的に微生物により分解代謝され、最終的に水と二酸化炭素となって自然に戻る環境にやさしいプラスチックである。生分解性プラスチックとしては、ポリ乳酸、デンプンと変性ポリビニルアルコールの混合体、ポリブチレンサクシネート/アジペート共重合体、ポリカプロラクトン、ポリヒドロキシブチレート/バリレート共重合体等が代表的である。
【0156】
ポリ乳酸樹脂とは、L−乳酸及び/またはD−乳酸を主たる構成成分とするポリマーであるが、乳酸以外の他の共重合成分を含んでもよい。他のモノマー単位としては、エチレングリコール、ブロピレングリコール、ブタンジオール、ヘプタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオ−ル、デカンジオール、1,4−シクロヘキサンジメタノ−ル、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ビスフェノ−ルA、ポリエチレングリコール、ポリプロピレングリコールおよびポリテトラメチレングリコールなどのグリコール化合物、シュウ酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジオン酸、マロン酸、グルタル酸、シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸、ビス(p−カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸、5−ナトリウムスルホイソフタル酸、5−テトラブチルホスホニウムイソフタル酸などのジカルボン酸、グリコール酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸、およびカプロラクトン、バレロラクトン、プロピオラクトン、ウンデカラクトン、1,5−オキセパン−2−オンなどのラクトン類を挙げることができる。
【0157】
〔添加剤〕
タイヤ骨格体を構成する樹脂材料は、さらに、種々の添加剤を含有していてもよい。
添加剤としては、熱硬化性樹脂やスーパーエンジニアリングプラスチックを可塑化する可塑剤や、老化防止剤、紫外線吸収剤、難燃剤、及び、帯電防止剤等の機能性成分や、ゴム等が挙げられる。
これらの添加剤は、タイヤ骨格体を構成する樹脂材料が、第1の樹脂材料および第2の樹脂材料のほかに、含有するものであってもよいし、第1の樹脂材料が含有するものであっても、第2の樹脂材料が含有するものであってもよい。
【0158】
このように、本発明のタイヤは、前記樹脂材料が、可塑剤、老化防止剤、紫外線吸収剤、難燃剤、及び、帯電防止剤から選択される少なくとも1つを含有することができる。
本発明のタイヤにおけるタイヤ骨格体を構成する樹脂材料は、既述の第1の樹脂材料および第2の樹脂材料のほかに、可塑剤、老化防止剤、紫外線吸収剤、難燃剤、及び、帯電防止剤から選択される少なくとも1つを含有することができる。樹脂材料がこれらの成分を含有することにより、タイヤに種々の機能性をもたせることができる。例えば、樹脂材料が老化防止剤を含有することで、酸化劣化等の老化が抑制される。また、樹脂材料が難燃剤を含有することで、急なブレーキ等によりタイヤに過度の摩擦が生じた場合にも、燃焼しにくいタイヤとすることができる。さらには、樹脂材料が帯電防止剤を含有することにより、静電気等がタイヤに帯電することを防止することができる。
【0159】
−可塑剤−
樹脂材料は、タイヤ骨格体の弾性率を調整するために、第1の樹脂材料および第2の樹脂材料のほかに、可塑剤を含有していてもよい。また、第1の樹脂材料が可塑剤を含有していてもよいし、第2の樹脂材料が可塑剤を含有していてもよい。
【0160】
特に、島相よりも柔らかい第1の樹脂材料が熱硬化性樹脂やスーパーエンジニアリングプラスチック等の弾性率の大きい樹脂を含有する場合には、さらに、可塑剤を含有することが好ましい。第1の樹脂材料が、熱硬化性樹脂やスーパーエンジニアリングプラスチック等の弾性率の大きい樹脂と共に可塑剤を含有することで、熱硬化性樹脂やスーパーエンジニアリングプラスチック等の弾性率の大きい樹脂が可塑化され、第1の樹脂材料を、島相を構成する第2の樹脂材料よりも弾性率の小さい樹脂材料とすることができる。
なお、第1の樹脂材料は、含有する樹脂の種類に関わらず、可塑剤を含有していてもよく、例えば、熱可塑性樹脂および可塑剤を含有する樹脂材料としてもよい。
【0161】
また、海相よりも硬い島相を構成する第2の樹脂材料も可塑剤を含有していてもよく、第2の樹脂材料についても、含有する樹脂の種類に関わらず、可塑剤を含有していてもよい。
【0162】
タイヤ骨格体を構成する樹脂材料中の可塑剤の含有量、第1の樹脂材料中の可塑剤の含有量、第2の樹脂材料中の可塑剤の含有量は、第1の樹脂材料および第2の樹脂材料の弾性率の関係が、島相が海相よりも硬くなる関係となるように、適宜調整すればよい。
【0163】
可塑剤としては、例えば、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジ−n−ブチル、フタル酸ジ−(2−エチルヘキシル)、フタル酸ジヘプチル、フタル酸ジイソデシル、フタル酸ジ−n−オクチル、フタル酸ジイソノニル、フタル酸ジトリデシル、フタル酸オクチルデシル、フタル酸ブチルベンジル、フタル酸ジシクロヘキシル等のフタル酸誘導体;ジメチルイソフタレートのようなイソフタル酸誘導体;ジ−(2−エチルヘキシル)テトラヒドロフタル酸のようなテトラヒドロフタル酸誘導体;アジピン酸ジメチル、アジピン酸ジブチル、アジピン酸ジ−n−ヘキシル、アジピン酸ジ−(2−エチルヘキシル)、アジピン酸イソノニル、アジピン酸ジイソデシル、アジピン酸ジブチルジグリコール等のアジピン酸誘導体;アゼライン酸ジ−2−エチルヘキシル等のアゼライン酸誘導体;セバシン酸ジブチル等のセバシン酸誘導体;ドデカン−2−酸誘導体;マレイン酸ジブチル、マレイン酸ジ−2−エチルヘキシル等のマレイン酸誘導体;フマル酸ジブチル等のフマル酸誘導体;トリメリト酸トリス−2−エチルヘキシル等のトリメリト酸誘導体;ピロメリト酸誘導体;クエン酸アセチルトリブチル等のクエン酸誘導体;イタコン酸誘導体;オレイン酸誘導体;リシノール酸誘導体;ステアリン酸誘導体;その他脂肪酸誘導体;スルホン酸誘導体;リン酸誘導体;グルタル酸誘導体;アジピン酸、アゼライン酸、フタル酸などの二塩基酸とグリコールおよび一価アルコールなどとのポリマーであるポリエステル系可塑剤、グルコール誘導体、グリセリン誘導体、塩素化パラフィン等のパラフィン誘導体、エポキシ誘導体ポリエステル系重合型可塑剤、ポリエーテル系重合型可塑剤、エチレンカーボネート、プロピレンカーボネート等のカーボネート誘導体等が挙げられる。本発明において可塑剤はこれらに限定されることはなく、種々の可塑剤を用いることができ、ゴム用可塑剤として広く市販されているものも用いることができる。
【0164】
市販されている可塑剤としては、チオコールTP(モートン社製)、アデカサイザー(登録商標)O−130P、C−79、UL−100、P−200、RS−735(旭電化社製)などが挙げられる。これら以外の高分子量の可塑剤としては、アクリル系重合体、ポリプロピレングリコール系重合体、ポリテトラヒドロフラン系重合体、ポリイソブチレン系重合体などがあげられる。このなかでも低揮発性で加熱による減量の少ない可塑剤であるアジピン酸誘導体、フタル酸誘導体、グルタル酸誘導体、トリメリト酸誘導体、ピロメリト酸誘導体、ポリエステル系可塑剤、グリセリン誘導体、エポキシ誘導体ポリエステル系重合型可塑剤、ポリエーテル系重合型可塑剤、などが好ましい。
【0165】
−ゴム−
樹脂材料は、タイヤ骨格体の弾性率を調整するために、第1の樹脂材料および第2の樹脂材料のほかに、天然ゴム、合成ゴム等のゴムを含有していてもよい。また、第1の樹脂材料が天然ゴム、合成ゴム等のゴムを含有していてもよいし、第2の樹脂材料が天然ゴム、合成ゴム等のゴムを含有していてもよい。
【0166】
ここで、「ゴム」とは、弾性を有する高分子化合物である。
本明細書では、結晶性で融点の高いハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料である熱可塑性エラストマーと、ゴムとは区別される。
【0167】
ゴムとしては、特に限定されるものではないが、例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン−ブタジエン共重合ゴム(SBR)、アクリロニトリル−ブタジエン共重合ゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(Br−IIR、Cl−IIR等)、エチレン−プロピレン−ジエンゴム(EPDM)等が挙げられる。アクリロニトリル−ブタジエン共重合ゴムの、ブタジエンの全部をイソプレンに置き換えたNIRや、ブタジエンの一部をイソプレンに置き換えたNBIRを用いてもよい。
中でも、各脂材料の柔軟性を制御し易いとの観点から、BR、SBR、NBR、NIR、及びNBIRが好ましく、BR、SBR、IR及びNBRがより好ましい。
【0168】
ゴムの弾性率を大きし、分散したゴムの粒径を固定化し、クリープをよくする観点から、ゴムは、ゴムを加硫した加硫ゴムを用いてもよい。ゴムの加硫は、公知の方法で行なえばよく、例えば、特開平11−048264号公報、特開平11−029658号公報、特開2003−238744号公報等に記載される方法で行なうことができる。ポリアミド系熱可塑性エラストマーとのブレンドに際し、微細化する為に粉砕し、投入することが好ましい。特にポリアミド系熱可塑性エラストマーとゴムを混練しながら、ゴムの分散と架橋(加硫)を行う動的架橋を用いることが好ましい。
【0169】
ゴムの加硫は、上記ゴムに、例えば、カーボンブラック等の補強材、充填剤、加硫剤、加硫促進剤、脂肪酸又はその塩、金属酸化物、プロセスオイル、老化防止剤等を適宜配合し、バンバリーミキサーを用いて混練した後、120℃〜235℃で加熱すればよい。
加硫剤としては、公知の加硫剤、例えば硫黄、有機過酸化物、樹脂加硫剤などが用いられる。
加硫促進剤としては、公知の加硫促進剤、例えばアルデヒド類、アンモニア類、アミン類、グアニジン類、チオウレア類、チアゾール類、スルフェンアミド類、チウラム類、ジチオカーバメイト類、キサンテート類などが用いられる。
脂肪酸としては、ステアリン酸、パルミチン酸、ミリスチン酸、ラウリン酸などが挙げられ、また、これらはステアリン酸亜鉛のように塩の状態で配合されてもよい。これらの中でも、ステアリン酸が好ましい。
また、金属酸化物としては、亜鉛華(ZnO)、酸化鉄、酸化マグネシウムなどが挙げられ、中でも亜鉛華が好ましい。
プロセスオイルは、アロマティック系、ナフテン系、パラフィン系のいずれを用いてもよい
老化防止剤としては、アミン−ケトン系、イミダゾール系、アミン系、フェノール系、硫黄系及び燐系などが挙げられる。
【0170】
−機能性成分−
樹脂材料は、タイヤに種々の機能性を付与するために、第1の樹脂材料および第2の樹脂材料のほかに、各種機能性成分を含有していてもよい。また、第1の樹脂材料が各種機能性成分を含有していてもよいし、第2の樹脂材料が各種機能性成分を含有していてもよい。
【0171】
機能性成分としては、老化防止剤、紫外線吸収剤、難燃剤、帯電防止剤等が挙げられる。
【0172】
(老化防止剤)
樹脂材料が老化防止剤を含有することで、酸化劣化等の老化が抑制される。
老化防止剤としては、既述のゴムの加硫に用い得る老化防止剤のほか、例えば、フェニル−α−ナフチルアミン(PAN)、オクチルジフェニルアミン、N,N’−ジフェニル−p−フェニレンジアミン(DPPD)、N,N’−ジ−β−ナフチル−p−フェニレンジアミン(DNPD)、N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン、N−フェニル−N’−イソプロピル−p−フェニレンジアミン(IPPN)、N,N’−ジアリル−p−フェニレンジアミン、フェノチアジン誘導体、ジアリル−p−フェニレンジアミン混合物、アルキル化フェニレンジアミン、4,4’−ビス(α、α−ジメチルベンジル)ジフェニルアミン、N−フェニル−N’−(3−メタクリロイロキシ−2−ヒドロプロピル)−p−フェニレンジアミン、ジアリルフェニレンジアミン混合物、ジアリル−p−フェニレンジアミン混合物、N−(1−メチルヘプチル)−N’−フェニル−p−フェニレンジアミン、ジフェニルアミン誘導体などのアミン系老化防止剤、2−メルカプトベンゾイミダゾール(MBI)などのイミダゾール系老化防止剤、2,6−ジ−t−ブチル−4−メチルフェノール、ペンタエリスリチルテトラキス[3−(5−ジ−t−ブチル−4−ヒドロキシフェノール)−プロピネート]などのフェノール系老化防止剤、ニッケルジエチル−ジチオカーバメイトなどのリン酸塩系老化防止剤、トリフェニルホスファイトなどの2次老化防止剤、2−t−ブチル−6−(3−t−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート、2−[1−(2−ヒドロキシ−3,5−ジ−t−ペンチルフェニル)エチル]−4,6−ジ−t−ペンチルフェニルアクリレート等が挙げられる。
これらは単独で使用してもよく、2種以上を組み合わせて使用してもよい。
【0173】
(紫外線吸収剤)
樹脂材料が紫外線吸収剤を含有することで、タイヤが直射日光に曝される環境下においても、紫外線照射による劣化が抑制される。
紫外線吸収剤としては、4−t−ブチルフェニルサリシレート、2,4−ジヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、エチル−2−シアノ−3,3‘−ジフェニルアクリレート、2−エチルヘキシル−2−シアノ−3,3’−ジフェニルアクリレート、2−ヒドロキシ−5−クロルベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン−2−ヒドロキシ−4−オクトキシベンゾフェノン、モノグリコールサリチレート、オキザリック酸アミド、2,2’,4,4’−テトラヒドロキシベンゾフェノン等が挙げられる。また、光安定剤を用いてもよい。
これらは単独で使用してもよく、2種以上を組み合わせて使用してもよい。
【0174】
このような老化防止剤や紫外線吸収剤の具体的な製品としては、Irganox(登録商標)1010(チバ・スペシャルティ・ケミカルズ株式会社製)、サノール(登録商標)LS770(三共ライフテック株式会社)、アデカスタブ(登録商標)LA−57(旭電化工業株式会社製)、アデカスタブLA−68(旭電化工業株式会社製)、Chimassorb(登録商標)944(チバ・スペシャルティ・ケミカルズ株式会社製)、サノールLS765(三共ライフテック株式会社)、アデカスタブLA−62(旭電化工業株式会社製)、TINUVIN(登録商標)144(チバ・スペシャルティ・ケミカルズ株式会社製)、アデカスタブLA−63(旭電化工業株式会社製)、TINUVIN622(チバ・スペシャルティ・ケミカルズ株式会社製)、アデカスタブLA−32(旭電化工業株式会社製)、アデカスタブLA−36(旭電化工業株式会社製)、TINUVIN571(チバ・スペシャルティ・ケミカルズ株式会社製)、TINUVIN234(チバ・スペシャルティ・ケミカルズ株式会社製)、アデカスタブLA−31(旭電化工業株式会社製)、TINUVIN1130(チバ・スペシャルティ・ケミカルズ株式会社製)、アデカスタブAO−20(旭電化工業株式会社製)、アデカスタブAO−50(旭電化工業株式会社製)、アデカスタブ2112(旭電化工業株式会社製)、アデカスタブPEP−36旭電化工業株式会社製)、スミライザーGM(住友化学工業株式会社)、スミライザーGS(住友化学工業株式会社)、スミライザーTP−D(住友化学工業株式会社)等が挙げられる。
これらは単独で使用してもよく、2種以上を組み合わせて使用してもよい。
【0175】
(難燃剤)
樹脂材料が難燃剤を含有することで、急なブレーキ等によりタイヤに過度の摩擦が生じ、発火した場合にも、燃焼しにくいタイヤとすることができる。
難燃剤としては、例えば、トリフェニルホスフェート、トリクレジルホスフェート、トリス(クロロプロピル)ホスフェート、ポリフォスフェート、ホスフェート型ポリオール、デカブロモビフェニル、デカブロモビフェニルエーテル、三酸化アンチモン、リン酸アンモン、ポリリン酸アンモン、リン酸グアニジン、パークロロシクロデカン、水酸化アルミニウム、水酸化マグネシウム、塩素化パラフィン、塩化ポリエチレン、パークロロシクロデカン、ホウ素系化合物、ジルコニウム系化合物などが挙げられるが、これらに限定するものではない。
これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。
【0176】
(帯電防止剤)
樹脂材料が帯電防止剤を含有することにより、静電気等がタイヤに帯電することを防止することができる。
帯電防止剤としては、例えば、無機系の帯電防止剤、有機系の帯電防止剤等が挙げられる。
具体的には、無機系の帯電防止剤として、塩化ナトリウム、塩化カリウム等のアルカリ金属塩、塩化カルシウム、塩化バリウム等のアルカリ土類金属塩等が挙げられる。
【0177】
有機系の帯電防止剤としては、グリセリン脂肪酸エステル、ポリオキシエチレンアルキルフェニルエーテル、アルキルジエタノールアミン、ヒドロキシアルキルモノエタノールアミン、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルアミン脂肪酸エステル、アルキルジエタノールアマイド等の各種グリセリン系やアミン系等が挙げられる。
また、有機系の帯電防止剤の中でも、アニオン系帯電防止剤としては、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルホスフェート、ポリアクリル酸塩、ポリスチレンスルホン酸塩、ポリマレイン酸塩等が挙げられる。
カチオン系帯電防止剤としては、テトラアルキルアンモニウム塩、トリアルキルベンジルアンモニウム塩などの各種4級アンモニウム塩等が挙げられる。
両性系帯電防止剤としては、アルキルベタイン、アルキルイミダゾリウムベタイン等が挙げられる。
これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。
【0178】
各樹脂材料中の上記添加剤の含有量は、本発明の耐熱性の効果を損なわない限度において、所望の機能性が発揮されるように適宜調整すればよい。
【0179】
(樹脂材料の物性)
次に、タイヤ骨格を構成する樹脂材料(第1の樹脂材料で構成される海相と、前記海相よりも硬く、第2の樹脂材料で構成される島相を含む海島構造を有する樹脂材料)の好ましい物性について説明する。
前記樹脂材料(タイヤ骨格体)自体の融点(または軟化点)としては、通常100℃〜350℃、好ましくは100℃〜250℃程度であるが、タイヤの生産性の観点から120℃℃〜250℃程度が好ましく、120℃〜200℃が更に好ましい。
このように、融点が120℃〜250℃の樹脂材料を用いることで、例えばタイヤの骨格体を、その分割体(骨格片)を融着して形成する場合に、120℃〜250℃の周辺温度範囲で融着された骨格体であってもタイヤ骨格片同士の接着強度が十分である。このため、本発明のタイヤは耐パンク性や耐摩耗性など走行時における耐久性に優れる。尚、前記加熱温度は、タイヤ骨格片を形成する樹脂材料の融点(または軟化点)よりも10℃〜150℃高い温度が好ましく、10℃〜100℃高い温度が更に好ましい。
【0180】
前記樹脂材料は、既述の第1の樹脂材料と第2の樹脂材料とを混合し、必要に応じて各種添加剤を添加して、公知の方法(例えば、溶融混合)で適宜混合することにより得ることができる。
既述のように、通常、海相を構成する第1の樹脂材料の質量(M)と、島相を構成する第2の樹脂材料の質量(M)との比(M/M)が1を超えることで、第1の樹脂材料を海相とし、第2の樹脂材料を島相とする海島構造を形成する。従って、樹脂材料が海島構造を有するように、海相を構成する第1の樹脂材料の質量(M)と、島相を構成する第2の樹脂材料の質量(M)との比(M/M)が1を超えるように、第1の樹脂材料と第2の樹脂材料とを混合することが好ましい。
溶融混合して得られた樹脂材料は、必要に応じてペレット状にして用いることができる。
【0181】
前記樹脂材料(タイヤ骨格体)自体のJIS K7113:1995に規定される引張弾性率としては、100MPa〜1000MPaが好ましく、100MPa〜800MPaがさらに好ましく、100MPa〜700MPaが特に好ましい。樹脂材料の引張弾性率が、100MPa〜700MPaであると、タイヤ骨格の形状を保持しつつリム組みを効率的におこなうことができる。
【0182】
前記樹脂材料(タイヤ骨格体)自体のJIS K7113:1995に規定される引張降伏強さは、5MPa以上が好ましく、5MPa〜20MPaが好ましく、5MPa〜17MPaがさらに好ましい。樹脂材料の引張降伏強さが、5MPa以上であると、走行時などにタイヤにかかる荷重に対する変形に耐えることができる。
【0183】
前記樹脂材料(タイヤ骨格体)自体のJIS K7113:1995に規定される引張降伏伸びは、10%以上が好ましく、10%〜70%が好ましく、15%〜60%がさらに好ましい。樹脂材料の引張降伏伸びが、10%以上であると、弾性領域が大きく、リム組み性をよくすることができる。
【0184】
前記樹脂材料(タイヤ骨格体)自体のJIS K7113:1995に規定される引張破断伸びとしては、50%以上が好ましく、100%以上が好ましく、150%以上がさらに好ましく、200%以上が特に好ましい。樹脂材料の引張破断伸びが、50%以上であると、リム組み性がよく、衝突に対して破壊しにくくすることができる。
【0185】
前記樹脂材料(タイヤ骨格体)自体のISO75−2またはASTM D648に規定される荷重たわみ温度(0.45MPa荷重時)としては、50℃以上が好ましく、50℃〜150℃が好ましく、50℃〜130℃がさらに好ましい。樹脂材料の荷重たわみ温度が、50℃以上であると、タイヤの製造において加硫を行う場合であってもタイヤ骨格体の変形を抑制することができる。
【0186】
[第1の実施形態]
以下に、図面に従って本発明のタイヤの第1の実施形態に係るタイヤを説明する。
本実施形態のタイヤ10について説明する。図1Aは、本発明の一実施形態に係るタイヤの一部の断面を示す斜視図である。図1Bは、リムに装着したビード部の断面図である。図1に示すように、本実施形態のタイヤ10は、従来一般のゴム製の空気入りタイヤと略同様の断面形状を呈している。
【0187】
図1Aに示すように、タイヤ10は、図1Bに示すリム20のビードシート21およびリムフランジ22に接触する1対のビード部12と、ビード部12からタイヤ径方向外側に延びるサイド部14と、一方のサイド部14のタイヤ径方向外側端と他方のサイド部14のタイヤ径方向外側端とを連結するクラウン部16(外周部)と、からなるタイヤケース17を備えている。
【0188】
ここで、本実施形態のタイヤケース17は、海相を構成する第1の樹脂材料として、ポリアミド系熱可塑性エラストマー(例えば、ダイセル・エボニック社製、ベスタミド「E55−K1W2」:引張弾性率201MPa)と、海相より硬い島相を構成する第2の樹脂材料として、高密度ポリエチレン樹脂(例えば、東ソー社製、ニポロンハードZ:引張弾性率1010MPa)と、を、第1の樹脂材料の質量M1:第2の樹脂材料の質量M2=90:10で含む樹脂材料を用いて構成されている。
【0189】
本実施形態においてタイヤケース17は、単一の樹脂材料(ポリアミド系熱可塑性エラストマー+高密度ポリエチレン樹脂)で形成されているが、本発明はこの構成に限定されず、従来一般のゴム製の空気入りタイヤと同様に、タイヤケース17の各部位毎(サイド部14、クラウン部16、ビード部12など)に異なる特徴を有する樹脂材料を用いてもよい。また、タイヤケース17(例えば、ビード部12、サイド部14、クラウン部16等)に、補強材(高分子材料や金属製の繊維、コード、不織布、織布等)を埋設配置し、補強材でタイヤケース17を補強してもよい。
【0190】
本実施形態のタイヤケース17は、ポリアミド系熱可塑性エラストマーを海相、高密度ポリエチレン樹脂を島相として含む海島構造の樹脂材料で形成された一対のタイヤケース半体(タイヤ骨格片)17A同士を接合させたものである。タイヤケース半体17Aは、一つのビード部12と一つのサイド部14と半幅のクラウン部16とを一体として射出成形等で成形された同一形状の円環状のタイヤケース半体17Aを互いに向かい合わせてタイヤ赤道面部分で接合することで形成されている。なお、タイヤケース17は、2つの部材を接合して形成するものに限らず、3以上の部材を接合して形成してもよい。
【0191】
前記樹脂材料で形成されるタイヤケース半体17Aは、例えば、真空成形、圧空成形、インジェクション成形、メルトキャスティング等で成形することができる。このため、従来のようにゴムでタイヤケースを成形する場合に比較して、加硫を行う必要がなく、製造工程を大幅に簡略化でき、成形時間を省略することができる。
また、本実施形態では、タイヤケース半体17Aは左右対称形状、即ち、一方のタイヤケース半体17Aと他方のタイヤケース半体17Aとが同一形状とされているので、タイヤケース半体17Aを成形する金型が1種類で済むメリットもある。
【0192】
本実施形態において、図1Bに示すようにビード部12には、従来一般の空気入りタイヤと同様の、スチールコードからなる円環状のビードコア18が埋設されている。しかし、本発明はこの構成に限定されず、ビード部12の剛性が確保され、リム20との嵌合に問題なければ、ビードコア18を省略することもできる。なお、スチールコード以外に、有機繊維コード、樹脂被覆した有機繊維コード、または硬質樹脂などで形成されていてもよい。
【0193】
本実施形態では、ビード部12のリム20と接触する部分や、少なくともリム20のリムフランジ22と接触する部分に、タイヤケース17を構成する樹脂材料よりもシール性に優れた材料、例えば、ゴムからなる円環状のシール層24が形成されている。このシール層24はタイヤケース17(ビード部12)とビードシート21とが接触する部分にも形成されていてもよい。タイヤケース17を構成する樹脂材料よりもシール性に優れた材料としては、タイヤケース17を構成する樹脂材料に比して軟質な材料を用いることができる。シール層24に用いることのできるゴムとしては、従来一般のゴム製の空気入りタイヤのビード部外面に用いられているゴムと同種のゴムを用いることが好ましい。また、タイヤケース17を形成する樹脂材料のみでリム20との間のシール性が確保できれば、ゴムのシール層24は省略してもよく、前記樹脂材料よりもシール性に優れる他の熱可塑性樹脂(熱可塑性エラストマー)を用いてもよい。このような他の熱可塑性樹脂としては、ポリウレタン系樹脂、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリエステル樹脂等の樹脂やこれら樹脂とゴム若しくはエラストマーとのブレンド物等が挙げられる。また、熱可塑性エラストマーを用いることもでき、例えば、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、或いは、これらエラストマー同士の組み合わせや、ゴムとのブレンド物等が挙げられる。
【0194】
図1に示すように、クラウン部16には、タイヤケース17を構成する樹脂材料よりも剛性が高い補強コード26がタイヤケース17の周方向に巻回されている。補強コード26は、タイヤケース17の軸方向に沿った断面視で、少なくとも一部がクラウン部16に埋設された状態で螺旋状に巻回されており、補強コード層28を形成している。補強コード層28のタイヤ径方向外周側には、タイヤケース17を構成する樹脂材料よりも耐摩耗性に優れた材料、例えばゴムからなるトレッド30が配置されている。
【0195】
図2を用いて補強コード26によって形成される補強コード層28について説明する。図2は、第1実施形態のタイヤのタイヤケースのクラウン部に補強コードが埋設された状態を示すタイヤ回転軸に沿った断面図である。図2に示されるように、補強コード26は、タイヤケース17の軸方向に沿った断面視で、少なくとも一部がクラウン部16に埋設された状態で螺旋状に巻回されており、タイヤケース17の外周部の一部と共に図2において破線部で示される補強コード層28を形成している。補強コード26のクラウン部16に埋設された部分は、クラウン部16(タイヤケース17)を構成する樹脂材料と密着した状態となっている。補強コード26としては、金属繊維や有機繊維等のモノフィラメント(単線)、または、スチール繊維を撚ったスチールコードなどこれら繊維を撚ったマルチフィラメント(撚り線)などを用いることができる。なお、本実施形態において補強コード26としては、スチールコードが用いられている。
【0196】
また、図2において埋設量Lは、タイヤケース17(クラウン部16)に対する補強コード26のタイヤ回転軸方向への埋設量を示す。補強コード26のクラウン部16に対する埋設量Lは、補強コード26の直径Dの1/5以上であれば好ましく、1/2を超えることがさらに好ましい。そして、補強コード26全体がクラウン部16に埋設されることが最も好ましい。補強コード26の埋設量Lが、補強コード26の直径Dの1/2を超えると、補強コード26の寸法上、埋設部から飛び出し難くなる。また、補強コード26全体がクラウン部16に埋設されると、表面(外周面)がフラットになり、補強コード26が埋設されたクラウン部16上に部材が載置されても補強コード周辺部に空気が入るのを抑制することができる。なお、補強コード層28は、従来のゴム製の空気入りタイヤのカーカスの外周面に配置されるベルトに相当するものである。
【0197】
上述のように補強コード層28のタイヤ径方向外周側にはトレッド30が配置されている。このトレッド30に用いるゴムは、従来のゴム製の空気入りタイヤに用いられているゴムと同種のゴムを用いることが好ましい。なお、トレッド30の代わりに、タイヤケース17を構成する樹脂材料よりも耐摩耗性に優れる他の種類の樹脂材料で形成したトレッドを用いてもよい。また、トレッド30には、従来のゴム製の空気入りタイヤと同様に、路面との接地面に複数の溝を有するトレッドパターンが形成されている。
以下、本実施形態のタイヤの製造方法について説明する。
【0198】
(タイヤケース成形工程)
まず、薄い金属の支持リングに支持されたタイヤケース半体同士を互いに向かい合わせる。次いで、タイヤケース半体の突き当て部分の外周面と接するように図を省略する接合金型を設置する。ここで、前記接合金型はタイヤケース半体Aの接合部(突き当て部分)周辺を所定の圧力で押圧するように構成されている。次いで、タイヤケース半体の接合部周辺を、タイヤケースを構成する樹脂材料の融点(または軟化点)以上で押圧する。タイヤケース半体の接合部が接合金型によって加熱・加圧されると、前記接合部が溶融しタイヤケース半体同士が融着しこれら部材が一体となってタイヤケース17が形成される。尚、本実施形態においては接合金型を用いてタイヤケース半体の接合部を加熱したが、本発明はこれに限定されず、例えば、別に設けた高周波加熱機等によって前記接合部を加熱したり、予め熱風、赤外線の照射等によって軟化または溶融させ、接合金型によって加圧して。タイヤケース半体を接合させてもよい。
【0199】
(補強コード部材巻回工程)
次に、補強コード巻回工程について図3を用いて説明する。図3は、コード加熱装置、およびローラ類を用いてタイヤケースのクラウン部に補強コードを埋設する動作を説明するための説明図である。図3において、コード供給装置56は、補強コード26を巻き付けたリール58と、リール58のコード搬送方向下流側に配置されたコード加熱装置59と、補強コード26の搬送方向下流側に配置された第1のローラ60と、第1のローラ60をタイヤ外周面に対して接離する方向に移動する第1のシリンダ装置62と、第1のローラ60の補強コード26の搬送方向下流側に配置される第2のローラ64と、および第2のローラ64をタイヤ外周面に対して接離する方向に移動する第2のシリンダ装置66と、を備えている。第2のローラ64は、金属製の冷却用ローラとして利用することができる。また、本実施形態において、第1のローラ60または第2のローラ64の表面は、溶融または軟化した樹脂材料の付着を抑制するためにフッ素樹脂(本実施形態では、テフロン(登録商標))でコーティングされている。なお、本実施形態では、コード供給装置56は、第1のローラ60または第2のローラ64の2つのローラを有する構成としているが、本発明はこの構成に限定されず、何れか一方のローラのみ(即ち、ローラ1個)を有している構成でもよい。
【0200】
また、コード加熱装置59は、熱風を生じさせるヒーター70およびファン72を備えている。また、コード加熱装置59は、内部に熱風が供給される、内部空間を補強コード26が通過する加熱ボックス74と、加熱された補強コード26を排出する排出口76とを備えている。
【0201】
本工程においては、まず、コード加熱装置59のヒーター70の温度を上昇させ、ヒーター70で加熱された周囲の空気をファン72の回転によって生じる風で加熱ボックス74へ送る。次に、リール58から巻き出した補強コード26を、熱風で内部空間が加熱された加熱ボックス74内へ送り加熱(例えば、補強コード26の温度を100〜200℃程度に加熱)する。加熱された補強コード26は、排出口76を通り、図3の矢印R方向に回転するタイヤケース17のクラウン部16の外周面に一定のテンションをもって螺旋状に巻きつけられる。ここで、加熱された補強コード26がクラウン部16の外周面に接触すると、接触部分の樹脂材料が溶融または軟化し、加熱された補強コード26の少なくとも一部がクラウン部16の外周面に埋設される。このとき、溶融または軟化した樹脂材料に加熱された補強コード26が埋設されるため、樹脂材料と補強コード26とが隙間がない状態、つまり密着した状態となる。これにより、補強コード26を埋設した部分へのエア入りが抑制される。なお、補強コード26をタイヤケース17の樹脂材料の融点(または軟化点)よりも高温に加熱することで、補強コード26が接触した部分の樹脂材料の溶融または軟化が促進される。このようにすることで、クラウン部16の外周面に補強コード26を埋設しやすくなると共に、効果的にエア入りを抑制することができる。
【0202】
また、補強コード26の埋設量Lは、補強コード26の加熱温度、補強コード26に作用させるテンション、および第1のローラ60による押圧力等によって調整することができる。そして、本実施形態では、補強コード26の埋設量Lが、補強コード26の直径Dの1/5以上となるように設定されている。なお、補強コード26の埋設量Lとしては、直径Dの1/2を超えることがさらに好ましく、補強コード26全体が埋設されることが最も好ましい。
【0203】
このようにして、加熱した補強コード26をクラウン部16の外周面に埋設しながら巻き付けることで、タイヤケース17のクラウン部16の外周側に補強コード層28が形成される。
【0204】
次に、タイヤケース17の外周面に加硫済みの帯状のトレッド30を1周分巻き付けてタイヤケース17の外周面にトレッド30を、接着剤などを用いて接着する。なお、トレッド30は、例えば、従来知られている更生タイヤに用いられるプレキュアトレッドを用いることができる。本工程は、更生タイヤの台タイヤの外周面にプレキュアトレッドを接着する工程と同様の工程である。
【0205】
そして、タイヤケース17のビード部12に、加硫済みのゴムからなるシール層24を、接着剤等を用いて接着すれば、タイヤ10の完成となる。
【0206】
(作用)
本実施形態のタイヤ10では、タイヤケース17が、ポリアミド系熱可塑性エラストマーを海相、高密度ポリエチレン樹脂を島相として含む海島構造の樹脂材料によって形成されているため、弾性率が適度に高く、高温下でも軟化しにくい。このため、タイヤ10は、優れた耐熱性を有する。また、タイヤ10は従来のゴム製のタイヤに比して構造が簡易であるため重量が軽い。このため、本実施形態のタイヤ10は、耐摩擦性および耐久性が高い。
【0207】
また、本実施形態のタイヤ10では、樹脂材料で形成されたタイヤケース17のクラウン部16の外周面に前記樹脂材料よりも剛性が高い補強コード26が周方向へ螺旋状に巻回されていることから耐パンク性、耐カット性、およびタイヤ10の周方向剛性が向上する。なお、タイヤ10の周方向剛性が向上することで、樹脂材料で形成されたタイヤケース17のクリープが防止される。
【0208】
また、タイヤケース17の軸方向に沿った断面視(図1に示される断面)で、樹脂材料で形成されたタイヤケース17のクラウン部16の外周面に補強コード26の少なくとも一部が埋設され且つ樹脂材料に密着していることから、製造時のエア入りが抑制されており、走行時の入力などによって補強コード26が動くのが抑制される。これにより、補強コード26、タイヤケース17、およびトレッド30に剥離などが生じるのが抑制され、タイヤ10の耐久性が向上する。
【0209】
このように補強コード層28が、樹脂材料を含んで構成されていると、補強コード26をクッションゴムで固定する場合と比してタイヤケース17と補強コード層28との硬さの差を小さくできるため、更に補強コード26をタイヤケース17に密着・固定することができる。これにより、上述のエア入りを効果的に防止することができ、走行時に補強コード部材が動くのを効果的に抑制することができる。
更に、補強コード26がスチールコードの場合に、タイヤ処分時に補強コード26を加熱によって樹脂材料から容易に分離・回収が可能であるため、タイヤ10のリサイクル性の点で有利である。また、樹脂材料は加硫ゴムに比して損失係数(tanδ)が低いため、補強コード層28が樹脂材料を多く含んでいると、タイヤの転がり性を向上させることができる。更には、樹脂材料は加硫ゴムに比して、面内せん断剛性が大きく、タイヤ走行時の操安性や耐摩耗性にも優れるといった利点がある。
【0210】
そして、図2に示すように、補強コード26の埋設量Lが直径Dの1/5以上となっていることから、製造時のエア入りが効果的に抑制されており、走行時の入力などによって補強コード26が動くのがさらに抑制される。
【0211】
また、路面と接触するトレッド30をタイヤケース17を構成する樹脂材料よりも耐摩耗性のあるゴム材で構成していることから、タイヤ10の耐摩耗性が向上する。
さらに、ビード部12には、金属材料からなる環状のビードコア18が埋設されていることから、従来のゴム製の空気入りタイヤと同様に、リム20に対してタイヤケース17、すなわちタイヤ10が強固に保持される。
【0212】
またさらに、ビード部12のリム20と接触する部分に、タイヤケース17を構成する樹脂材料よりもシール性のあるゴム材からなるシール層24が設けられていることから、タイヤ10とリム20との間のシール性が向上する。このため、リム20とタイヤケース17を構成する樹脂材料のみとでシールする場合と比較して、タイヤ内の空気漏れがより一層抑制される。また、シール層24を設けることでリムフィット性も向上する。
【0213】
上述の実施形態では、補強コード26を加熱し、加熱した補強コード26が接触する部分のタイヤケース17の表面を溶融または軟化させる構成としたが、本発明はこの構成に限定されず、補強コード26を加熱せずに熱風生成装置を用い、補強コード26が埋設されるクラウン部16の外周面を加熱した後、補強コード26をクラウン部16に埋設するようにしてもよい。
【0214】
また、第1実施形態では、コード加熱装置59の熱源をヒーターおよびファンとしているが、本発明はこの構成に限定されず、補強コード26を輻射熱(例えば、赤外線など)で直接加熱する構成としてもよい。
【0215】
さらに、第1実施形態では、補強コード26を埋設した樹脂材料が溶融または軟化した部分を金属製の第2のローラ64で強制的に冷却する構成としたが、本発明はこの構成に限定されず、樹脂材料が溶融または軟化した部分に冷風を直接吹きかけて、樹脂材料の溶融または軟化した部分を強制的に冷却固化する構成としてもよい。
【0216】
また、第1実施形態では、補強コード26を加熱する構成としたが、例えば、補強コード26の外周をタイヤケース17と同じ樹脂材料で被覆する構成としてもよく、この場合には、被覆補強コードをタイヤケース17のクラウン部16に巻き付ける際に、補強コード26と共に被覆した樹脂材料も加熱することで、クラウン部16への埋設時におけるエア入りを効果的に抑制することができる。
【0217】
また、補強コード26は螺旋巻きするのが製造上は容易だが、幅方向で補強コード26を不連続とする方法等も考えられる。
【0218】
第1実施形態のタイヤ10は、ビード部12をリム20に装着することで、タイヤ10とリム20との間で空気室を形成する、所謂チューブレスタイヤであるが、本発明はこの構成に限定されず、完全なチューブ形状であってもよい。
【0219】
[第2の実施形態]
次に、図面に従って本発明のタイヤの製造方法およびタイヤの第2実施形態について説明する。本実施形態のタイヤは、上述の第1実施形態と同様に、従来一般のゴム製の空気入りタイヤと略同様の断面形状を呈している。このため、以下の図において、前記第1実施形態と同様の構成については同様の番号が付される。図4Aは、第2実施形態のタイヤのタイヤ幅方向に沿った断面図であり、図4Bは第2実施形態のタイヤにリムを嵌合させた状態のビード部のタイヤ幅方向に沿った断面の拡大図である。また、図5は、第2実施形態のタイヤの補強層の周囲を示すタイヤ幅方向に沿った断面図である。
【0220】
第2実施形態のタイヤは、上述の第1実施形態と同様に、タイヤケース17が、海相を構成する第1の樹脂材料として、ポリアミド系熱可塑性エラストマー(例えば、ダイセル・エボニック社製、ベスタミド「E55−K1W2」:引張弾性率201MPa)と、海相より硬い島相を構成する第2の樹脂材料として、高密度ポリエチレン樹脂(例えば、東ソー社製、ニポロンハードZ:引張弾性率1010MPa)と、を、第1の樹脂材料の質量M1:第2の樹脂材料の質量M2=90:10で含む樹脂材料を用いて構成されている。
【0221】
本実施形態においてタイヤ200は、図4Aおよび図5に示すように、クラウン部16に、被覆コード部材26Bが周方向に巻回されて構成された補強コード層28(図5では破線で示されている)が積層されている。この補強コード層28は、タイヤケース17の外周部を構成し、クラウン部16の周方向剛性を補強している。なお、補強コード層28の外周面は、タイヤケース17の外周面17Sに含まれる。
【0222】
この被覆コード部材26Bは、タイヤケース17を形成する樹脂材料よりも剛性が高いコード部材26Aにタイヤケース17を形成する樹脂材料とは別体の被覆用樹脂材料27を被覆して形成されている。また、被覆コード部材26Bはクラウン部16との接触部分において、被覆コード部材26Bとクラウン部16とが接合(例えば、溶接、または接着剤で接着)されている。
【0223】
また、被覆用樹脂材料27の弾性率は、タイヤケース17を形成する樹脂材料の弾性率の0.1倍から10倍の範囲内に設定することが好ましい。被覆用樹脂材料27の弾性率がタイヤケース17を形成する樹脂材料の弾性率の10倍以下の場合は、クラウン部が硬くなり過ぎずリム組み性が容易になる。また、被覆用樹脂材料27の弾性率がタイヤケース17を形成する樹脂材料の弾性率の0.1倍以上の場合には、補強コード層28を構成する樹脂が柔らかすぎず、ベルト面内せん断剛性に優れコーナリング力が向上する。なお、本実施形態では、被覆用樹脂材料27としてタイヤ骨格体を形成する樹脂材料と同様の材料が用いられている。
【0224】
また、図5に示すように、被覆コード部材26Bは、断面形状が略台形状とされている。なお、以下では、被覆コード部材26Bの上面(タイヤ径方向外側の面)を符号26Uで示し、下面(タイヤ径方向内側の面)を符号26Dで示す。また、本実施形態では、被覆コード部材26Bの断面形状を略台形状とする構成としているが、本発明はこの構成に限定されず、断面形状が下面26D側(タイヤ径方向内側)から上面26U側(タイヤ径方向外側)へ向かって幅広となる形状を除いた形状であれば、いずれの形状でもよい。
【0225】
図5に示すように、被覆コード部材26Bは、周方向に間隔をあけて配置されていることから、隣接する被覆コード部材26Bの間に隙間28Aが形成されている。このため、補強コード層28の外周面は、凹凸とされ、この補強コード層28が外周部を構成するタイヤケース17の外周面17Sも凹凸となっている。
【0226】
タイヤケース17の外周面17S(凹凸含む)には、微細な粗化凹凸が均一に形成され、その上に接合剤を介して、クッションゴム29が接合されている。このクッションゴム29は、径方向内側のゴム部分が粗化凹凸に流れ込んでいる。
【0227】
また、クッションゴム29の上(外周面)にはタイヤケース17を形成している樹脂材料よりも耐摩耗性に優れた材料、例えばゴムからなるトレッド30が接合されている。
【0228】
なお、トレッド30に用いるゴム(トレッドゴム30A)は、従来のゴム製の空気入りタイヤに用いられているゴムと同種のゴムを用いることが好ましい。また、トレッド30の代わりに、タイヤケース17を形成する樹脂材料よりも耐摩耗性に優れる他の種類の樹脂材料で形成したトレッドを用いてもよい。また、トレッド30には、従来のゴム製の空気入りタイヤと同様に、路面との接地面に複数の溝を有するトレッドパターン(図示省略)が形成されている。
次に本実施形態のタイヤの製造方法について説明する。
【0229】
(骨格形成工程)
まず、上述の第1実施形態と同様にして、タイヤケース半体17Aを形成し、これを接合金型によって加熱・押圧し、タイヤケース17を形成する。
【0230】
(補強コード部材巻回工程)
本実施形態におけるタイヤの製造装置は、上述の第1実施形態と同様であり、上述の第1実施形態の図3に示すコード供給装置56において、リール58にコード部材26Aを被覆用樹脂材料27(本実施形態ではタイヤケースと同じ樹脂材料)で被覆した断面形状が略台形状の被覆コード部材26Bを巻き付けたものが用いられる。
【0231】
まず、ヒーター70の温度を上昇させ、ヒーター70で加熱された周囲の空気をファン72の回転によって生じる風で加熱ボックス74へ送る。リール58から巻き出した被覆コード部材26Bを、熱風で内部空間が加熱された加熱ボックス74内へ送り加熱(例えば、被覆コード部材26Bの外周面の温度を、被覆用樹脂材料27の融点(または軟化点)以上)とする。ここで、被覆コード部材26Bが加熱されることにより、被覆用樹脂材料27が溶融または軟化した状態となる。
【0232】
そして被覆コード部材26Bは、排出口76を通り、紙面手前方向に回転するタイヤケース17のクラウン部16の外周面に一定のテンションをもって螺旋状に巻回される。このとき、クラウン部16の外周面に被覆コード部材26Bの下面26Dが接触する。そして、接触した部分の溶融または軟化状態の被覆用樹脂材料27はクラウン部16の外周面上に広がり、クラウン部16の外周面に被覆コード部材26Bが溶着される。これにより、クラウン部16と被覆コード部材26Bとの接合強度が向上する。
【0233】
(粗化処理工程)
次に、図示を省略するブラスト装置にて、タイヤケース17の外周面17Sに向け、タイヤケース17側を回転させながら、外周面17Sへ投射材を高速度で射出する。射出された投射材は、外周面17Sに衝突し、この外周面17Sに算術平均粗さRaが0.05mm以上となる微細な粗化凹凸96を形成する。
このようにして、タイヤケース17の外周面17Sに微細な粗化凹凸96が形成されることで、外周面17Sが親水性となり、後述する接合剤の濡れ性が向上する。
【0234】
(積層工程)
次に、粗化処理を行なったタイヤケース17の外周面17Sに接合剤を塗布する。
なお、接合剤としては、トリアジンチオール系接着剤、塩化ゴム系接着剤、フェノール系樹脂接着剤、イソシアネート系接着剤、ハロゲン化ゴム系接着剤、ゴム系接着剤など、特に制限はないが、クッションゴム29が加硫できる温度(90℃〜140℃)で反応することが好ましい。
【0235】
次に、接合剤が塗布された外周面17Sに未加硫状態のクッションゴム29を1周分巻き付け、そのクッションゴム29の上に例えば、ゴムセメント組成物などの接合剤を塗布し、その上に加硫済みまたは半加硫状態のトレッドゴム30Aを1周分巻き付けて、生タイヤケース状態とする。
【0236】
(加硫工程)
次に生タイヤケースを加硫缶やモールドに収容して加硫する。このとき、粗化処理によってタイヤケース17の外周面17Sに形成された粗化凹凸96に未加硫のクッションゴム29が流れ込む。そして、加硫が完了すると、粗化凹凸96に流れ込んだクッションゴム29により、アンカー効果が発揮されて、タイヤケース17とクッションゴム29との接合強度が向上する。すなわち、クッションゴム29を介してタイヤケース17とトレッド30との接合強度が向上する。
【0237】
そして、タイヤケース17のビード部12に、樹脂材料よりも軟質である軟質材料からなるシール層24を、接着剤等を用いて接着すれば、タイヤ200の完成となる。
【0238】
(作用)
本実施形態のタイヤ200では、タイヤケース17が、ポリアミド系熱可塑性エラストマーを海相、高密度ポリエチレン樹脂を島相として含む海島構造の樹脂材料によって形成されているため、弾性率が適度に高い。このため、タイヤ200は、適切な乗り心地を有する。また、タイヤ200は従来のゴム製のタイヤに比して構造が簡易であるため重量が軽い。このため、本実施形態のタイヤ200は、耐摩擦性および耐久性が高い。
【0239】
本実施形態のタイヤの製造方法では、タイヤケース17とクッションゴム29およびトレッドゴム30Aとを一体化するにあたり、タイヤケース17の外周面17Sが粗化処理されていることから、アンカー効果により接合性(接着性)が向上する。また、タイヤケース17を形成する樹脂材料が投射材の衝突により掘り起こされることから、接合剤の濡れ性が向上する。これにより、タイヤケース17の外周面17Sに接合剤が均一な塗布状態で保持され、タイヤケース17とクッションゴム29との接合強度を確保することができる。
【0240】
特に、タイヤケース17の外周面17Sに凹凸が構成されていても、凹部(隙間28A)に投射材を衝突させることで凹部周囲(凹壁、凹底)の粗化処理がなされ、タイヤケース17とクッションゴム29との接合強度を確保することができる。
【0241】
一方、クッションゴム29がタイヤケース17の外周面17Sの粗化処理された領域内に積層されることから、タイヤケース17とクッションゴムとの接合強度を効果的に確保することができる。
【0242】
加硫工程において、クッションゴム29を加硫した場合、粗化処理によってタイヤケース17の外周面17Sに形成された粗化凹凸にクッションゴム29が流れ込む。そして、加硫が完了すると、粗化凹凸に流れ込んだクッションゴム29により、アンカー効果が発揮されて、タイヤケース17とクッションゴム29との接合強度が向上する。
【0243】
このような、タイヤの製造方法にて製造されたタイヤ200は、タイヤケース17とクッションゴム29との接合強度が確保される、すなわち、クッションゴム29を介してタイヤケース17とトレッド30との接合強度が確保される。これにより、走行時などにおいて、タイヤ200のタイヤケース17の外周面17Sとクッションゴム29との間の剥離が抑制される。
【0244】
また、タイヤケース17の外周部を補強コード層28が構成していることから、外周部を補強コード層28以外のもので構成しているものと比べて、耐パンク性および耐カット性が向上する。
【0245】
また、被覆コード部材26Bを巻回して補強コード層28が形成されていることから、タイヤ200の周方向剛性が向上する。周方向剛性が向上することで、タイヤケース17のクリープ(一定の応力下でタイヤケース17の塑性変形が時間とともに増加する現象)が抑制され、且つ、タイヤ径方向内側からの空気圧に対する耐圧性が向上する。
【0246】
更に、補強コード層28が、被覆コード部材26Bを含んで構成されていると、補強コード26Aを単にクッションゴム29で固定する場合と比してタイヤケース17と補強コード層28との硬さの差を小さくできるため、更に被覆コード部材26Bをタイヤケース17に密着・固定することができる。これにより、上述のエア入りを効果的に防止することができ、走行時に補強コード部材が動くのを効果的に抑制することができる。
更に、補強コード26Aがスチールコードの場合に、タイヤ処分時に被覆コード部材26Bからコード部材26Aを加熱によって容易に分離・回収が可能であるため、タイヤ200のリサイクル性の点で有利である。また、樹脂材料は加硫ゴムに比して損失係数(tanδ)が低いため、補強コード層28が樹脂材料を多く含んでいると、タイヤの転がり性を向上させることができる。更には、樹脂材料は加硫ゴムに比して、面内せん断剛性が大きく、タイヤ走行時の操安性や耐摩耗性にも優れるといった利点がある。
【0247】
本実施形態では、タイヤケース17の外周面17Sに凹凸を構成したが、本発明はこれに限らず、外周面17Sを平らに形成する構成としてもよい。
また、タイヤケース17は、タイヤケースのクラウン部に巻回され且つ接合された被覆コード部材を被覆用熱可塑性材料で覆うようにして補強コード層を形成してもよい。この場合、溶融または軟化状態の被覆用熱可塑性材料を補強コード層28の上に吐出して被覆層を形成することができる。また、押出機を用いずに、溶着シートを加熱し溶融または軟化状態にして、補強コード層28の表面(外周面)に貼り付けて被覆層を形成してもよい。
【0248】
上述の第2実施形態では、ケース分割体(タイヤケース半体17A)を接合してタイヤケース17を形成する構成としたが、本発明はこの構成に限らず、金型などを用いてタイヤケース17を一体的に形成してもよい。
【0249】
第2実施形態のタイヤ200は、ビード部12をリム20に装着することで、タイヤ200とリム20との間で空気室を形成する、所謂チューブレスタイヤであるが、本発明はこの構成に限定されず、タイヤ200は、例えば、完全なチューブ形状であってもよい。
【0250】
第2実施形態では、タイヤケース17とトレッド30との間にクッションゴム29を配置したが、本発明はこれに限らず、クッションゴム29を配置しない構成としてもよい。
【0251】
また、第2実施形態では、被覆コード部材26Bをクラウン部16へ螺旋状に巻回する構成としたが、本発明はこれに限らず、被覆コード部材26Bが幅方向で不連続となるように巻回する構成としてもよい。
【0252】
第2実施形態では、被覆コード部材26Bを形成する被覆用樹脂材料27を熱可塑性材料とし、この被覆用樹脂材料27を加熱することにより溶融または軟化状態にしてクラウン部16の外周面に被覆コード部材26Bを溶着する構成としているが、本発明はこの構成に限定されず、被覆用樹脂材料27を加熱せずに接着剤などを用いてクラウン部16の外周面に被覆コード部材26Bを接着する構成としてもよい。
また、被覆コード部材26Bを形成する被覆用樹脂材料27を熱硬化性樹脂とし、被覆コード部材26Bを加熱せずに接着剤などを用いてクラウン部16の外周面に接着する構成としてもよい。
さらに、被覆コード部材26Bを形成する被覆用樹脂材料27を熱硬化性樹脂とし、タイヤケース17を樹脂材料で形成する構成としてもよい。この場合には、被覆コード部材26Bをクラウン部16の外周面に接着剤などを用いて接着してもよく、タイヤケース17の被覆コード部材26Bが配設される部位を加熱して溶融または軟化状態にして被覆コード部材26Bをクラウン部16の外周面に溶着してもよい。
またさらに、被覆コード部材26Bを形成する被覆用樹脂材料27を熱可塑性材料とし、タイヤケース17を樹脂材料で形成する構成としてもよい。この場合には、被覆コード部材26Bをクラウン部16の外周面に接着剤などを用いて接着してもよく、タイヤケース17の被覆コード部材26Bが配設される部位を加熱して溶融または軟化状態としつつ、被覆用樹脂材料27を加熱し溶融または軟化状態にして被覆コード部材26Bをクラウン部16の外周面に溶着してもよい。なお、タイヤケース17および被覆コード部材26Bの両者を加熱して溶融または軟化状態にした場合、両者が良く混ざり合うため接合強度が向上する。また、タイヤケース17を形成する樹脂材料、および被覆コード部材26Bを形成する被覆用樹脂材料27をともに樹脂材料とする場合には、同種の熱可塑性材料、特に同一の熱可塑性材料とすることが好ましい。
また、さらに粗化処理を行ったタイヤケース17の外周面17Sにコロナ処理やプラズマ処理等を用い、外周面17Sの表面を活性化し、親水性を高めた後に接着剤を塗布してもよい。
【0253】
またさらに、タイヤ200を製造するための順序は、第2実施形態の順序に限らず、適宜変更してもよい。
以上、実施形態を挙げて本発明の実施の形態を説明したが、これらの実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。また、本発明の権利範囲がこれらの実施形態に限定されないことは言うまでもない。
【0254】
以上、実施形態を挙げて本発明の実施の形態を説明したが、これらの実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。また、本発明の権利範囲がこれらの実施形態に限定されないことは言うまでもない。
【実施例】
【0255】
以下、本発明について実施例を用いてより具体的に説明する。ただし、本発明はこれに限定されるものではない。
まず、上述の第1実施形態に従って、実施例および比較例のタイヤを成形した。この際、タイヤケースを形成する材料については下記表1に記載の材料を用いた。また、各実施例および比較例について、材料の物性評価およびタイヤ性能の評価を下記に従っておこなった。
【0256】
[ペレットの作製]
下記表1に示す第1の樹脂材料および第2の樹脂材料を混合し、東洋精機製作所「LABOPLASTOMILL 50MR」2軸押出し機により樹脂材料を混練(混合温度180〜200℃)し、ペレットを得た。
なお、比較例1および2においては、混合せず、単一樹脂のペレットを用意した。
【0257】
−引張弾性率、破断伸び、及び、破断応力評価−
作製したペレットを用いて、住友重工社製、SE30Dを用い、射出成形を行い、成形温度200℃〜235℃、金型温度50℃〜70℃とし、30mm×127mm、厚さ2.0mmの金型を用いて、試験片を得た。
各試験片を打ち抜き、JISK6251:1993に規定されるダンベル状試料片(5号形試料片)を作製した。
【0258】
次いで、島津製作所社製、島津オートグラフAGS−J(5KN)を用いて、引張速度を200mm/minに設定し、前記各ダンベル状試料片の引張弾性率、破断伸び、及び、破断応力を測定した。
結果を下記表1に示す。
【0259】
−G’(50℃)/G’(0℃)の指数の算出−
作製したペレットを用いて、住友重工社製、SE30Dを用い、射出成形を行い、成形温度200℃〜235℃、金型温度50℃〜70℃とし、30mm×127mm、厚さ2.0mmの金型を用いて、試験片を得た。
得られた試験片について、G’(50℃)/G’(0℃)の指数を算出した。具体的には次のとおりである。
レオメトリックス(株)製の動的粘弾性測定機「ARESIII」を用いて、周波数:10HZ、動的歪:1%の条件の下、各試験片について、50℃における貯蔵剪断弾性率G’(50℃)および0℃における貯蔵剪断弾性率G’(0℃)を測定して、各ペレットにおけるG’(50℃)/G’(0℃)を算出した。
次いで、比較例1におけるG’(50℃)/G’(0℃)に対する各ペレットにおけるG’(50℃)/G’(0℃)の大きさを「G’(50℃)/G’(0℃)の指数」として表1に示した。「G’(50℃)/G’(0℃)の指数」が1よりも小さいことは、耐熱性に優れることを意味する。
【0260】
−耐熱性評価−
表1に記載の樹脂材料を用いて、上述の第1の実施形態と同様にしてタイヤを形成した。リムに組み、タイヤに規定圧力の3倍の圧力を入れ、80℃にて1ヶ月保管し、寸法を計測した。2mm以上変形したものを変形ありとした。下記評価基準に基づき、耐熱性を評価した。
−評価基準−
A:リム組みができ、形状保持ができたもの
B:リム組みができるが、エアーシールができなかったものもしくは変形が生じたもの
C:リムに組むことができなかったもの
【0261】
さらに、タイヤ骨格を構成する樹脂材料の状態を表1に示した。
なお、第2の樹脂材料で構成される島相が第1の樹脂材料で構成される海相中に分散していること、または、第1の樹脂材料もしくは第2の樹脂材料の単一相となっていることは、SEM(走査型電子顕微鏡、scanning electron microscope)を用いた写真観察から確認した。
【0262】
また、表1の結果から、実施例および比較例の樹脂材料の弾性率係数を既述の式(1)に基づき算出し、表1に示した。
【0263】
【表1】
【0264】
表1中の成分は、次のとおりである。
・第1の樹脂材料
ダイセル・エボニック社製、ベスタミド「E55−K1W2」
〔ポリアミド系熱可塑性エラストマー、引張弾性率201MPa〕
・第2の樹脂材料
東ソー社製、ニポロンハードZ
〔高密度ポリエチレン樹脂、引張弾性率1010MPa〕
旭化成ケミカルズ社製、ザイロン「200H」
〔ポリフェニレンエーテル、引張弾性率1000MPaを超える〕
【0265】
表1に示されるように、各実施例で作製した試験片は、比較例で作製された試料片との対比において、引張弾性率、破断伸び、及び破断応力が大き過ぎも小さ過ぎもせず、適度な強度を有していることがわかる。特に、弾性率係数が0.25〜2の範囲内にある実施例は、形状が保持され、耐熱性評価が高くなっていることがわかる。
このことは、実施例に示す試験片と同じ樹脂材料を用いて形成されたタイヤケースを用いて製造されたタイヤは、耐熱性に優れることを示す。
【0266】
尚、日本出願2012−044644の開示は参照により本明細書に取り込まれる。
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
図1A
図1B
図2
図3
図4A
図4B
図5