(58)【調査した分野】(Int.Cl.,DB名)
前記自覚眠気・覚低走行状態検出手段は、前記運転者の基本状態がリラックス状態か緊張状態であるかを判定し、判定される基本状態がリラックス状態か緊張状態であるかによって、前記軽い眠気又は瞬間的な覚低走行状態に相当するか否かの判定基準を選択する手段を有する請求項1又は2記載の運転時生体状態判定装置。
前記自覚眠気・覚低走行状態検出手段は、さらに、前記分布率演算手段により得られる前記3つの周波数成分の分布率の時系列波形の各ピーク値が、所定の出現時間の差の範囲内で所定の順番で出現し、かつ、所定の分布率条件を満たす値である場合に、強い眠気又は連続的な覚低走行状態を検出する手段を備えている請求項1〜3のいずれか1に記載の運転時生体状態判定装置。
前記分布率演算手段に用いる前記機能調整信号の周波数が0.0027Hz以下であり、前記疲労受容信号の周波数が0.002〜0.0052Hzの範囲であり、前記活動調整信号の周波数が0.004〜0.007Hzである請求項1〜6のいずれか1に記載の運転時生体状態判定装置。
前記自覚眠気・覚低走行状態検出手順は、前記運転者の基本状態がリラックス状態か緊張状態であるかを判定し、判定される基本状態がリラックス状態か緊張状態であるかによって、前記軽い眠気又は瞬間的な覚低走行状態に相当するか否かの判定基準を選択する手順を実行させる請求項8又は9記載のコンピュータプログラム。
前記自覚眠気・覚低走行状態検出手順は、さらに、前記分布率演算手順により得られる前記3つの周波数成分の分布率の時系列波形の各ピーク値が、所定の出現時間の差の範囲内で所定の順番で出現し、かつ、所定の分布率条件を満たす値である場合に、強い眠気又は連続的な覚低走行状態を検出する手順を実行させる請求項8〜10のいずれか1に記載のコンピュータプログラム。
前記自覚眠気・覚低走行状態検出手順における前記強い眠気又は連続的な覚低走行状態と判定する手順は、前記分布率演算手順により得られる前記3つの周波数成分の所定の分布率条件を満たすピーク値の出現時刻が、次の関係:
活動調整信号≦機能調整信号≦疲労受容信号(但し、活動調整信号と疲労受容信号の前記ピーク値の出現時刻の差が所定時間内)
を満たす場合に、強い眠気又は連続的な覚低走行状態であると判定する請求項11記載のコンピュータプログラム。
【発明を実施するための形態】
【0022】
以下、図面に示した本発明の実施形態に基づき、本発明をさらに詳細に説明する。
図1〜
図3は、本発明の一の実施形態に係る運転時生体状態判定装置60の分析対象である運転者の背部から採取される生体信号、すなわち心部揺動波(Aortic Pulse Wave(APW))を採取する生体信号測定装置1を示した図である。心部揺動波は、人の上体の背部から検出される心臓と大動脈の運動から生じる圧力振動であり、心室の収縮期及び拡張期の情報を含んでいる。また、循環の補助ポンプとなる動脈管の内圧の高まりは波となって血管に沿って末梢へ伝播され、この伝播に伴って血管壁を拡張させる。従って、心部揺動波(APW)は、血管壁の弾性情報及び血圧による弾性情報を含んでいる。すなわち、心部揺動波(APW)は、心音や心電図から得られる中枢に近いところの情報と、心臓を起点にした入力波に動脈管の内圧変動や血管壁の弾性による影響が重畳された出力波の情報(すなわち、本来、同一周期、同一のゆらぎとなる指尖容積脈波から得られる末梢の情報によって周期特性が変化した情報)との両方を含んだ情報となっている。そして、心拍変動に伴う信号波形は交感神経系及び副交感神経系の神経活動情報(交感神経の代償作用を含んだ副交感神経系の活動情報)を含み、大動脈の揺動に伴う信号波形には交感神経活動の情報を含んでいる。
【0023】
本実施形態で用いた生体信号測定装置1は、
図2及び
図3に示したように、コアパッド11、スペーサパッド12、センサ13、フロントフィルム14、リアフィルム15を有して構成される。
【0024】
コアパッド11は、例えば板状に成形され、脊柱に対応する部位を挟んで対称位置に、縦長の貫通孔11a,11aが2つ形成されている。コアパッド11は、板状に形成されたポリプロピレンのビーズ発泡体から構成することが好ましい。コアパッド11をビーズ発泡体から構成する場合、発泡倍率は25〜50倍の範囲で、厚さがビーズの平均直径以下に形成されていることが好ましい。例えば、30倍発泡のビーズの平均直径が4〜6mm程度の場合では、コアパッド11の厚さは3〜5mm程度にスライスカットする。
【0025】
スペーサパッド12は、コアパッド11の貫通孔11a,11a内に装填される。スペーサパッド12は、三次元立体編物から形成することが好ましい。三次元立体編物は、例えば、特開2002−331603号公報、特開2003−182427号公報等に開示されているように、互いに離間して配置された一対のグランド編地と、該一対のグランド編地間を往復して両者を結合する多数の連結糸とを有する立体的な三次元構造となった編地である。三次元立体編物が人の背によって押圧されることにより、三次元立体編物の連結糸が圧縮され、連結糸に張力が生じ、生体信号に伴う人の筋肉を介した体表面の振動が伝播される。また、コアパッド11よりも、三次元立体編物からなるスペーサパッド12の方が厚いものを用いることが好ましい。これにより、フロントフィルム14及びリアフィルム15の周縁部を貫通孔11a,11aの周縁部に貼着すると、三次元立体編物からなるスペーサパッド12が厚み方向に押圧されるため、フロントフィルム14及びリアフィルム15の反力による張力が発生し、該フロントフィルム14及びリアフィルム15に固体振動(膜振動)が生じやすくなる。一方、三次元立体編物からなるスペーサパッド12にも予備圧縮が生じ、三次元立体編物の厚み方向の形態を保持する連結糸にも反力による張力が生じて弦振動が生じやすくなる。
【0026】
センサ13は、上記したフロントフィルム14及びリアフィルム15を積層する前に、いずれか一方のスペーサパッド12に固着して配設される。スペーサパッド12を構成する三次元立体編物は上記したように一対のグランド編地と連結糸とから構成されるが、各連結糸の弦振動がグランド編地との節点を介してフロントフィルム14及びリアフィルム15に伝達されるため、センサ13はスペーサパッド12の表面(グランド編地の表面)に固着することが好ましい。センサ13としては、マイクロフォンセンサ、中でも、コンデンサ型マイクロフォンセンサを用いることが好ましい。
【0027】
上記した生体信号測定装置1は、例えば、自動車等の輸送機器の運転席のシートバックの位置に配設される。例えば、シートバックの表皮の内側に配置したり、あるいは、シートバックに積層して用いられるクッション部材の裏面に配置したりして設けられる。
【0028】
次に、本実施形態の運転時生体状態判定装置60の構成について
図4に基づいて説明する。運転時生体状態判定装置60は、分析演算手段61、判定検出手段62等を有して構成される。運転時生体状態判定装置60はコンピュータから構成され、このコンピュータに、分析演算手順を実行させて分析演算手段61として機能させ、判定検出手順を実行させて判定検出手段62として機能させるコンピュータプログラムが導入される。なお、コンピュータプログラムは、フレキシブルディスク、ハードディスク、CD−ROM、MO(光磁気ディスク)、DVD−ROM、メモリカードなどの記録媒体へ記憶させて提供することもできるし、通信回線を通じて伝送することも可能である。
【0029】
分析演算手段61は、生体信号測定装置1から得られる生体信号であるAPWを分析演算して所定の形態となるように加工する。具体的には、周波数演算手段611と、周波数傾き演算手段612と、周波数変動演算手段613と、分布率演算手段614と、変化度演算手段615とを有して構成され、これらは、それぞれコンピュータプログラムである周波数演算手順、周波数傾き演算手順、周波数変動演算手順、分布率演算手順、変化度演算手順を実行させることによって機能する。
【0030】
周波数演算手段611は、生体信号測定装置1のセンサ13から得られる出力信号(APW)の時系列データ、好ましくは、フィルタリング処理(例えば、体動などの周波数成分除去するフィルタリング処理)された所定の周波数領域の時系列データにおける周波数の時系列波形を求める。
【0031】
周波数演算手段611は、生体信号測定装置1のセンサから得られる出力信号(APW)の時系列波形において、正から負に切り替わる地点(以下、「ゼロクロス地点」という)を用いて周波数の時系列波形を求める方法(以下、「ゼロクロス検出法」という)である。このゼロクロス検出法は、生体信号の周波数の基本成分を捉えるものであり、交感神経機能の指標として用いられるLF/HFの発現の強弱レベルを示す。この方法では、まず、ゼロクロス地点を求めたならば、それを例えば5秒毎に切り分け、その5秒間に含まれる時系列波形のゼロクロス地点間の時間間隔の逆数を個別周波数fとして求め、その5秒間における個別周波数fの平均値を当該5秒間の周波数Fの値として採用する(
図5の[1]のステップ)。そして、この5秒毎に得られる周波数Fをプロットすることにより、周波数の時系列波形を求める(
図5の[2]のステップ)。
【0032】
周波数演算手段611としては、生体信号測定装置1のセンサから得られる出力信号(APW)の時系列波形を平滑化微分して極大値(ピーク)を用いて時系列波形を求める方法(以下、「ピーク検出法」という)を採用することもできる。ピーク検出法は、基本的には副交感神経機能の指標として用いられるHFの機能に相当する時系列波形である。例えば、SavitzkyとGolayによる平滑化微分法により極大値を求める。次に、例えば5秒ごとに極大値を切り分け、その5秒間に含まれる時系列波形の極大値(波形の山側頂部)間の時間間隔の逆数を個別周波数fとして求め、その5秒間における個別周波数fの平均値を当該5秒間の周波数Fの値として採用する(
図5の[1]のステップ)。そして、この5秒毎に得られる周波数Fをプロットすることにより、周波数の時系列波形を求める(
図5の[2]のステップ)。
【0033】
ここで、APWは、指尖容積脈波と同様に末梢系の制御の様子と心臓の制御の様子の両方の情報を含む生体信号、すなわち、動脈の交感神経支配の様子、並びに、自律神経系の交感神経系と副交感神経系の出現情報を含む生体信号であり、この生体信号のゼロクロス検出法による傾き時系列波形を絶対値処理した波形は、心臓の制御の状態により関連しており、交感神経の出現状態を反映している。ピーク検出法によるものは、心拍変動により関連しており、交感神経による代償作用が加味された副交感神経系の動態を捉えている。なお、ピーク検出法による傾き時系列波形を絶対値処理したものは、指尖容積脈波のウエーブレット解析による副交感神経の動態(この副交感神経の動態は交感代償作用が加味されたものである)に比較的近似している。そのため、ゼロクロス検出法は、自律神経系の制御で対処されるストレスへの適応の結果となる体調を表す指標に用いることができると考えられる。ゼロクロス検出法は、心臓の制御の状態への関連が高いため、心拍変動の切痕の情報も含んでおり、指尖容積脈波では得られない、APWの時相差及びゆらぎの発生による0.5Hz近傍や1〜2Hz近傍において生じる位相遅れの周波数成分も情報として得られる。従って、APWを用いて生体状態を判定するに当たって、ゼロクロス検出法により得られたデータを主として用いることが好ましい。
【0034】
周波数傾き演算手段612は、周波数演算手段611によって得られた生体信号測定装置1のセンサの出力信号の周波数の時系列波形から、所定のオーバーラップ時間で所定の時間幅の時間窓を設定し、時間窓毎に最小二乗法によりセンサの出力信号の周波数の傾きを求め、その時系列波形を出力する構成である。具体的には、まず、ある時間窓Tw1における周波数の傾きを最小二乗法により求めてプロットする(
図5の[3],[5]のステップ)。次に、オーバーラップ時間Tl(
図5の[6]のステップ)で次の時間窓Tw2を設定し、この時間窓Tw2における周波数の傾きを同様に最小二乗法により求めてプロットする。この計算(移動計算)を順次繰り返し、エアパック信号の周波数の傾きの時系列変化を周波数傾き時系列波形として出力する(
図5の[8]のステップ)。なお、時間窓Twの時間幅は180秒に設定することが好ましく、オーバーラップ時間Tlは162秒に設定することが好ましい。これは、本出願人による上記特許文献3(WO2005/092193A1公報)において示したように、時間窓Twの時間幅及びオーバーラップ時間Tlを種々変更して行った睡眠実験から、特徴的な信号波形が最も感度よく出現する値として選択されたものである。
【0035】
また、上記したように、心房細動のゆらぎの特性は0.0033Hzで切り替わり、0.0033Hzのゆらぎを調整するためのゆらぎが、0.0033Hz近傍以下に存在すると言われている。従って、0Hzと0.0033Hzの中間である0.0017Hzを中心としたゆらぎの状態を見ると、ばらつきが生じたとしても0.0033Hz近傍及びそれ以下に生じるゆらぎの状態の概要が現れると考えられる。0.0017Hzの波形の1/4周期にあたる時間は147秒である。90%ラップ状態で波形をスムージングするとして、前後の10%の時間を加算すると、147/0.8=約180秒となり、この点からも180秒とすることが好ましいと言える。ここに、180秒、3分間で変化していく様子、変化の傾向、微分係数、傾きを時系列波形として捉える。そして180秒間の平均値である傾きを、スムージングさせるために180秒間の時間を90%ラップさせて、18秒毎にプロットしていき時系列波形を作り、この傾きの時系列波形を使って解析を行う。この傾き時系列波形は恒常性のゆらぎを捉えるもので、心拍変動の制御の程度を時系列波形として大局的に評価するものである。
【0036】
周波数変動演算手段613は、周波数演算手段611により得られた時系列波形において、所定のオーバーラップ時間で設定した所定の時間窓毎に周波数の平均値を求める移動計算を行い、時間窓毎に得られる周波数の平均値の時系列変化を周波数変動時系列波形として出力するものである。上記したように、ピーク検出法により得られる周波数の時系列波形は、交感神経活動と副交感神経活動の両方の情報を捉えており、ゼロクロス検出法により得られる周波数の時系列波形は、交感神経活動の情報を捉えている。ゼロクロス検出法による周波数変動時系列波形が交感神経活動を捉えているとすると、睡眠状態では交感神経活動の低下の影響を受けるため周波数は低下する。ピーク検出法による周波数変動時系列波形が交感神経活動と副交感神経活動の両方の捉えているとすると、睡眠状態では交感神経活動の低下と副交感神経活動の亢進の両方の影響を受けるため周波数はゼロクロス検出法の場合よりもさらに低下する。従って、2つの周波数変動時系列波形を覚醒状態と睡眠状態とで比較すると、両者の乖離度に変化が生じる。すなわち、両者の乖離度は覚醒状態よりも睡眠状態の方が小さくなる(
図30(c)参照)。
【0037】
従って、このことを利用し、予め覚醒状態と睡眠状態との乖離度のデータを複数取得し、それらから閾値を設定することで、覚醒状態か睡眠状態か否かを自動判定できる。運転中に睡眠に陥ることはないのが通常であるが、本実施形態の運転時生体状態判定装置60の判定検出手段62として、周波数変動時系列波形を用いた乖離度判定手段を設定しておくことで、万一、睡眠状態に至ったことを検出したならば、所定の警告を発するようにすることもできる。但し、運転中に睡眠に陥ることはないものの、運転手が休憩時に睡眠する場合はもちろんある。従って、乖離度判定手段を運転終了後に起動して、運転手がどの時間に休憩して睡眠したかを客観的に知るようにすることもできる。この場合、判定用のコンピュータプログラムである乖離度判定手段を起動させるのは、車載の運転時生体状態判定装置60であってもよいし、車載の運転時生体状態判定装置60において蓄積されたデータを用い、乖離度判定手段が設定されている管理者の管理用コンピュータによって解析し、運転手毎の運転時の状態管理に使用するようにしてもよい。もちろん、車載の運転時生体状態判定装置60によって得られるデータは、常時あるいは定期的に通信回線を通じて管理用コンピュータに送信されるように設定されていてもよく、その場合には、管理用コンピュータは、受信したデータに基づいて乖離度を判定することができる。
【0038】
分布率演算手段614は、周波数傾き演算手段612から得られる周波数傾き時系列波形を周波数解析し、上記した機能調整信号、疲労受容信号及び活動調整信号に相当する各周波数のパワースペクトルを求める手段を有すると共に、得られたパワースペクトルの時系列変化から、予め定めた上記の機能調整信号、疲労受容信号及び活動調整信号に相当する周波数成分を抜き出し、この3つの周波数成分のパワースペクトルの値の合計を100とした際の3つの各周波成分の割合を時系列に算出し、その時系列変動波形を分布率波形として求める。ここで、本実施形態では、上記したように、0.0017Hzを機能調整信号とし、0.0035Hzを疲労受容信号とし、0.0053Hzを活動調整信号とした。なお、機能調整信号は0.0027Hz以下の範囲、疲労受容信号は0.002〜0.0052Hzの範囲であり、活動調整信号の周波数が0.004〜0.007Hzの範囲で調整することができる。
【0039】
変化度演算手段615は、分布率演算手段により得られた時系列の分布率に平滑化微分を適用し、時間軸上の任意の時点間における、上記した機能調整信号、疲労受容信号及び活動調整信号の3つの周波数成分のうちの少なくとも一つの周波数成分について分布率の変化度を求める。このとき、平滑化微分を適用する時間軸上の任意の時点間とは、計算ポイントとして採用する時間軸上の2つ以上のポイントから適宜選択できる。この場合、例えば、2ポイントでの平滑化微分を適用する場合、11ポイントでの平滑化微分を適用する場合といったように、複数種類の計算手法により変化度を求めることが好ましい。それぞれに求めた変化度について、異なる閾値で判定基準を設定することにより、より正確な判定が可能となる。
【0040】
判定検出手段62は、上記した分析演算手段61の各演算手段の演算結果を用いて生体状態を判定又は検出する手段であり、入眠予兆現象検出手段621、切迫睡眠現象検出手段622、自覚眠気・覚低走行状態検出手段623、恒常性維持機能レベル判定手段624、初期疲労判定手段625等を有して構成され、これらは、それぞれコンピュータプログラムである入眠予兆現象検出手順、切迫睡眠現象検出手順、自覚眠気・覚低走行状態検出手順、恒常性維持機能レベル判定手順、初期疲労判定手順等を実行させることによって機能する。
【0041】
入眠予兆現象検出手段621は入眠予兆現象を検出する。入眠予兆現象は、入眠に至る5〜30分前に生じる体調変化現象であるが自覚的な眠気を伴わない。そこで、交感神経機能の亢進というシグナルによって捉える。
【0042】
入眠予兆現象検出手段621は、上記した分析演算手段61の演算結果のうち、自律神経制御に関連する指標を用いて判定を行う。本実施形態では、ゼロクロス検出法を用いた周波数傾き演算手段612による周波数傾き時系列波形を用いて判定している。
図6は睡眠実験結果の一例を示したものであり、このうち(c)がゼロクロス検出法を用いた周波数傾き時系列波形の一例を示すものである。入眠予兆現象は周波数傾き時系列波形において、基本的には、振幅の大きな波が複数連続して出現することにより判定される。
図6(a)に示したように、脳波のα波、β波、θ波の関係から、33〜40分付近が、入眠に陥ったポイント(入眠点)であると判定できる。これに対し、(c)の周波数傾き時系列波形は、14〜26分付近、すなわち、入眠点の7〜26分前に振幅の大きな波が連続して出現しており、この波形が交感神経機能の亢進に伴う入眠予兆現象と特定できる。多数の被験者について行った試験結果から、この振幅の大きな波形が、それ以前の波形とどのような違いで現れるかを統計的に検討して得られた基準に基づき判定することにより、入眠予兆現象をリアルタイムで特定できる。
【0043】
本実施形態では、
図7に示したように、まず、ゼロクロス検出法を用いた周波数傾き時系列波形を平滑化微分し、正の傾きから負の傾きに切り替わるポイントをピークとして検出し、負の傾きから正の傾きに切り替わるポイントをボトムとして検出し、両者間の振幅値を計算する。次に、このような振幅値が複数存在するか否かを求め、複数存在する場合に、1データ前の振幅値との大きさを比較し、その大きさの比が所定倍数以上で、かつ、1データ前の振幅値を求めた時刻から所定時間以上経過している場合に入眠予兆現象と判定する。
【0044】
以上のことから、所定の基準に対して振幅の大きな波形の出現が生じるという周波数傾き時系列波形の発散傾向が現れた場合に入眠予兆現象と判定できる。また、
図20に示したように、このような振幅の増大傾向が生じているタイミングで、その周期も長周期化していることから、増大傾向に合わせて周期も長周期化する場合に入眠予兆現象と判定する構成とすることが好ましい。
【0045】
切迫睡眠現象検出手段622は、切迫睡眠現象を検出する。切迫睡眠現象は、入眠予兆現象の出現後、交感神経機能の低下に伴う副交感神経機能の優位な状態で入眠に至る1〜5分前に生じる現象であるため、交感神経機能の低下及び副交感神経機能の亢進というシグナルによって捉える。切迫睡眠現象は、多くの場合、入眠予兆現象と同様に自覚のない体調変化現象であるが、人により、あるいはそのときの体調や周囲環境などによって、自覚的な強い眠気を伴う場合もある。
【0046】
切迫睡眠現象は、ゼロクロス検出法を用いた周波数傾き時系列波形において、上記の入眠予兆現象を示す波形が出現した後、波形が収束傾向を示し、その後、より長周期の大きな変動ゆらぎを示すポイントである。
図6(c)では、切迫睡眠現象が、29〜38分にかけて特定され、脳波による入眠点判定の数分前に生じている。切迫睡眠現象をリアルタイムで特定するに当たって、本実施形態では、
図8に示すような判定を行っている。すなわち、ゼロクロス検出法を用いた周波数傾き時系列波形を平滑化微分し、正の傾きから負の傾きに切り替わるポイントをピークとして検出し、負の傾きから正の傾きに切り替わるポイントをボトムとして検出し、両者間の振幅値を計算する。次に、このような振幅値が複数存在するか否かを求め、複数存在する場合に、1データ前の振幅値との大きさを比較し、その大きさの比が所定数分の1以下であり、かつ、平滑化微分波形の値が所定の計算ポイント以上連続して所定の範囲に収まって収束の傾向を示し、その後、より長周期の大きな変動ゆらぎを伴う場合に切迫睡眠現象と判定する。
【0047】
本実施形態の入眠予兆現象検出手段621及び切迫睡眠現象検出手段622は、分布率演算手段614による求められる機能調整信号、疲労受容信号及び活動調整信号に相当する3つの周波数成分の時間軸上の任意の時点における各分布率、及び、変化度演算手段615により求められるいずれかの周波数成分の変化度の少なくとも一方を用いて、所定の判定基準により、入眠予兆現象又は切迫睡眠現象を含む運転者の認知困難な生体状態を判定する手段も有している。機能調整信号、疲労受容信号及び活動調整信号は、ULF帯域からVLF帯域に属する0.01Hz未満の周波数成分であり、これらは体温制御の状態に関連するものであるが、この体温制御は自律神経制御の結果が反映されているため、この極低周波・超低周波の周波数成分の分布率や変化度を所定の判定基準で判定することにより、入眠予兆現象及び切迫睡眠現象を捉えることができる。
【0048】
まず、入眠予兆現象については、
図9に示したように、ゼロクロス検出法を用いた分布率の時系列波形の中から、活動調整信号(0.0053Hz)又は疲労受容信号(0.0035Hz)が所定以上で、機能調整信号(0.0017Hz)がそれらより低いか否かを判定する。入眠予兆現象は、疲労が蓄積してきた上で一時的な交感神経機能の上昇が生じるものであるため、それらに関連する活動調整信号、疲労受容信号の分布率の上昇が生じることに着目した判定である。このような変化をより正確に把握するために、本実施形態では、変化度演算手段615により得られた変化度を考慮して判定する。すなわち、分布率の時系列変化が上記した条件を満たすことが判定されたならば、活動調整信号(0.0053Hz)の変化度が正方向に所定以上で、機能調整信号(0.0017Hz)が負方向に所定以下であるか否か、すなわち、変化の仕方が所定よりも大きいと同時に正負逆方向に変化しているか否かを判定する。
【0049】
切迫睡眠現象についても、やはり疲労の蓄積の結果として生じるものであり、入眠点に至る前に副交感神経機能の上昇があり、よりリラックスした状態に人は誘導される。切迫睡眠現象の場合、入眠予兆現象の発現後、副交感神経機能が優位な状態になるため、ゼロクロス検出法に現れる心拍変動を制御するゆらぎが変化し、かつ、ピーク検出法に現れる副交感神経優位となるために生じる心拍変動自体が変化する(心拍の周波数が低下傾向となる)。従って、ゼロクロス検出法を用いた分布率、ピーク検出法を用いた分布率の双方を用い、特に、活動調整信号(0.0053Hz)の変化が顕著に現れるか否かを検出する。また、判定精度をより高くするために、切迫睡眠現象であることが、ゼロクロス検出法を用いた分布率、ピーク検出法を用いた分布率の双方において判定され、かつ、両者の判定が規定時間内である場合に限り、最終的に切迫睡眠現象と判定して出力する。
【0050】
具体的には、
図10に示した通りであり、まず、ゼロクロス検出法では、分布率において、活動調整信号(0.0053Hz)が所定以上で、活動調整信号(0.0053Hz)又は疲労受容信号(0.0035Hz)の変化度が正又は負方向に所定値よりも大きく、かつ、機能調整信号(0.0017Hz)の変化度がこれらと正負の逆方向に所定値よりも大きい場合を切迫睡眠と判定する。ピーク検出法では、分布率において、活動調整信号(0.0053Hz)又は機能調整信号(0.0017Hz)が所定以上で、活動調整信号(0.0053Hz)又は疲労受容信号(0.0035Hz)の変化度が正又は負方向に所定値よりも大きく、かつ、機能調整信号(0.0017Hz)の変化度がこれらと正負の逆方向に所定値よりも大きい場合を切迫睡眠と判定する。そして、ゼロクロス検出法による分布率を用いた判定結果において切迫睡眠と判定され、ピーク検出法による分布率を用いた判定結果において切迫睡眠と判定され、かつ、それらの判定が規定時間内である場合に、すなわち、ゼロクロス検出法及びピーク検出法において同様の変化が同時期に生じた場合に最終的に切迫睡眠現象と判定して出力する。
【0051】
以上のように入眠予兆現象検出手段621及び切迫睡眠現象検出手段622は、自覚困難な生体状態である入眠予兆現象、及び、自覚困難な場合を基本とするが認知し得る場合もある生体状態である切迫睡眠現象を、周波数傾き時系列波形を用いて所定の基準で判定する手法と、機能調整信号(0.0017Hz)、疲労受容信号(0.0035Hz)及び活動調整信号(0.0053Hz)の分布率を用いて所定の基準で判定する手法の2つの判定手法を備え、それぞれにより、入眠予兆現象、切迫睡眠現象を検出している。従って、これらの生体状態の検出を確実に行うことができ、信頼性が高く、運転時の生体状態の判定手法として適していると言える。なお、入眠予兆現象や切迫睡眠現象が検出されたならば、入眠予兆現象検出手段621及び切迫睡眠現象検出手段622は、運転者にそのことを知らせる出力(モニタへの表示、警告音の発生、運転席の振動など)を行うように制御する機能を有する。この場合、入眠予兆現象検出手段621及び切迫睡眠現象検出手段622は、その検出結果を常時あるいは定期的に通信回線を通じて管理用コンピュータに送信されるように設定されていてもよい。もちろん、運行終了後に、それらのデータを管理用コンピュータで解析するようにしてもよい。なお、このように設定した場合、管理用コンピュータも本発明の運転時生体状態判定装置の一部を構成することになる。
【0052】
自覚眠気・覚低走行状態検出手段623は、分析演算手段61の演算結果を用い、運転者の自覚的な眠気を伴う入眠前の体調変化現象である自覚眠気と、意識レベルの低下によって生じる覚低走行状態を検出する手段である。ここでいう「自覚眠気」とは、体調変化を示す兆候の中で、自覚的に意識できる兆候を指し、運転中に感じる軽い眠気(軽度眠気)、運転時間が長くなるに従って生じる耐え難いような強いの眠けあるいは過緊張状態からのリバウンドによって生じる強いの眠気等を指す。また、「覚低走行状態」は、上記したように、睡眠不足や過労状態でもない良好な心身状態であるにも拘わらず、運転中の著しい意識レベルの低下により、眠気を自覚せず開眼しているにも拘わらず情報の読み取りや判断が不能となった状態で走行を継続している走行状態のことをいい、2〜3秒、瞬間的にそのような状態に陥る。瞬間的に注意力の著しい低下を示す点で軽い眠気と共通しており、軽い自覚眠気を感じたときと同様の生体反応を示すと考えられる。また、このような瞬間的な「覚低走行状態」が連続的(ここでいう「連続的」には、瞬間的な覚低走行状態が連続する場合のほか、所定時間内に断続的に生じる場合、あるいは、3秒以上の長時間覚低走行状態に陥った場合等を含む)に生じるようになると、それは、耐え難い強い眠気を自覚しているときと同様の生体反応を示すと考えられる。また、眠気を自覚している時期及び覚低走行状態に陥っている時期は、運転者自身の恒常性維持機能は、その状態から覚醒状態に復帰しようという意識が潜在的に働いている時期であると考えられ、また、睡眠段階1に至る前までは音に対する反応率が0.9〜1であることから、何らかの警告を提供すれば、容易に、意識レベルの高い状態、注意力を喚起できる状態、さらには覚醒状態に復帰できる点で共通する。これに対し、入眠予兆や切迫睡眠現象は、睡眠へのいわば準備段階としての生体反応と言える点で、自覚眠気や覚低走行状態とは区別できる。
【0053】
そこで、本実施形態では、「自覚眠気」及び「覚低走行状態」を区別することなく検出するようにしている。「自覚眠気」及び「覚低走行状態」は、体温調節機能を反映するULF帯域からVLF帯域に属する0.01Hz未満の周波数成分、特に、0.0017Hzを中心とした機能調整信号、0.0035Hzを中心とした疲労受容信号及び0.0053Hzを中心とした活動調整信号の変化と密接に関連する。従って、自覚眠気・覚低走行状態検出手段623は、分布率演算手段614により得られる上記各周波数成分の分布率と、変化度演算手段615により上記各周波数成分の変化度のうちの少なくとも一方の演算結果を利用して判定する。
【0054】
自覚眠気・覚低走行状態検出手段623は、あくびをすれば醒めるような軽い眠気(軽度眠気)、又は、2〜3秒以下の瞬間的な覚低走行状態が生じたことを判定する手段(第1自覚眠気・覚低走行状態検出手段623a)と、軽度眠気の域を越え、上記したような長時間運転や過緊張状態に対するリバウンドによって生じる強い眠気の状態に陥っているか否か、又は、瞬間的な覚低走行状態が所定時間内に連続的ないしは断続的に生じたり、より長時間の覚低走行状態に陥っているか否かを判定する手段(第2自覚眠気・覚低走行状態検出手段623b)を備えている。
【0055】
第1自覚眠気・覚低走行状態検出手段623aは、分布率演算手段614により得られる上記の3つの周波数成分のうち、活動調整信号に相当する周波数成分の分布率が機能調整信号に相当する周波数成分の分布率以下となるような変化を示す条件下で、軽度眠気又は瞬間的な覚低走行状態の出現を判定する。上記したように、入眠予兆現象や切迫睡眠現象は、副交感神経優位になっていく中での交感神経機能の突発的な亢進の検出を基本としているが、軽度眠気又は瞬間的な覚低走行状態は、疲労に伴って、体の変調や機能低下を制御する機能調整信号(0.0017Hz)の分布率が相対的に上昇し、逆に活動調整信号(0.0053Hz)の分布率が相対的に低下するという、本人の自覚のないまま意識レベルが低下していくタイミングの中で出現する。
【0056】
このような機能調整信号(0.0017Hz)の分布率の相対的な上昇と活動調整信号(0.0053Hz)の分布率の相対的な低下を変化度に置き換えると、機能調整信号及び活動調整信号の分布率が相対的に大きな変化を示すタイミングであるから、その時点においては、両周波数成分の変化度が、絶対値でそれぞれ所定値以上となる。
【0057】
すなわち、これらの条件を満たすタイミングの中に、軽度眠気又は瞬間的な覚低走行状態を伴う体調変化が含まれると判定する。但し、本実施形態では、この理論的な条件に加え、多数の実験結果を基にして統計的に得られた条件を組み合わせ、第1自覚眠気・覚低走行状態検出手段623aの判定条件を設定し、軽度眠気又は瞬間的な覚低走行状態をより精度よく判定できるようにしている。
【0058】
その一方、軽度眠気又は瞬間的な覚低走行状態の統計的条件を設定する中で、軽度眠気又は瞬間的な覚低走行状態か否かの判定基準を大きく2つに分けるとさらに判定精度が高まることがわかった。これは、判定対象である運転者の基本状態が、リラックス状態であるか、緊張状態(興奮状態も含む)であるかによって判定基準が大きく分かれるというものである。リラックス状態は、例えば、一人で慣れた道路を運転してリラックスしている場合、長距離運転に慣れたプロのドライバーで、リラックスしながらの運転に長けている場合など、交感神経と副交感神経のバランスがとれている場合である。緊張状態(興奮状態も含む)は、例えば、同乗者がいて会話しながら運転しる場合などで交感神経機能が亢進している場合などである。
【0059】
また、リラックス状態か緊張状態(興奮状態も含む)は、長時間の運転環境においては、道路状況、休憩のタイミング、車内の音楽、同乗者の乗り降りなどによって変化する。従って、第1自覚眠気・覚低走行状態検出手段623aは、常時、運転者がリラックス状態か否かを判定し、それによって、軽度眠気又は瞬間的な覚低走行状態の判定基準の閾値を変化させて判定する。基本状態がリラックス状態か緊張状態(興奮状態も含む)かの判定は、分布率演算手段614から得られた分布率及び変化度演算手段615から得られた変化度を用いて行う。具体的には、
図11に示したように、多数の実験結果を統計処理し、機能調整信号(0.0017Hz)、疲労受容信号(0.0035Hz)及び活動調整信号(0.0053Hz)の分布率及び変化度と、運転者が軽度眠気又は瞬間的な覚低走行状態を生じた可能性があると考えられるタイミング(自己申告又は同乗者による観察)とを対比し、軽度眠気又は瞬間的な覚低走行状態が生じていない条件(除外条件)を設定し、軽度眠気又は瞬間的な覚低走行状態が生じたと可能性があるタイミングでは、運転者のそのときの運転環境(同乗者の有無、車内音楽の有無、交通渋滞の状況など)から緊張状態(興奮状態も含む)(振分け条件1)とリラックス状態(振分け条件2)とに区別する振分け条件を設定した。なお、除外条件に入る場合や振分け条件に当てはまらない場合には眠気無しと判定される。
【0060】
これらのことから、本実施形態の第1自覚眠気・覚低走行状態検出手段623aは、まず、ゼロクロス検出法を用いた分布率演算手段614から得られた分布率を用いて、上記した除外条件に入らない場合において、上記した振り分け条件に従って、リラックス状態の判定基準を用いるか、緊張状態(興奮状態も含む)の判定基準を用いるかに区分する。区分された後、その判定対象の時間帯における機能調整信号(0.0017Hz)の分布率が所定値以上で、活動調整信号(0.0053Hz)の分布率が所定値以下か否かを判定する。
図12は、判定フローの一例を示したものである。
【0061】
まず、分布率の時系列波形において、活動調整信号(0.0053Hz)の分布率が所定値以下、機能調整信号(0.0017Hz)がその値を上回る所定値以上の場合(第1条件)に軽度眠気と判定する。第1条件を満たさない場合でも、機能調整信号(0.0017Hz)、疲労受容信号(0.0035Hz)及び活動調整信号(0.0053Hz)の分布率がいずれも所定値以上の場合(第2条件)に軽度眠気と判定し、さらに、第1条件及び第2条件を満たさない場合でも、機能調整信号(0.0017Hz)及び活動調整信号(0.0053Hz)の分布率が共に第2条件の設定値よりも高い値である場合(第3条件)に軽度眠気又は瞬間的な覚低走行状態と判定する。
【0062】
次に、変化度を用いる場合は、異なる計算ポイント数、例えば、11ポイントでの平滑化微分を適用した場合と、2ポイントでの平滑化微分を適用した場合のそれぞれで変化度を求め、そのそれぞれで適宜の閾値を設定して判定する。例えば、11ポイントでの平滑化微分を適用した場合には、機能調整信号(0.0017Hz)及び活動調整信号(0.0053Hz)の変化度の絶対値が所定以上の場合(第4条件)に軽度眠気又は瞬間的な覚低走行状態と判定する。2ポイントの平滑化微分を用いた場合には、機能調整信号(0.0017Hz)及び疲労受容信号(0.0035Hz)の変化度の絶対値が所定以上の場合(第5条件)に軽度眠気又は瞬間的な覚低走行状態と判定し、第5条件を満たさない場合には、機能調整信号(0.0017Hz)及び活動調整信号(0.0053Hz)の変化度の絶対値が所定以上の場合(第6条件)に軽度眠気又は瞬間的な覚低走行状態と判定する。
【0063】
第1自覚眠気・覚低走行状態検出手段623aは、このように、体温制御に関連する機能調整信号(0.0017Hz)、疲労受容信号(0.0035Hz)及び活動調整信号(0.0053Hz)の分布率及び変化度を用いて判定するため、認知可能な体調変化である軽度眠気又は瞬間的な覚低走行状態を正確に判定でき、運転時の生体状態判定用として適している。
【0064】
第2自覚眠気・覚低走行状態検出手段623bは、上記したように、軽度眠気の域を越え、長時間運転や過緊張状態に対するリバウンドによって生じる強い眠気の状態に陥っているか否か、又は、瞬間的な覚低走行状態が所定時間内に連続的(断続的に生じる場合、及び、より長時間の覚低走行状態に陥っている場合も含む)に生じているか否かを判定する手段である。
【0065】
運転は、所定の着座姿勢の維持、ハンドルやペダル操作といった肉体労働と、走行中に各種情報を収集し瞬時に判断することを繰り返すという頭脳労働とを伴う。そのため、長時間運転によって疲労が蓄積するだけでなく、高速道路等での長時間運転では一定の速度での走行となるため、肉体的活動及び頭脳活動のいずれも活動頻度が低下し、強い眠気が生じたり、覚低走行状態が所定時間内に繰り返し生じたり、あるいは、1回の覚低走行状態がより長時間(例えば3秒以上)となったりする。より詳細には、睡眠を欲するような眠気が発生すると交感神経活動を亢進させることで身体は眠気に抵抗するための準備を行う。その結果、活動調整信号(0.0053Hz)の分布率が上昇する。次に、眠気により緊張を誘発し、集中した状態になろうとするため、機能調整信号(0.0017Hz)の分布率が上昇し、さらに、眠気への抵抗が困難になってくると副交感神経活動が賦活し、身体を休息へと導こうとするため、副交感神経活動を反映する疲労受容信号(0.0035Hz)の分布率が上昇するように変化する。このような過程を経て、自覚のない身体に生じた睡眠に対する欲求(自覚の無い眠気)が、自覚のある身体に生じた睡眠に対する欲求である自覚眠気へと切り替わる。
図13は、この変化を模式的に示した図であるが、実際に多数の実験結果から強い眠気を生じた場合など、多くの被験者がこのような状態の変遷を示した。
【0066】
そこで、第2自覚眠気・覚低走行状態検出手段623bは、分布率演算手段614により得られる上記3つの周波数成分の分布率の時系列波形の各ピーク値が、所定の出現時間の差の範囲内で所定の順番で出現し、かつ、所定の分布率条件を満たす値である場合に、上記した強い眠気への抵抗の状態となっているか、又は連続的(所定時間内に断続的に生じる場合、より長時間継続する場合も含む)な覚低走行状態になっていると判定するように設定している。
【0067】
具体的には、
図14に示したように、機能調整信号(0.0017Hz)、疲労受容信号(0.0035Hz)及び活動調整信号(0.0053Hz)の分布率のピーク値の出現時刻が、次の関係:活動調整信号≦機能調整信号≦疲労受容信号を満たす場合(第1条件)であって、活動調整信号と疲労受容信号のピーク値の出現時刻の差が所定時間内であり(第2条件)、さらに、いずれの周波数成分も所定の分布率以上である条件を満たす場合(第3条件)に、強い眠気への抵抗の状態となっているか、又は連続的(所定時間内に断続的に生じる場合、より長時間継続する場合も含む)な覚低走行状態になっていると判定する。また、いずれの周波数成分も所定の分布率以上である条件を満たさない場合、すなわち第1条件及び第2条件を満たすが第3条件を満たさない場合には、各分布率のピーク値が活動調整信号≦機能調整信号≦疲労受容信号の条件を満たす場合(第4条件)に、強い眠気への抵抗の状態となっているか、又は連続的(所定時間内に断続的に生じる場合、より長時間継続する場合も含む)な覚低走行状態になっていると判定する構成が好ましい。
【0068】
一方、自覚眠気の生じるメカニズムは、上記のように、交感神経活動の亢進(活動調整信号(0.0053Hz)の分布率の上昇)、緊張・集中状態への移行(機能調整信号(0.0017Hz)の分布率の上昇)、副交感神経活動が賦活(疲労受容信号(0.0035Hz)の上昇)を経ると考えられるが、実験の結果、その過程を経ずに強い自覚眠気を生じる場合が散見された。そして、その場合の周波数傾き時系列波形を考察したところ、
図15(a)に示したように、所定の基準に対して振幅の収束傾向が検出され、かつ、周期が短周期化することがわかった。具体的には、振幅が小さくなると共に、周期が約300秒から約200秒と短周期化していた。これは、0.0035Hz、0.0053Hzの周波数成分に対応するものであり、0.0017Hzが卓越しにくいと考えられる。つまり、睡眠への抵抗のために交感神経活動が亢進した後、諦めのような状態となって副交感神経活動が賦活し、その後、交感神経活動が低下して強い眠気を感じするものと考えられる。
【0069】
図15(b)は、分布率演算手段614による3つの周波数成分の分布率のみを用いて自覚眠気を検出した場合のカイ二乗検定の結果(後述の実験例1の動的実験89例のデータ)を示した図であり、未検出23件で正答率は77%であった。そこで、周波数傾き時系列波形において、振幅値が所定の設定した範囲になり、かつ周期が所定の設定した範囲に短周期化する場合も強い自覚眠気として検出したところ、
図15(c)に示したように、未検出は4件となり、判定精度が高まった。従って、第2自覚眠気・覚低走行状態検出手段623bは、上記した分布率による判定に加えて、周波数傾き時系列波形による判定を用いること、強い眠気を検出するに当たって好ましいと言える。
【0070】
自覚眠気・覚低走行状態検出手段623も、自覚眠気又は覚低走行状態が検出されたならば、入眠予兆現象検出手段621及び切迫睡眠現象検出手段622と同様に、運転者にそのことを知らせる警告(モニタへの表示、警告音の発生、運転席の振動など)を行うように制御する機能を有する。特に、自覚眠気や覚低走行状態は、上記したように、眠気又は意識レベルの低下によって注意力が低下している状態であり、これらの警告を確実に与えることにより、覚醒状態への復帰を促しやすい。また、自覚眠気や覚低走行状態は、上記したように、睡眠段階1に至る前の段階であり、音に対する反応率が0.9〜1であることから、特に音で警告することが好ましい。自覚眠気・覚低走行状態検出手段623は、入眠予兆現象検出手段621や切迫睡眠現象検出手段622と同様に、その検出結果を常時あるいは定期的に通信回線を通じて管理用コンピュータに送信されるように設定されていてもよく、運行終了後に、それらのデータを管理用コンピュータで解析するようにしてもよい。
【0071】
本実施形態によれば、入眠予兆現象検出手段621及び切迫睡眠現象検出手段622に加えて、自覚眠気・覚低走行状態検出手段623を有している。すなわち、入眠予兆現象や切迫睡眠現象のような認知困難(全く自覚しない場合はもとより、自覚したときには覚醒への回復が不可能になっている状態も含む)な生体状態を検出することができることに加えて、軽度眠気や強い眠気への抵抗状態である運転不適格と言える認知可能な生体状態を検出すること、並びに、瞬間的な覚低走行状態あるいは連続的な覚低走行状態を検出することができる。すなわち、一般的には、過労や睡眠不足で運転をしている場合には、自覚眠気が生じやすく、その後、入眠予兆現象が検出され、さらに切迫睡眠現象が検出され、そられの状態で警告が発生されて覚醒状態に復帰させることができない場合には、そのまま居眠り運転に至る。一方、良好な心身状態で運転をしている場合には、自覚眠気よりも覚低走行状態に陥りやすく、長時間の高速道路等における一定の走行により、覚低走行状態が瞬間的なものから連続的なものになり、それが繰り返されるうちに、この状態のなかで負のフィードバックがかかり、すなわち内分泌系の違う次元での制御がかかることにより、入眠予兆現象が現出され、その終末期の状態である切迫睡眠現象が検出され、上記と同様に居眠り運転に至る。また、自覚睡眠と覚低走行状態が組み合わさって繰り返され、やがて入眠予兆現象や切迫睡眠現象が検出される場合もある。もちろん、運転者の体調等により、入眠予兆現象や切迫睡眠現象が、自覚眠気や覚低走行状態の検出タイミングの必ず後に検出されるというものではなく、より早期に出現する場合もあり得る。
【0072】
すなわち、本実施形態によれば、入眠予兆現象検出手段621及び切迫睡眠現象検出手段622に加えて、自覚眠気・覚低走行状態検出手段623を有していることにより、居眠りに至る前に経る生体状態変化がいずれのパターンであっても捉えることができ、運転時の生体状態を捉える装置として適している。
【0073】
次に、恒常性維持機能レベル判定手段624について説明する。恒常性維持機能レベル判定手段624は、本実施形態の運転時生体状態判定装置60の起動後、生体信号測定装置1によってAPWの時系列波形の情報が所定時間以上得られると、車載のモニタに表示されるなどして出力される。恒常性維持機能レベル判定手段624は、恒常性維持機能のレベルを判定するものである。恒常性維持機能のレベルは、例えば、5〜7段階に分け、恒常性維持機能の優れる場合(体調のよい場合や集中度合いの高い場合等)から、恒常性維持機能が劣る場合(体調の悪い場合、過緊張状態の場合、脇見運転等による集中力の低下等)を判定する(
図27(a)及び
図28(a)参照)。モニタに表示するに当たって、5〜7段階のレベルを文字で表示しただけでは運転者は把握しにくい。そこで、例えば、中間レベル(体調が普通の状態)以上の場合には、一括して恒常性維持機能が優れる場合(体調のよい場合等)と判定し、それよりも下の場合には一括しての恒常性維持機能が劣る場合(体調の悪い場合等)判定し、それぞれについて、モニタに異なる色彩表示がなされるようにすれば、運転者に把握しやすくなる。
【0074】
通常、恒常性維持機能が優れる場合、体調がよい反面、運転を頑張り過ぎる傾向があり、覚低走行状態に陥ることがあるため油断しないことが重要となり、恒常性維持機能が劣る場合には、覚低走行状態に加えて自覚眠気も生じやすいという注意を運転者に促すことができる。
【0075】
恒常性維持機能レベル判定手段624は、出願人が先に提案したWO2011/046178公報に開示の技術に基づくものであり、分析演算手段61の周波数傾き演算手段612により得られるゼロクロス検出法を用いた各周波数傾き時系列波形の微分波形の正負、周波数傾き時系列波形を積分した積分波形の正負、ゼロクロス検出法を利用した周波数傾き時系列波形とピーク検出法を利用した周波数傾き時系列波形をそれぞれ絶対値処理して得られた各周波数傾き時系列波形の絶対値等のうち、少なくとも1つ以上を用いて判定する。これらの組み合わせにより、恒常性維持機能のレベルがいずれに該当するかを求める。例えば、周波数傾きと積分値を用いて、所定以上の場合に「恒常性維持機能レベル1」と判定し、あるいは、微分値が所定位置以下であって、かつ、2つの絶対値のうちの「ピーク優位」の場合に「恒常性維持機能レベル4」と判定するように設定できる。これらの組み合わせ、判定の際の閾値等は限定されるものではないが、本実施形態では多数の被験者のデータを統計処理して決定している。なお、個人毎に設定することもできる。また、恒常性維持機能レベル判定手段624では、本出願人の特開2009−22610号公報に開示されているような、周波数傾き時系列波形を絶対値処理して積分値を算出し、この積分値を疲労度として求める手段も設定されており、これにより、運転者の走行中の疲労度も出力される。例えば、疲労度に応じてモニタの所定の位置の画像の色を変色させたりして表示される。
【0076】
恒常性維持機能のレベルの判定結果は車載のモニタ等に表示されていくが、上記した入眠予兆現象検出手段621、切迫睡眠現象検出手段622、自覚眠気・覚低走行状態検出手段623の各判定もこれと並列処理されて逐次行われている。従って、モニタには、恒常性維持機能のレベルの判定結果が表示されていく中で、入眠予兆現象や切迫睡眠現象の判定、自覚眠気や覚低走行状態の判定がなされると、モニタにはそれらを示す表示も現れる。あるいは、警告音が発せられたり、運転席の振動、その他の何らかの警告手段が動作する。なお、恒常性維持機能レベル判定手段624による恒常性維持機能のレベルの判定結果も、常時あるいは定期的に通信回線を通じて管理用コンピュータに送信されるように設定されていてもよく、運行終了後に、それらのデータを管理用コンピュータで解析するようにしてもよい。
【0077】
初期疲労判定手段625は、運転開始時における運転者の初期疲労の有無を判定する。初期疲労の判定には、恒常性維持機能レベル判定手段624における判定結果を用いる。恒常性維持機能レベル判定手段624は、上記したように、運転者の恒常性維持機能レベル(体調の良し悪しの総合判定)を逐次判定している。そこで、この判定結果を利用して、運転者が運転開始時に既に疲労が蓄積している状態か否かを判定する。運転開始時において既に疲労が蓄積している場合、サーカディアンリズムによる24時間周期の眠気、サーカセミディアンリズムによる12時間周期の眠気、ウルトラディリズムによる2時間周期の眠気に特に注意するように促すため、それらのタイミングで休憩をするメッセージや警告を出力するようにする。初期疲労の有無は、次のように判定する。恒常性維持機能レベル判定手段624における恒常性維持機能レベルは、通常、生体ゆらぎに伴って恒常性維持機能レベルも時間経過と共に上下に変動しながら進行する。しかし、疲労状態にある場合には、この生体ゆらぎが小さくなる。従って、恒常性維持機能レベルがいずれかのレベルで、例えば、恒常性維持機能レベル1の状態、恒常性維持機能レベル4の状態等のまま所定時間進行する。そこで、このような生体ゆらぎのない状態が所定時間継続する場合、すなわち同一判定レベルが所定時間以上継続している場合に、初期疲労「有り」と判定する。(
図27(a)はその一例を示したものであり、運転開始直後から同一の恒常性維持機能レベルの継続時間が長い。従って、この被験者の場合、この継続時間が設定の継続時間以上である場合には、初期疲労「有り」と判定される。
【0078】
なお、初期疲労判定手段625は、運転開始時において運転者の初期疲労の有無を判定し、数時間後の休憩が特に必要な状態か否かを判定するために利用されるものであり、運転初期(但し、恒常性維持機能レベル判定手段624の判定結果を利用するため、恒常性維持機能レベル判定手段624が稼働した後から数分から十数分)に稼働する。
【0079】
判定検出手段62は、さらに、気分判定手段626及び履歴利用生体状態判定手段627を有することが好ましく、これらは、コンピュータプログラムである気分判定手順及び履歴利用生体状態判定手順を実行することにより機能する。
【0080】
気分判定手段626は、運転開始後所定時間経過までの運転初期における分析演算手段61から得られる自律神経制御に関連する指標から交感神経系及び副交感神経系の出現バランスを求め、この出現バランスを所定の基準により判定して、運転者の運転初期の生体状態を求める手段である。
【0081】
上記した入眠予兆現象検出手段621、切迫睡眠現象検出手段622、自覚眠気・覚低走行状態検出手段623及び恒常性維持機能レベル判定手段624は、分析演算手段61により周波数傾き時系列波形や分布率等を用いるが、周波数傾き時系列波形や分布率等を求めるには、所定時間以上のAPWの原波形データが必要であり、乗車後数分程度経過しないと求めることができない。そこで、気分判定手段626は、
図16に示したように、分析演算手段61の上記のピーク検出法を用いた周波数変動演算手段613の演算結果である周波数変動時系列波形を最小二乗法で処理することで周波数の傾きを求め、それにより、交感神経機能と副交感神経機能の出現バランスを判定する。すなわち、最小二乗法により得られた傾きが正方向に所定値(X1)以上の場合を交感神経機能の亢進した状態(例えば、「気分上々」)と判定し、負方向に所定値(−X2)以下の場合を交感神経機能と副交感神経機能のバランスの悪い状態(例えば、「気分鎮静」)と判定し、両者の中間(−X2とX1の間)の場合には交感神経機能と副交感神経機能の出現バランスがとれている状態(例えば、「気分爽々」)と判定する。
【0082】
気分判定手段626は、この「気分上々」、「気分鎮静」あるいは「気分爽々」をモニタに出力するなどして、運転者に知らせる機能を有する。運転初期においては、運転していない状態から新たに運転環境下におかれるという状況変化を伴うが、この運転環境への対応能力が人により異なり、あるいは同一人であっても、その日の体調や前日の睡眠時間等によって異なり、対応能力によってその後の疲労の進行具合も変化する。しかし、運転初期におけるまだ緊張状態の中で、運転者がそのときの自らの状態を自覚することで、その後の運転への集中度の向上が期待できる。なお、気分判定手段625は、運転開始時において運転者の生体状態を簡易な手法で判定するものであるため、運転開始後所定時間経過までの初期においてのみ稼働する。その後は、上記した入眠予兆現象検出手段621、切迫睡眠現象検出手段622、自覚眠気・覚低走行状態検出手段623及び恒常性維持機能レベル判定手段624により、逐次運転者の生体状態の変化が検出される。
【0083】
履歴利用生体状態判定手段627は、上記した入眠予兆現象検出手段621、切迫睡眠現象検出手段622、自覚眠気・覚低走行状態検出手段623及び恒常性維持機能レベル判定手段624の判定結果としての履歴情報を利用して、運転者の生体状態を判定する。これらの判定結果は、コンピュータからなる本実施形態の運転時生体状態判定装置60の記憶部(車載されているコンピュータの記憶部、遠隔地の管理コンピュータの記憶部のいずれでもよい)に逐次記憶されており、履歴利用生体状態判定手段627は、それらの情報を逐次読み込むように構成されている。履歴利用生体状態判定手段627は、例えば、恒常性維持機能レベルが6段階表示となっており、そのうち、レベル1〜3が普通から良好な状態、レベル4〜6が注意を要する状態と判定される場合、レベル4〜6の継続時間に応じて履歴ポイントA(注意点)を時系列に付与する。恒常性維持機能レベルは、例えば、数秒に1ポイントずつプロットされるように設定されている場合、そのレベルのポイント数をカウントすることで計測できる。また、入眠予兆現象検出手段622や切迫睡眠現象検出手段623によって入眠予兆現象又は切迫睡眠現象が検出されたならば、履歴ポイントB(喝点)を時系列に付与する。さらに、自覚眠気・覚低走行状態検出手段623によって自覚眠気や覚低走行状態が検出されたならば、履歴ポイントC(警告点)を時系列に付与する(
図17参照)。
【0084】
そして、履歴ポイントA〜Cの時系列の変化が所定の状態の場合には、上記した入眠予兆現象、切迫睡眠現象、自覚眠気や覚低走行状態が検出された場合の警告や恒常性維持機能のレベル判定結果による警告とは別途に警告を出力させる。どのような状態で警告を出力するかは任意に設定できるが、例えば、
図17に示したように、恒常性維持機能のレベルでの履歴ポイントAが多い状態から、自覚眠気・覚低走行状態検出手段623の判定結果に基づく履歴ポイントCが所定以上に増加し、さらに、入眠予兆現象検出手段621や切迫睡眠現象検出手段622の判定結果に基づく履歴ポイントBも所定以上に増加したならば、一般には長時間運転によって相当の疲労の蓄積が生じており、即座に休憩を要すると考えられるため、強度の警告を出力するように設定する。
【0085】
以上のように、本実施形態によれば、運転者の生体状態を、居眠りに至るまでに経る生体状態の変化を多面的に捉えている(入眠予兆現象、切迫睡眠現象、自覚眠気、覚低走行状態)。また、これらを常にチェックすると共に、従来本出願人により実施されている恒常性維持機能レベルをチェックする手段を併用し、それらの情報を履歴情報として取得してこの履歴情報を用いて運転者の生体状態を判定している。従って、運転者の生体状態を従来よりも高い精度で捉えることができ、運転時の生体状態の判定に好適である。
【0086】
なお、判定結果を車載の装置に出力するように設定することも可能であるが、判定結果を運行管理者のコンピュータに適宜の通信網を介して送信する構成とすることもできることは上記した通りである。その場合、運行管理者は遠隔地であっても、運転者の生体状態を把握でき、より適切な運行管理に役立つ。また、トラック、バス、タクシーなどの運行会社において、所定の運行が完了した後に、運転者の判定結果をさらに解析することができる。例えば、上記した判定結果を日々蓄積することで、当該運転者がどのような条件で自覚眠気、覚低走行状態、入眠予兆現象、切迫睡眠現象に至るかといったことを判定でき、そのことを運転者に自覚させたり、運転者の体調管理に用いることもできる。
【0087】
(実験例1)
(自覚眠気・覚低走行状態検出手段623(第2自覚眠気・覚低走行状態検出手段623b)による運転時自覚眠気の検出)
実車アイドリング状態で覚醒から自覚眠気発生に至るまでの生体評価(静的実験)と、実車走行中の自覚眠気発生時の生体評価(動的実験)を行った。
静的実験は60分間で、計測指標はAPWと自覚眠気に対する主観評価であった。APWは実験中連続して計測し、主観評価は実験開始前と実験開始以降5分経過毎に評価した。主観評価には視覚的アナログ尺度(Visual Analog Scale)を用いた。また、実験中は寝てはいけないと被験者に指示を与えた。被験者は事前の実験に対する説明と十分な実験への理解の上で合意を得た20〜30歳代の健康な男性8名であった。動的実験では、分布率の計算上、計測時間が30分以上のデータ89例を対象に評価を行った。自覚眠気の評価は、それが発生したタイミングで計測装置のモニタを押すこととした。なお、計測装置は国土交通省の定める乗用車等の運転者の視界基準に基づくこと、かつ手の届く範囲に設置した。APWの解析は、第2自覚眠気・覚低走行状態検出手段623bにより、周波数傾き時系列波形を周波数解析し、上記した3つの周波成分の分布率を算出して行った。なお、分布率のピーク点の検出は、12点の平滑化微分を用いた。
【0088】
・静的実験結果
図18(a)は、静的実験で計測したAPWの分布率の時系列波形の結果を示す。被験者8名の中で7例は眠気発生付近で疲労受容信号(0.0035Hz)が卓越していたが、いずれも、機能調整信号(0.0017Hz)、疲労受容信号(0.0035Hz)及び活動調整信号(0.0053Hz)の分布率のピーク値の出現が、次の関係:活動調整信号≦機能調整信号≦疲労受容信号を満たすものではなかった(
図13、
図14参照)。
【0089】
・動的実験結果
図18(b)は、動的実験で計測したAPWの分布率の時系列波形の結果を示す。自覚眠気発生時の直前に、機能調整信号(0.0017Hz)、疲労受容信号(0.0035Hz)及び活動調整信号(0.0053Hz)の分布率のピーク値の出現が、次の関係:活動調整信号≦機能調整信号≦疲労受容信号を満たしている(
図13、
図14参照)。
【0090】
なお、解析対象である89例中に自覚眠気が発生した点とその付近にAPW分布率による自覚眠気を検出した場合のカイ二乗検定の結果は、上記したように
図15(b)に示したとおりであり、正答率は77%、p=2.09×10
−9であった。
【0091】
図18(a),(b)及び
図15(b)の結果より、運転中の自覚眠気の検出が、APWの超低周波成分の分布率のピーク優位性とその出現順序に関連があることがわかる。しかし、静的実験では、動的実験のような所定の出現順序とはならなかったことから、静的な状態と動的な状態では生体の反応は異なる。これは、運転という状況が、眠気に激しく抵抗する必要があること、外的刺激が多いこと、集中しやすい環境であることといった静的状態とは異なる環境にあるためと考えられ、本発明の手法が、運転時の生体状態の判定に適していることがわかる。
【0092】
また、自覚眠気・覚低走行状態検出手段623により、上記した動的実験の89例における周波数傾き時系列波形について、
図19(a)に示したように、振幅値が所定の設定した範囲になり、かつ周期が所定の設定した範囲に短周期化する場合をさらに検出した。これらの多くは、走行後の各被験者のコメントとして、「ボーっとしていた」、「意識が遠くにいっていた」などのコメントが残っているデータ(覚低走行状態の可能性があるデータ)である。この周波数傾き時系列波形による自覚眠気又は覚低走行状態の検出結果と、上記した分布率による自覚眠気の検出結果とを併せて評価したカイ二乗検定の結果が
図19(b)であり、自覚眠気又は覚低走行状態の未検出数が4件となった(
図15(c)参照)。このことから、APWの分布率における所定周波数成分の出現順序を捉えることに加えて、周波数傾き時系列波形の低振幅かつ周期が短くなることを捉えることは、自覚眠気又は覚低走行状態の検出に有効であることがわかる。
【0093】
(実験例2)
(周波数傾き時系列波形を用いた入眠予兆現象検出手段621による入眠予兆現象の検出)
周波数傾き時系列波形における発散傾向が現れるタイミングと入眠予兆現象の関係について検証実験を行った。実験は、光学式指尖容積脈波計を用いて採取した指尖容積脈波の解析と本発明におけるAPWの解析の両方について行った。なお、被験者を様子を視察するためのカメラも併用した。
【0094】
実験条件は静的状態とし、実験時間は60分で、実験終了まで覚醒状態を維持することを前提にした。被験者は20〜30歳代の健常な男性9名、女性1名である。
図20(a)は1名の被験者の指尖脈波のパワー値傾き時系列波形を示す。図中40分〜45分は官能評価に基づく最も眠気が増大した時間帯を示す。また、眠気が増大した時間帯の前に振幅が増大(aからbへと増大)、周期が長くなる(fが長周期化)ことから、破線部が入眠予兆であることが示唆された。
【0095】
図20(b)はAPWの周波数傾き時系列波形を示す。図中破線部領域は眠気が増大する前に発散する傾向が現れ、
図2の破線部とも時間的タイミングが一致することから入眠予兆であることが示唆される。指尖脈波のパワー値傾き時系列波形とAPWの周波数傾き時系列波形は交感神経活動と関連していることから、波形の振幅が発散している間は交感神経活動の亢進が起こっていると考えられる。この交感神経活動の亢進は眠気に対する抵抗として発生していると考えられる。
【0096】
図21(a),(b)は、
図20(a),(b)における眠気ピーク到達前25分間、到達後25分間に対してそれぞれ周波数解析を行った結果を示す。
図21(a)は指尖脈波パワー値傾き時系列波形の周波数解析結果であり、眠気がピークに達する前後の比較を示す。眠気がピークに達した後、スペクトルが低下する傾向が得られた。
図21(b)はAPWの周波数傾き時系列波形の周波数解析であり、眠気がピークに達する前後の比較を示す。指尖容積脈波と同様、スペクトルの振幅が低下する傾向が得られた。また、発散波形を含んだ眠気ピーク前の周波数解析においてピークが0.0033Hz付近に発生していることから発散波形は0.0033Hz付近の成分を含んでいると考えられ、入眠予兆との関連が示唆される。
【0097】
図22には被験者数10名の指尖容積脈波とAPWにおける覚醒と入眠予兆に関する2×2クロステーブルを示す。
カイ二乗検定の結果、P値が0.05以下であることから統計的に有意であり、指尖容積脈波とAPWとの間に関連性がある可能性が示唆された。これらのことからAPWの周波数傾き時系列波形における発散傾向が入眠予兆現象を示すものと考えられる。
図23に実車走行中に採取したAPWの周波数傾き時系列波形と眠気の有無の相関を示したデータの一例である。
図23の発散傾向は、上記した静的状態で行った記録と同様の傾向を示しているため、実車走行中においても、APWの周波数傾き時系列波形の発散現象を検出することにより入眠予兆現象を特定できることがわかる。
【0098】
(実験例3)
(周波数傾き時系列波形を用いた切迫睡眠現象検出手段622による切迫睡眠現象の検出)
周波数傾き時系列波形における収束傾向が現れるタイミングと切迫睡眠現象の関係について検証実験を行った。
【0099】
実験は、座位と臥位の2姿勢で、眠気に抵抗している状態から、眠気を受け入れ、昼寝に相当する睡眠に入るまでの睡眠実験を行った。被験者は20歳代から50歳代の健常な男性56名(31.3±8.2歳)である。比較指標として脳波、心電図、指尖容積脈波を用い、これを本発明における計測指標であるAPWと比較した。実験開始30分間は覚醒状態の維持を被験者に義務付け、その後はこの義務を解除し、各自の自由意志に任せた。
【0100】
図24は24歳男性被験者の睡眠実験の結果を示す。被験者は、「最初の10分間は覚醒状態を保っていたが、以降は眠気に抵抗しながら、辛うじて覚醒状態を保っていた。覚醒状態の維持の義務から外れる30分以降は眠気への抵抗をやめ、早い段階で睡眠に移行した。」という見解を示した。
【0101】
図24(a)は脳波のθ波、α波、β波の分布率を示す。θ波が増加し、α波が減少し、両波が安定的に推移し始めた40分を入眠点とした。
図24(b)は指尖容積脈波をウェーブレット解析し、求めた交感神経(LF/HF)と副交感神経(HF)の活動レベルを示す。HFは40分過ぎから安定して高い状態を維持し、LF/HFは安定的に低い数値を示し、入眠点は実験開始後40分頃と考えられる。
図24(c)は指尖容積脈波に傾き時系列解析を施し求めた、パワー値の傾き時系列波形と最大リアプノフ指数の傾き時系列波形を示す。30分までは低周波、大振幅の入眠予兆現象を示し、30分以降は、低振幅で長周期化する収束傾向となり、ここでも40分前後で睡眠状態に移行したと考えられる。
図24(d)はAPWのゼロクロス検出法による周波数傾き時系列波形と周波数変動時系列波形を示す。周波数変動時系列波形から、30分から40分の10分間に、APWの周波数が1.15Hzから1Hzに大きく変化していることがわかる。従って、実験開始30分間は覚醒状態にあり、実験開始後30分から35分頃に、睡眠状態に移行したものと考えられる。周波数傾き時系列波形では、30分以降は、指尖容積脈波のパワー値の傾き時系列波形と同様に、低振幅で長周期化する収束傾向となっている。従って、周波数傾き時系列波形の収束傾向のタイミングを検出することで、入眠点の直前の切迫睡眠現象を検出できることがわかる。
以上の結果は、被験者の見解と一致している。
【0102】
ここで、実験開始30分間を眠気に抵抗しながら、覚醒を維持した状態(眠気抵抗状態)とし、後半30分間は眠気を受け入れ、睡眠に入った状態(睡眠状態)として、両者の状態の差を検証した。
図25(a),(b)は、眠気抵抗状態の周波数解析結果を示し、
図26(a),(b)は、睡眠状態の周波数解析結果を示す。指尖容積脈波とAPWの各傾き時系列波形の周波数解析結果は、眠気抵抗状態、睡眠状態ともに同じ傾向を示している。睡眠状態のスペクトルの傾きは1/fに近く、副交感神経優位のリラックスした状態であると考えられる。一方、眠気抵抗状態のスペクトルの傾きは、1/f
2に近くなり、睡眠状態のスペクトルの傾きと異なる角度を示す。これは、眠気に抵抗することによる、交感神経活動の亢進によるものだと考えられる。
【0103】
次に、指尖容積脈波とAPWの各傾き時系列波形のスペクトルの傾きを用い、被験者56名の状態を判定した。指尖容積脈波とAPWのスペクトルの傾きによる状態の判定は、
図25、
図26中に示す、スペクトルの傾きの角度θを用いた。スペクトルの傾きは、機械的に処理される場合の傾向を加味して、1/f の傾き角度である45度に+9度を補正した54度を基準値とした。すなわち、54度未満を睡眠状態とし、54度以上を眠気抵抗状態とした。判定結果の合否は、脳波、自律神経系の活動レベル、被験者のコメントと比較することで決定した。
【0104】
APWのスペクトルの傾きを用いた状態判定結果は、眠気抵抗状態は82%、睡眠状態は79%とともに高い正答率を示した。指尖容積脈波のスペクトルの傾きを用いた状態判定結果は、眠気抵抗状態は74%、睡眠状態は62%と、APWによる判定結果と比べ、やや低い正答率となった。末梢循環系の動態を捉える指尖容積脈波は、外部刺激の影響を受けやすいが、APWは中枢系の動態を捉えているため、外部刺激の影響は受けにくい。つまり、APWは、心循環系のゆらぎを安定して捉えられるため、指尖容積脈波に比べ、正答率が高くなったと考えられる。
【0105】
これらのことから、APWの周波数傾き時系列波形の振幅、周期が所定の基準値に対して発散しその後収束傾向を示すか否かは、睡眠状態に至る前の眠気抵抗状態(入眠予兆現象及び切迫睡眠現象)を示していることがわかる。従って、APWの周波数傾き時系列波形を用いて、実験例2において説明したように発散傾向から入眠予兆現象を検出すること、並びに、本実験例3のように収束傾向から切迫睡眠現象を検出することは有効であると言える。
【0106】
(実験例4)
(長距離走行時の実証実験)
上記実施形態の生体信号測定装置1をトラックの背もたれに装着し、トラック運転手による長距離走行時の実証実験を行った。運行後は、運行当時の自身の体調に関するアンケートを行った。被験者は運送業に従事する20〜50歳代までの職業運転手(男性9名)で、全被験者の祖運行回数は91回であった。
図27は30歳代男性被験者の判定結果を示し、
図28は、40歳代男性被験者Bの判定結果を示す。各図の(a)は、恒常性維持機能レベル判定手段624の判定結果である恒常性維持機能レベルを示しており、(b)〜(d)は、履歴利用生体状態判定手段627の判定結果を示している。(b)は、入眠予兆現象検出手段622及び切迫睡眠現象検出手段623によって入眠予兆現象又は切迫睡眠現象が検出された履歴ポイントB(喝点)、及び、自覚眠気・覚低走行状態検出手段623によって自覚眠気や覚低走行状態が検出された履歴ポイントC(警告点)の履歴を示している。(c)は、恒常性維持機能レベル判定手段624により、恒常性維持機能レベルが注意を要する状態と連続判定された場合の回数を時間に応じて履歴ポイントA(注意点)として示したものである。(d)は、注意点、警告点及び喝点の回数を縦軸にとって時間経過と共に棒グラフで示し、かつ、その変化傾向を曲線で示したものである。
【0107】
図27に示した男性本被験者Aの場合、8時に事業所を出発し、10時より12時まで別の事業所で事務作業及び屋外作業を行い、12時20分より運行を再開している。途中13時から30分間昼休憩を取っている。運行結果グラフの図中(ア)(イ)に示す12時30分から13時における注意点の連続による疲労感の増大、図中(ウ)(エ)に示す15時から16時の警告点の連続と喝点の出現があった。これは、男性被験者Aの運行後の聞き取り内容とも一致した。また、
図27中の曲線(オ)(カ)は疲労度合を示し、男性被験者Aは業務が終了する15時前後が危険な状態である可能性が高い。
【0108】
図28に示した男性被験者Bの場合、図中(キ)(ク)で疲労感の増大、図中(ケ)(コ)で疲労による危険な状態が出現している時間帯を捉えている。このように眠気の出現や疲労の進行度合を指標化することにより、疲労度合から危険な状態になる時間帯が推測できた。
従って、このような判定結果を管理者のコンピュータにより解析することにより、各運転者の疲労度合いや危険な状態となるタイミングを把握することができ、業務管理を行うのに適している。
【0109】
なお、上記した分析演算手段61の各種演算結果、判定検出手段62の各種判定結果について、管理者側のコンピュータでさらに解析して業務管理を行う場合、例えば、運転者別に
図27及び
図28に示したようなデータを表示できるようにして管理することができる。この場合、
図29に示したように、さらに詳細な体調マップも併せて表示することで、運転者の状態をより詳細に管理できる。
【0110】
図29は、30歳代男性被験者CのAPWの時系列波形から求めたもので、運行中の体調の状態を、本出願人が特願2011−108909号等として提案した定量化手法により体調マップ及び感覚応答マップとして表したものである。これは、採取したAPWを周波数分析し、対象となる解析区間について、解析波形を両対数軸表示に表し、その解析波形を低周波帯域、中周波帯域、高周波帯域に分け、区分けした解析波形の傾きと、全体の解析波形の形とから一定の基準に基づいて解析波形の点数化を行い、それを座標軸にプロットしたものである。体調マップは、自律神経系の制御の様子を交感神経と副交感神経のバランスとして見たものであり、感覚応答マップは、体調マップに心拍変動の変化の様子を重畳させたものである。13運行分を週別、体調別(アンケート回答に基づく)にそれぞれまとめたものである。下段は運行後の体調に関するアンケート結果を示し、この被験者は実施期間の前半の体調は悪化傾向、後半は回復傾向であったと感じている。
【0111】
週別のグラフにおいて、体調マップが1週目はハツラツ(集中・高揚・イライラ)、ヘトヘト(だるい、憂鬱)を中心とした右肩上がりの分布(サ)から、3週目のユウユウ(リラックス)を中心とした右肩下がりの分布(シ)へと変化している。これを体調別で分類すると、「好調」「普通」回答群は右肩下がりでユウユウ、リラックスに向かって分布が広がっている(ス、セ)。これは心身ともにリラックス傾向にあり、楽に運転できていることが示唆される。一方、「不調」「絶不調」回答群は、体調マップは右肩上がりでハツラツ、ヘトヘトを中心とし、ユウユウの分布が少なく(ソ)、感覚マップは「好調」「普通」群に比べて高揚の分布が多くなり、リラックス方向への広がりが小さくなり、興奮から鎮静へ急降下していることがわかる(タ)。なお、他の運転手についても同様の結果であった。
【0112】
このようにして業務管理を行うことで、適切な運行管理に貢献できる。もちろん、これはあくまで一例であり、業務管理内容はこれに限られるものではない。例えば、後述の実験例5の覚醒状態及び睡眠状態の様子について併せて管理することもできるし、さらに、個人別に限らず、道路別、期間別、季節別等に区分けするなどして、様々な面から解析できる。
【0113】
(実験例5)
(周波数変動時系列波形を用いた覚醒状態と睡眠状態の検出)
周波数変動演算手段613により得られたピーク検出法による周波数変動時系列波形とゼロクロス検出法による周波数変動時系列波形との乖離度を比較し、覚醒状態と睡眠状態とを判定できるか否かの検証実験を行った。
【0114】
覚醒状態と睡眠状態の生体信号を測定するため、仰臥位で睡眠導入実験を行った。被験者は20〜30歳代の健常な男性11名である。APWと同時に指尖容積脈波、脳波、頤筋筋電図を測定した。APWを測定するための生体信号測定装置1は被験者の背部とベッドの間に配置した。測定時間は60分間とし、測定開始から30分間は、被験者に眠らないように指示し、5分経過ごとに眠さの度合いを評価した。30分経過後の睡眠は被験者の自由意志とした。
【0115】
覚醒状態及び睡眠状態の判断は、被験者の観察、脳波、頤筋筋電図から行った。
図30(a)に、覚醒状態及び睡眠状態それぞれ6分間の指尖容積脈波の周波数スペクトルを示す。睡眠状態では覚醒状態に比べ、卓越周波数が低いことが分かる。11人中11人の被験者で同様の結果が得られた。
【0116】
図30(b)に、覚醒状態及び睡眠状態それぞれ6分間のAPWの周波数スペクトルを示す。睡眠状態では覚醒状態に比べ、卓越周波数が低いことが分かる。11人中11人の被験者で同様の結果が得られた。以上のことから、指尖容積脈波とAPWそれぞれの周波数スペクトルの卓越周波数は一致していることが分かる。
【0117】
図30(c)に、APWのピーク点とゼロクロス点の周波数変動時系列波形を示す。覚醒状態及び睡眠状態それぞれの6分間において、ピーク点とゼロクロス点の波形の面積の差を算出し、波形の乖離度として評価した。睡眠状態では覚醒状態に比べ、乖離度が減少していることが分かる。11人中10人の被験者で同様の結果が得られた。
【0118】
指尖容積脈波とAPWの周波数スペクトルの卓越周波数は一致することから、指尖容積脈波と同様に、APWでも心拍変動を捉えられることが示唆される。また、両者の周波数スペクトルの卓越周波数とAPWの周波数変動は、覚醒状態よりも睡眠状態のほうが低く、このことは、睡眠状態では心拍数が低下することと一致しており、本実験の指尖容積脈波及びAPWの測定が正しく行えたことを示す。
【0119】
睡眠状態では覚醒状態に比べ、ピーク点とゼロクロス点の周波数変動時系列波形の乖離度が減少することが分かった。ゼロクロス点の周波数変動が交感神経活動を捉えているとすると、睡眠状態では交感神経活動の低下の影響を受け、周波数は低下したと考えられる。ピーク点の周波数変動が交感神経活動と副交感神経活動を捉えているとすると、睡眠状態では交感神経活動の低下かつ副交感神経活動の亢進の影響を受け、周波数はゼロクロス点よりも大きく低下したと考えられる。その結果、ピーク点とゼロクロス点の周波数変動時系列波形の乖離度が減少したと考えられる。
【0120】
このことから、APWのピーク点とゼロクロス点の周波数変動時系列波形の乖離度を評価することにより、すなわち、所定の基準値よりも乖離しているか否かを設定することにより覚醒及び睡眠状態を推定できる。従って、これを利用し、予め覚醒状態と睡眠状態との乖離度のデータを複数取得し、それらから閾値を設定することで、上記したように、覚醒状態か睡眠状態か否かを自動判定できる。運転中に睡眠に陥ることはないのが通常であるが、万一の場合の検出に役立てることができるし、管理者が運行後、運転者がいつどの程度仮眠をとったかを把握、解析するのに利用できる。
【0121】
なお、指尖容積脈波とAPWの周波数スペクトルを比較すると、APWの周波数スペクトルには0.6Hz近傍にもスペクトルのピークがあり、睡眠状態よりも覚醒状態で高いスペクトルを示した。このように、APWは指尖容積脈波にはない情報を含有しており、指尖容積脈波よりも覚醒状態及び睡眠状態の推定に有効であることが示唆される。以上のことから、APWのピーク点とゼロクロス点の乖離度と、0.6Hz近傍のスペクトルには関連があるのではないかと考えられる。
図31は、
図30(c)に示すAPWのピーク点とゼロクロス点の乖離度と、
図30(b)に示すAPWの0.6Hz近傍のスペクトルの増加、減少傾向が同一になるかを調べた結果である。カイ二乗検定の結果は、p=0.041(p<0.05)であり、APWのピーク点とゼロクロス点の乖離度と、0.6Hz近傍のスペクトルには関連があることが示唆され、APWのデータを用いることが有効であることがわかる。
【0122】
(実験例6)
(自覚眠気(覚低走行状態)、入眠予兆現象、切迫睡眠現象の過程に至る際に生じる交感神経活動の亢進に関する考察)
図32は、20歳代の健常な男性被験者の睡眠実験の結果を示した図である。睡眠実験の実験方法は実験例5と同様である。
【0123】
図32(a)に示した脳波計のデータから求めた睡眠段階を示し、
図32(b)に脳波計のデータから求めたα波、β波、θ波の分布率を示す。これらの結果から、この被験者は、試験開始後15分頃まで、25分〜40分頃まで、覚醒と睡眠段階1との間を行ったり来たりしている。自己申告でも5分前後で眠気を申告し、20分では会話をして眠気が少し収まったと申告している。そして、40分頃から睡眠に入っている。
【0124】
これを
図32(c)の指尖容積脈波のパワー値の傾き時系列波形に照らすと、35分頃まで大振幅の波形が見られ、入眠予兆現象が生じており、40分前後から振幅が小さくなって切迫睡眠現象が出現したことがわかる。
【0125】
図32(d)の心拍変動の解析結果では、374秒、1490秒のところでLF/HFのピークがあり、交感神経活動の亢進があることがわかる。その後、437秒、824秒のところでHFのピークがあり、副交感神経活動が賦活していることがわかる。従って、このグラフによっても上記時間帯において入眠予兆現象、切迫睡眠現象が発現したことがわかる。
【0126】
図32(e)〜(h)はAPWの解析結果であり、いずれも入眠予兆現象から切迫睡眠現象を経て40分前後で入眠していると判定できる。例えば、(e)のゼロクロス傾きの時系列波形を見ると、5〜20分前後、25〜32分前後において波形の発散傾向が見られ、これが入眠予兆現象を示し、35〜40分前後では、波形の振幅が小さくなって収束し、その後周期が長周期化しており、切迫睡眠現象が生じていることがわかる。従って、40分過ぎには入眠に至っている。
【0127】
この被験者の睡眠実験における動向は上記のとおりであるが、覚醒と睡眠段階1との間で行ったり来たりしている時間帯は、自己申告からもわかるように自覚眠気を感じている。あるいは、目は開いているものの意識レベルが低下していて運転はしていないが覚低走行状態と同様の状態にある。そこで、この時間帯の中で、交感神経活動が亢進している374秒から所定時間帯について詳細な解析を行った。
【0128】
図33は、374秒から25秒間の各種生体信号の波形を示し、(a)は指尖容積脈波の原波形、(b)は指尖容積脈波の二階微分波形、(c)はAPWの原波形、(d)はAPWの二階微分波形、(e)は心音の原波形である。APWの波形は、いずれも、378秒から10秒間前後の波形の乱れが見られる。これは心音の原波形でも同様である。この間に自覚眠気(覚低走行状態に相当)を感じ、交感神経活動の亢進が生じたと推定される。但し、指尖容積脈波の波形は、それよりも数秒遅れて乱れが生じている。
【0129】
そこで、APWをさらに詳細に検討した。
図34(a)はAPWの378秒から30秒間の原波形を示す。このうち、波形の乱れの大きい382〜388秒の6秒間(図では「4〜10sec」と表示)を含む378〜392秒の14秒間(図では「0〜14sec」と表示)と、振幅及び周期共に安定している396.1〜402.1秒の6秒間(図では「18.1〜24.1sec」と表示)を含む396.1〜406.1秒の14秒間(図では「14.1〜28.1sec」)について周波数解析を行って比較した。
【0130】
(b)は「0〜14sec」と「14.1〜28.1sec」の各14秒間の2つの周波数解析用計算区間の原波形を重ねて示した図であり、そのうちの「4〜10sec」の6秒間と「18.1〜24.1sec」の6秒間との間で位相のずれ(両者の差分(時相差))が大きいことがわかる。従って、このような位相のずれは交感神経活動の亢進を示すものである。(c)は14秒間の2つの周波数解析用計算区間においてフーリエ変換して実数だけをとって示した図であり、1Hz付近を除いて、0.4〜0.6Hz付近、1.2〜2Hz付近において違いがあることがわかる。すなわち、交感神経活動の亢進が生じた場合、1Hz付近ではピークが相対的に小さくなるが、0.4〜0.6Hz付近、1.2〜2Hz付近では逆にピークが相対的に大きくなる。
【0131】
また、「4〜10sec」の波形を周波数解析したものと、指尖容積脈波の周波数に対応する1Hz近傍の0.9〜1.1Hzをフィルタリングしてから周波数解析したものとを比較した。(d)がその時系列での比較結果であり、(e)が周波数解析結果である。(d)から、フィルタリング後の3.4秒、4.2秒付近での上昇波形があり、(e)では、0.4〜0.6Hz付近、1.2〜2Hz付近においてピークがあり、APWにおいてこれらの周波数成分のピークを捉えることで交感神経活動の亢進を検出でき、そのタイミングから自覚眠気(覚低走行状態に相当)を検出できることがわかる。
【0132】
図35は、(a)指尖容積脈波の原波形、(b)指尖容積脈波の二階微分波形、(c)APWの原波形、(d)APWの二階微分波形、(e)心音の原波形における378〜392秒の14秒間(図では「4〜18sec」と表示)と392〜406秒の14秒間(図では「18〜32sec」と表示)の波形同士の周波数解析結果を比較した図である。この図から、交感神経活動の亢進を示す0.4〜0.6Hz付近、1.2〜2Hz付近のピークは、(c)APWの原波形、(d)APWの二階微分波形において捉えられるが、指尖容積脈波では捉えられないことがわかる。従って、APWを検出波形として用いることは、交感神経活動の亢進から自覚眠気(覚低走行状態に相当)を検出するのに適している。
【0133】
これらのことから、APWの検出波形を利用し、これを周波数傾き時系列波形として処理することの有効性がわかる。この点を詳述すると、まず、
図32(d)から、の交感神経と副交感神経の増減の変化が約5〜10分間の周期でおきていることがわかるが、この図で示される交感神経の亢進は、
図33及び
図34で示した指尖容積脈波やAPWの基線動揺や波形の乱れとして現れる。一方、APWのゼロクロス、ピークの傾き時系列波形の絶対値処理波形は、指尖容積脈波のウエーブレット解析による自律神経系の活動状態と一致している。しかし、APWの原波形の基線動揺や振幅、周期の増減だけを捉えようとすると、その瞬間の変動を微視的に見るだけになり、大きな傾向として、生体が覚醒に向かっているのか、あるいは睡眠に向かっているのかの判断が難しい。そこで、APWの原波形だけではなく、これを長周期化した波形であるAPWの周波数傾き時系列波形で捉えることが適切であり、それにより、指尖容積脈波やAPWの基線動揺や波形の乱れとして現れる自律神経系の活動状態をより正確に特定できる。すなわち、周波数傾き時系列波形という長周期化した大きな波形を捉えることで、負のフィードバックがかかっても体調変化に極めて僅かな作用しか及ぼさないような、あまり有効でない負のフィードバックに対するフィルターとしても機能する。換言すれば、自律神経系の活動はストレスに応じて逐一変化するが、ストレスに対する生体の対応はその自律神経活動の瞬間的な変化に応じて変わるものではない。ストレスに対する生体の状態変化は、自律神経活動の変化の蓄積によってもたらされるものである。従って、自律神経活動の瞬間的変化を逐一追跡しても生体の状態変化を正確に予測することはできない。自律神経活動の変化を大域的に捉えることで生体がストレスに対応していく傾向を精度よく捉えることができるのであり、そのためには周波数傾き時系列波形を用いることが適している。