【実施例】
【0049】
以下の実施例に使用されたモノマーおよびその略語は以下の通りである:
【化9】
【0050】
モノマー合成
実施例1:2−((3−ヒドロキシアダマンタン−1−イル)メトキシ)−2−オキソエチルメタクリラート(EHAMA)
3−(ヒドロキシメチル)アダマンタン−1−オール(120.0g、0.66mol)(アルドリッチケミカルズ)およびトリエチルアミン(303.3g、3.0mol)がジクロロメタン(1200mL)中で、室温でゆっくりと一緒にされた。攪拌しつつ、この溶液が0℃に冷却された。この反応混合物に、2−クロロアセチルクロリド(75.0g、0.66mol)が30分間にわたって滴下添加された。この溶液が激しく室温で一晩攪拌され、得られた溶液がろ過された。有機相が高度純水(3×200mL)で洗浄され、そして無水MgSO
4で乾燥させられた。得られたオイルが高真空(0.3torr)下で室温で3時間にわたって濃縮され、そして冷凍庫で−20℃で一晩冷却された。薄茶色固体135.5g(79%収率)が得られ、これは以下のNMRスペクトル特徴を有していた:
1H NMR(300MHz)δ1.49(br,4H)、1.55(br,2H)、1.61(br,2H)、1.71(br,4H)、2.34(br,2H)、3.90(br,2H)、4.11(s,2H)。
【0051】
得られた固体(60.0g、0.23mol)がトリエチルアミン(60.0g、0.60mol)およびジクロロメタン(750mL)中に0℃で溶かされた。メタクリル酸(20.0g、0.23mol)が1時間にわたって滴下添加された。この反応混合物は42℃で60時間にわたって攪拌された。得られた溶液はろ過された。有機相が高度純水(3×150mL)で洗浄された。1,4−ヒドロキノン(16.0mg)が禁止剤として添加された。溶媒は、このプロセス中水浴の温度を25℃以下に維持しつつ、真空下で除去された。得られたオイルは、溶離液として酢酸エチルを用いてシリカゲルプラグ(30cm×10cm)を通された。1,4−ヒドロキノン(16.0mg)が添加された。溶媒が真空下で除去された。薄茶色オイルが66.0g(91%収率)得られ、これは以下のNMRスペクトル特徴を有していた:
1H NMR(300MHz)1.43(br,4H)、1.48(br,2H)、1.55(br,2H)、1.67(br,4H)、2.21(br,2H)、3.83(s,2H)、4.70(s,2H)、5.66(s,1H)、6.22(s,1H);
13C NMR(75.5MHz、CDCl
3)δ18.5、30.4、35.6、37.2、38.0、44.8、46.9、61.1、68.6、73.7、127.2、135.6、166.9、168.1。EHAMAモノマーがこれにより合成された。
【0052】
実施例2:2−((3−ヒドロキシアダマンタン−1−イル)メトキシ)−2−オキソエチルアクリラート(EHADA)
実施例1に記載されたのと同じ薄茶色固体がHADAモノマーの製造に使用された。この固体(30.0g、0.12mol)がトリエチルアミン(24.0g、0.24mol)およびジクロロメタン(500mL)中に0℃で溶かされた。アクリル酸(8.4g、0.12mol)が15分間にわたって滴下添加された。この反応混合物は40℃で3日間にわたって攪拌された。得られた溶液はろ過された。有機相が高度純水(3×150mL)で洗浄された。1,4−ヒドロキノン(8.0mg)が禁止剤として添加された。溶媒は、このプロセス中水浴の温度を25℃以下に維持しつつ、真空下で除去された。得られたオイルはシリカゲルプラグ(30cm×10cm)に通され、第1の溶離液として塩化メチレンを用いて着色不純物を除去した。第2の溶離液として酢酸エチルを用いて、生成物を洗い流した。1,4−ヒドロキノン(10.0mg)が添加された。溶媒が真空下で除去された。薄茶色オイルが22.0g(64%収率)得られ、これは以下のNMRスペクトル特徴を有していた:
1H NMR(300MHz)1.43(br,4H)、1.49(br,2H)、1.57(br,2H)、1.67(br,4H)、3.85(s,2H)、4.72(s,2H)、5.97(d,1H)、6.23(m,1H)、6.49(d,1H);
13C NMR(75.5MHz、CDCl
3)δ30.4、35.6、37.2、38.0、44.8、46.8、61.0、68.7、73.8、127.6、132.7、165.7、168.1。EHADAモノマーがこれにより合成された。
【0053】
マトリックスポリマー合成
実施例3(比較):ポリ(IPGMA/NLMA/HAMA)(50/30/20)の合成
IPGMA(17.307g)、NLMA(11.526g)およびHAMA(8.167g)のモノマーを55gのPGMEAに溶解させた。このモノマー溶液を窒素での20分間のバブリングによって脱ガスした。凝縮器および機械式攪拌装置を備えた500mLの三ツ口フラスコにPGMEA(26.220g)を入れ、この溶媒を窒素での20分間のバブリングによって脱ガスした。その後この反応フラスコ内の溶媒を80℃の温度にした。V601(ジメチル−2,2−アゾジイソブチラート)(1.194g)を7.4gのPGMEAに溶解させ、この開始剤溶液を窒素での20分間のバブリングによって脱ガスした。この開始剤溶液が前記反応フラスコに入れられ、次いで激しく攪拌しつつ窒素環境下でモノマー溶液が3時間にわたってこの反応器に滴下で供給された。モノマー供給が完了した後、重合混合物をさらに1時間80℃でそのまま置いておいた。合計4時間の重合時間(3時間の供給および1時間の供給後攪拌)の後、重合混合物を室温まで冷却させた。メチルtert−ブチルエーテル(MTBE)(1528g)中で沈殿が行われた。沈殿した粉体がろ過により集められ、一晩空気乾燥させられ、111gのTHF中に再溶解させられ、そしてMTBE(1528g)中で再沈殿させられた。最終的なポリマーはろ別され、一晩空気乾燥させられ、さらに真空下、60℃で、48時間乾燥させられて、「ポリマーA」(収率75%、Mw=13,744およびPDI=1.61)を得た。
【0054】
実施例4:ポリ(IPGMA/NLMA/EHAMA)(50/30/20)の合成
IPGMA(17.529g)、NLMA(11.673g)およびEHAMA(10.798g)のモノマーを60gのPGMEAに溶解させた。このモノマー溶液を窒素での20分間のバブリングによって脱ガスした。凝縮器および機械式攪拌装置を備えた500mLの三ツ口フラスコにPGMEA(28.626g)を入れ、この溶媒を窒素での20分間のバブリングによって脱ガスした。その後この反応フラスコ内の溶媒を80℃の温度にした。V601(ジメチル−2,2−アゾジイソブチラート)(1.411g)を8gのPGMEAに溶解させ、この開始剤溶液を窒素での20分間のバブリングによって脱ガスした。この開始剤溶液が前記反応フラスコに入れられ、次いで激しく攪拌しつつ窒素環境下でモノマー溶液が3時間にわたってこの反応器に滴下で供給された。モノマー供給が完了した後、重合混合物をさらに1時間80℃でそのまま置いておいた。合計4時間の重合時間(3時間の供給および1時間の供給後攪拌)の後、重合混合物を室温まで冷却させた。メチルtert−ブチルエーテル(MTBE)(1656g)中で沈殿が行われた。沈殿した粉体がろ過により集められ、一晩空気乾燥させられ、120gのTHF中に再溶解させられ、そしてMTBE(1656g)中で再沈殿させられた。最終的なポリマーはろ別され、一晩空気乾燥させられ、さらに真空下、60℃で、48時間乾燥させられて、「ポリマーB」(収率70%、Mw=13,459およびPDI=1.63)を得た。
【0055】
実施例5(比較):ポリ(ECPMA/aGBLMA/MNLMA)(40/20/40)の合成
ECPMA(13.313g)、aGBLMA(6.215g)およびMNLMA(20.472g)のモノマーを60gのPGMEAに溶解させた。このモノマー溶液を窒素での20分間のバブリングによって脱ガスした。凝縮器および機械式攪拌装置を備えた500mLの三ツ口フラスコにPGMEA(32.201g)を入れ、この溶媒を窒素での20分間のバブリングによって脱ガスした。その後この反応フラスコ内の溶媒を80℃の温度にした。V601(ジメチル−2,2−アゾジイソブチラート)(2.943g)を8gのPGMEAに溶解させ、この開始剤溶液を窒素での20分間のバブリングによって脱ガスした。この開始剤溶液が前記反応フラスコに入れられ、次いで激しく攪拌しつつ窒素環境下でモノマー溶液が3時間にわたってこの反応器に滴下で供給された。モノマー供給が完了した後、重合混合物をさらに1時間80℃でそのまま置いておいた。合計4時間の重合時間(3時間の供給および1時間の供給後攪拌)の後、重合混合物を室温まで冷却させた。メチルtert−ブチルエーテル(MTBE)(1718g)中で沈殿が行われた。沈殿した粉体がろ過により集められ、一晩空気乾燥させられ、120gのTHF中に再溶解させられ、そしてMTBE(1718g)中で再沈殿させられた。最終的なポリマーはろ別され、一晩空気乾燥させられ、さらに真空下、60℃で、48時間乾燥させられて、「ポリマーC」(収率80%、Mw=8,464およびPDI=1.47)を得た。
【0056】
実施例6:ポリ(ECPMA/aGBLMA/MNLMA/EHAMA)(40/20/20/20)の合成
ECPMA(12.980g)、aGBLMA(6.059g)、MNLMA(9.980g)およびEHAMA(10.981g)のモノマーを60gのPGMEAに溶解させた。このモノマー溶液を窒素での20分間のバブリングによって脱ガスした。凝縮器および機械式攪拌装置を備えた500mLの三ツ口フラスコにPGMEA(32.030g)を入れ、この溶媒を窒素での20分間のバブリングによって脱ガスした。その後この反応フラスコ内の溶媒を80℃の温度にした。V601(ジメチル−2,2−アゾジイソブチラート)(2.870g)を8gのPGMEAに溶解させ、この開始剤溶液を窒素での20分間のバブリングによって脱ガスした。この開始剤溶液が前記反応フラスコに入れられ、次いで激しく攪拌しつつ窒素環境下でモノマー溶液が3時間にわたってこの反応器に滴下で供給された。モノマー供給が完了した後、重合混合物をさらに1時間80℃でそのまま置いておいた。合計4時間の重合時間(3時間の供給および1時間の供給後攪拌)の後、重合混合物を室温まで冷却させた。メチルtert−ブチルエーテル(MTBE)(1715g)中で沈殿が行われた。沈殿した粉体がろ過により集められ、一晩空気乾燥させられ、120gのTHF中に再溶解させられ、そしてMTBE(1715g)中で再沈殿させられた。最終的なポリマーはろ別され、一晩空気乾燥させられ、さらに真空下、60℃で、48時間乾燥させられて、「ポリマーD」(収率58%、Mw=9,155およびPDI=1.40)を得た。
【0057】
実施例7(比較):ポリ(MCPMA/MNLMA/HADA)(50/30/20)の合成
MCPMA(79.110g)、MNLMA(79.078g)およびHADA(41.811g)のモノマーを300gのPGMEAに溶解させた。このモノマー溶液を窒素での20分間のバブリングによって脱ガスした。凝縮器および機械式攪拌装置を備えた1000mLの三ツ口フラスコにPGMEA(151.933g)を入れ、この溶媒を窒素での20分間のバブリングによって脱ガスした。その後この反応フラスコ内の溶媒を80℃の温度にした。V601(ジメチル−2,2−アゾジイソブチラート)(10.828g)を40gのPGMEAに溶解させ、この開始剤溶液を窒素での20分間のバブリングによって脱ガスした。この開始剤溶液が前記反応フラスコに入れられ、次いで激しく攪拌しつつ窒素環境下でモノマー溶液が3時間にわたってこの反応器に滴下で供給された。モノマー供給が完了した後、重合混合物をさらに1時間80℃でそのまま置いておいた。合計4時間の重合時間(3時間の供給および1時間の供給後攪拌)の後、重合混合物を室温まで冷却させた。メチルtert−ブチルエーテル(MTBE)(8433g)中で沈殿が行われた。沈殿した粉体がろ過により集められ、一晩空気乾燥させられ、600gのTHF中に再溶解させられ、そしてMTBE(8433g)中で再沈殿させられた。最終的なポリマーはろ別され、一晩空気乾燥させられ、さらに真空下、60℃で、48時間乾燥させられて、「ポリマーE」(収率69%、Mw=10,904およびPDI=1.51)を得た。
【0058】
実施例8(比較):ポリ(MCPMA/MNLMA/HAMA)(50/30/20)の合成
MCPMA(78.080g)、MNLMA(78.049g)およびHAMA(43.871g)のモノマーを300gのPGMEAに溶解させた。このモノマー溶液を窒素での20分間のバブリングによって脱ガスした。凝縮器および機械式攪拌装置を備えた1000mLの三ツ口フラスコにPGMEA(151.604g)を入れ、この溶媒を窒素での20分間のバブリングによって脱ガスした。その後この反応フラスコ内の溶媒を80℃の温度にした。V601(ジメチル−2,2−アゾジイソブチラート)(10.687g)を40gのPGMEAに溶解させ、この開始剤溶液を窒素での20分間のバブリングによって脱ガスした。この開始剤溶液が前記反応フラスコに入れられ、次いで激しく攪拌しつつ窒素環境下でモノマー溶液が3時間にわたってこの反応器に滴下で供給された。モノマー供給が完了した後、重合混合物をさらに1時間80℃でそのまま置いておいた。合計4時間の重合時間(3時間の供給および1時間の供給後攪拌)の後、重合混合物を室温まで冷却させた。メチルtert−ブチルエーテル(MTBE)(8427g)中で沈殿が行われた。沈殿した粉体がろ過により集められ、一晩空気乾燥させられ、600gのTHF中に再溶解させられ、そしてMTBE(8427g)中で再沈殿させられた。最終的なポリマーはろ別され、一晩空気乾燥させられ、さらに真空下、60℃で、48時間乾燥させられて、「ポリマーF」(収率73%、Mw=10,535およびPDI=1.46)を得た。
【0059】
実施例9(比較):ポリ(IPGMA/IPGFMA/MNLMA/HAMA)(25/25/30/20)の合成
IPGMA(7.600g)、IPGFMA(12.460g)、MNLMA(12.765g)およびHAMA(7.175g)のモノマーを60gのPGMEAに溶解させた。このモノマー溶液を窒素での20分間のバブリングによって脱ガスした。凝縮器および機械式攪拌装置を備えた500mLの三ツ口フラスコにPGMEA(28.596g)を入れ、この溶媒を窒素での20分間のバブリングによって脱ガスした。その後この反応フラスコ内の溶媒を80℃の温度にした。V601(ジメチル−2,2−アゾジイソブチラート)(1.398g)を8gのPGMEAに溶解させ、この開始剤溶液を窒素での20分間のバブリングによって脱ガスした。この開始剤溶液が前記反応フラスコに入れられ、次いで激しく攪拌しつつ窒素環境下でモノマー溶液が3時間にわたってこの反応器に滴下で供給された。モノマー供給が完了した後、重合混合物をさらに1時間80℃でそのまま置いておいた。合計4時間の重合時間(3時間の供給および1時間の供給後攪拌)の後、重合混合物を室温まで冷却させた。メチルtert−ブチルエーテル(MTBE)(1656g)中で沈殿が行われた。沈殿した粉体がろ過により集められ、一晩空気乾燥させられ、120gのTHF中に再溶解させられ、そしてMTBE(1656g)中で再沈殿させられた。最終的なポリマーはろ別され、一晩空気乾燥させられ、さらに真空下、60℃で、48時間乾燥させられて、「ポリマーG」(収率69%、Mw=13,639およびPDI=1.58)を得た。
【0060】
実施例10:ポリ(MCPMA/MNLMA/EHADA)(50/30/20)の合成
MCPMA(11.113g)、MNLMA(11.109g)およびEHADA(7.778g)のモノマーを45gのPGMEAに溶解させた。このモノマー溶液を窒素での20分間のバブリングによって脱ガスした。凝縮器および機械式攪拌装置を備えた500mLの三ツ口フラスコにPGMEA(22.549g)を入れ、この溶媒を窒素での20分間のバブリングによって脱ガスした。その後この反応フラスコ内の溶媒を80℃の温度にした。V601(ジメチル−2,2−アゾジイソブチラート)(1.521g)を6gのPGMEAに溶解させ、この開始剤溶液を窒素での20分間のバブリングによって脱ガスした。この開始剤溶液が前記反応フラスコに入れられ、次いで激しく攪拌しつつ窒素環境下でモノマー溶液が3時間にわたってこの反応器に滴下で供給された。モノマー供給が完了した後、重合混合物をさらに1時間80℃でそのまま置いておいた。合計4時間の重合時間(3時間の供給および1時間の供給後攪拌)の後、重合混合物を室温まで冷却させた。メチルtert−ブチルエーテル(MTBE)(1261g)中で沈殿が行われた。沈殿した粉体がろ過により集められ、一晩空気乾燥させられ、90gのTHF中に再溶解させられ、そしてMTBE(1261g)中で再沈殿させられた。最終的なポリマーはろ別され、一晩空気乾燥させられ、さらに真空下、60℃で、48時間乾燥させられて、「ポリマーH」(収率64%、Mw=11,504およびPDI=1.51)を得た。
【0061】
実施例11:ポリ(MCPMA/MNLMA/EHAMA)(50/30/20)の合成
MCPMA(14.637g)、MNLMA(14.631g)およびEHADA(10.732g)のモノマーを60gのPGMEAに溶解させた。このモノマー溶液を窒素での20分間のバブリングによって脱ガスした。凝縮器および機械式攪拌装置を備えた500mLの三ツ口フラスコにPGMEA(30.008g)を入れ、この溶媒を窒素での20分間のバブリングによって脱ガスした。その後この反応フラスコ内の溶媒を80℃の温度にした。V601(ジメチル−2,2−アゾジイソブチラート)(2.0038g)を8gのPGMEAに溶解させ、この開始剤溶液を窒素での20分間のバブリングによって脱ガスした。この開始剤溶液が前記反応フラスコに入れられ、次いで激しく攪拌しつつ窒素環境下でモノマー溶液が3時間にわたってこの反応器に滴下で供給された。モノマー供給が完了した後、重合混合物をさらに1時間80℃でそのまま置いておいた。合計4時間の重合時間(3時間の供給および1時間の供給後攪拌)の後、重合混合物を室温まで冷却させた。メチルtert−ブチルエーテル(MTBE)(1680g)中で沈殿が行われた。沈殿した粉体がろ過により集められ、一晩空気乾燥させられ、120gのTHF中に再溶解させられ、そしてMTBE(1680g)中で再沈殿させられた。最終的なポリマーはろ別され、一晩空気乾燥させられ、さらに真空下、60℃で、48時間乾燥させられて、「ポリマーI」(収率63%、Mw=11,211およびPDI=1.52)を得た。
【0062】
実施例12:ポリ(IPGMA/IPGMA/MNLMA/EHAMA)(50/30/20)の合成
IPGMA(7.205g)、IPGFMA(11.816g)、MNLMA(12.102g)およびEHAMA(8.877g)のモノマーを60gのPGMEAに溶解させた。このモノマー溶液を窒素での20分間のバブリングによって脱ガスした。凝縮器および機械式攪拌装置を備えた500mLの三ツ口フラスコにPGMEA(28.427g)を入れ、この溶媒を窒素での20分間のバブリングによって脱ガスした。その後この反応フラスコ内の溶媒を80℃の温度にした。V601(ジメチル−2,2−アゾジイソブチラート)(1.326g)を8gのPGMEAに溶解させ、この開始剤溶液を窒素での20分間のバブリングによって脱ガスした。この開始剤溶液が前記反応フラスコに入れられ、次いで激しく攪拌しつつ窒素環境下でモノマー溶液が3時間にわたってこの反応器に滴下で供給された。モノマー供給が完了した後、重合混合物をさらに1時間80℃でそのまま置いておいた。合計4時間の重合時間(3時間の供給および1時間の供給後攪拌)の後、重合混合物を室温まで冷却させた。メチルtert−ブチルエーテル(MTBE)(1653g)中で沈殿が行われた。沈殿した粉体がろ過により集められ、一晩空気乾燥させられ、120gのTHF中に再溶解させられ、そしてMTBE(1653g)中で再沈殿させられた。最終的なポリマーはろ別され、一晩空気乾燥させられ、さらに真空下、60℃で、48時間乾燥させられて、「ポリマーJ」(収率70%、Mw=14,619およびPDI=1.62)を得た。
【0063】
フォトレジスト組成物製造
実施例13
メチル−2−ヒドロキシイソブチラートに溶解させられたPAG A(以下に示される)の2重量%溶液11.2gが1.323gのポリマーAに添加された。PGMEA中に溶解させられたドデシルジエタノールアミンの1重量%溶液2.105gがこの混合物に添加された。次いで、PGMEA中のP(n
BMA
25/iBMA
75)の1重量%溶液0.64gが添加され、次いで20.782gのPGMEA、1.452gのガンマバレロラクトンおよび12.498gのメチル−2−ヒドロキシイソブチラートを添加した。得られた混合物はローラー上で6時間にわたってロールされ、次いで0.2ミクロン孔サイズを有するテフロン
(登録商標)フィルタを通してろ過された。
【化10】
【0064】
実施例14〜22
表1に示された組成物および量を使用したことを除いて、ポリマーAについて上述したのと同じ手順を用いてさらなる配合物が製造された。
【0065】
【表1】
TBOC=tert−ブチル4−ヒドロキシピペリジン−1−カルボキシラート;
DDEA=2,2’−(ドデシルアザンジイル)ジエタノール;
TB−Tris=tert−ブチル1,3−ジヒドロキシ−2−(ヒドロキシメチル)プロパン−2−イルカルバマート。
【0066】
ドライリソグラフィコントラスト評価
シリコンウェハがAR
(商標)77反射防止膜(bottom antireflective coating:BARC)材料(ロームアンドハースエレクトロニックマテリアルズ)でスピンコートされ、205℃で60秒間にわたってベークされ、840Åの膜厚さを生じさせた。TELクリーントラック(CleanTrack)ACT8コータ/デベロッパにおいて、このBARCコートウェハ上にフォトレジスト組成物がコーティングされ、そして90℃で60秒間にわたってソフトベークされて、900Åの厚さを有するレジスト層を提供した。
【0067】
次いで、フォトレジストコートされたウェハは、0.75NAで、および0.89アウターシグマおよび0.64インナーシグマのクアドラポール(Quadrapole)30照明条件で、ブランクマスクを通して露光された。露光は1.0mJ/cm
2の開始線量で、0.2mJ/cm
2の増分で、1.0〜20.8mJ/cm
2の線量範囲をカバーするようにウェハ上の10×10の配列の100個のダイを露光した。露光されたウェハは、TEL CleanTrackACT8コータ/デベロッパにおいて、100℃の温度で60秒間にわたって露光後ベークされ、次いで2−ヘプタノン現像剤で25秒間にわたって現像された。様々な露光線量での残留膜厚さが、サーマウェーブオプティプローブ(Therma Wave Optiprobe)(KLA−Tencor(テンコー))において想定され、そして残留膜厚さを露光エネルギーの関数としてプロットすることによりNTDコントラスト曲線が描かれた。このコントラスト曲線は
図2〜6に示される。このコントラスト曲線から、一定の膜厚さに到達する最低エネルギーとして各フォトレジスト組成物について閾値エネルギー(E
th)が決定され、このNTDプロセスについてのそれぞれのフォトレジスト組成物の光感受性の指標として使用された。このデータは表1にまとめられる。
【0068】
図2は、それぞれ、極性基HAMAの効果を極性基EHAMAと比較する、実施例13および14のフォトレジスト組成物についてのコントラスト曲線を提示する。6.0mJ/cm
2のE
th値を示した実施例14のEHAMA含有ポリマーと比べて、比較例13のHAMA含有ポリマーおよびレジスト組成物は有機現像剤中での比較的低い溶解性および2.5mJ/cm
2のE
th値の速いフォトスピードを示した。
図3は極性基EHAMAを有しないポリマーと有するポリマーとの効果を比較する、それぞれ比較例15および実施例16のフォトレジスト組成物についてのコントラスト曲線を提示する。EHAMA基を有しない組成物は1mJ/cm
2の露光エネルギーでさえ、有機現像剤中での比較的低い溶解度を示し、結果的に、4.4mJ/cm
2のE
th値の非常に速いフォトスピードを示した。実施例16のEHAMA含有配合物は、完全に可溶性でありかつ7.4mJ/cm
2のE
th値を示した。
図4〜7は、極性基HADAとEHAMA、またはHAMAとEHAMAの効果を比較する、他のフォトレジスト組成物についてのさらなるコントラスト曲線を提示する。
【0069】
液浸リソグラフィ処理
実施例23および24
TEL CLEAN TRACK LITHIUS(テルクリーントラックリシウス)i+コータ/デベロッパにおいて、300mmシリコンウェハがAR
(商標)26N反射防止剤(ロームアンドハースエレクトロニックマテリアルズ)でスピンコートされ、第1の反射防止膜(BARC)を形成した。このウェハは60秒間240℃でベークされ、760Åの第1のBARC膜厚を生じさせた。次いで、この第1のBARC上に、第2のシルセスキオキサン含有BARC層がコーティングされ、240℃で60秒間ベークされて、390Åの上部BARC層を生じさせた。TEL CLEAN TRACK LITHIUS i+コータ/デベロッパにおいて、この二重BARCコートウェハ上に実施例13および14のフォトレジスト配合物がコーティングされ、90℃で60秒間ソフトベークされて、900Åのレジスト層厚さを提供した。
【0070】
フォトレジストコーティングしたウェハは、1.35のNA、0.8アウターシグマ、0.85インナーシグマおよびXY偏光で、クアドラプル(quadruple;Quad)照明を使用して、ASML TWINSCAN(ツインスキャン)XT:1900i液浸スキャナにおいて、マスクを通して露光された。露光されたウェハは、TEL CLEAN TRACK
(商標)LITHIUS
(商標)i+コータ/デベロッパにおいて、100℃で60秒間露光後ベークされ、そして37.5mLの2−ヘプタノン現像剤を用いて現像されて、ネガティブトーンパターンを生じさせた。〜55nmコンタクトホールについて各配合物の解像能を比較するために、日立CG4000CD SEMにおいて、60nmでのマスクCD(マスク上の不透明円の直径)および112nmでのピッチCD(マスクCDプラス不透明円間の距離)を用いて限界寸法(CD)が測定された。リソグラフィ結果のために以下の値が決定された:53nmのホールを112nmのピッチ(E
s)でプリントするための露光エネルギー;下記式に従うターゲットCD(CD
t)の±10%以内の、露光エネルギー(mJ/cm
2)あたりのCD変化(ΔCD)で定義されるフォトレジストの露光寛容度(EL):
EL=(1.1×CD
t−0.9×CD
t)/(1.1×CD
tのE
op−0.9×CD
tのE
op)
並びに1つのダイについて20の異なる像を測定し、約9ホール(CD)/像で、CD値における3シグマ変動が計算されそしてCDUとして報告されることによる最良の露光および焦点についてのCD均一性(CDU)。結果は表2にまとめられる。
【0071】
【表2】
【0072】
実施例25および26
比較例15および実施例16のフォトレジスト配合物について、実施例23および24について記載されたのと同様の手順が使用された。〜55nm溝について各配合物の解像能およびパターン倒壊を比較するために、日立CG4000CD SEMにおいて、38nmでのマスクCD(マスク上のラインの幅)および100nmでのピッチCDを用いて限界寸法(CD)が測定された。53nmホールを112nmピッチ(E
s)露光寛容度でプリントするための露光エネルギーが決定された。ライン倒壊前の最も大きな溝CDの比較である(より大きな溝またはスペース値=レジストについてのより良好なパターン倒壊マージン)パターン倒壊マージンも決定された。結果は表3にまとめられる。実施例34のEHAMAを含む配合物は、比較例33のEHAMAを含まない配合物を超える改良されたパターン倒壊マージンを示した。また、EHAMAを含まない組成物についてわずか47.6nmであったのと比較して、EHAMAを含む配合物は54.6nmの溝CDを解像した。
【0073】
【表3】
*100nmピッチで53nm溝をプリントするための露光エネルギー
【0074】
実施例27〜32
TEL CLEAN TRACK LITHIUS(テルクリーントラックリシウス)i+コータ/デベロッパにおいて、300mmシリコンウェハがAR
(商標)40A反射防止剤(ロームアンドハースエレクトロニックマテリアルズ)でスピンコートされ、第1の反射防止膜(BARC)を形成した。このウェハは60秒間215℃でベークされ、840Åの第1のBARC膜厚を生じさせた。次いで、この第1のBARC上に、AR
(商標)124反射防止剤(ロームアンドハースエレクトロニックマテリアルズ)を用いて、第2のBARC層がコーティングされ、205℃で60秒間ベークされて、200Åの上部BARC層を生じさせた。TEL CLEAN TRACK LITHIUS i+コータ/デベロッパにおいて、この二重BARCコートウェハ上に実施例17〜22のフォトレジスト配合物がコーティングされ、90℃で60秒間ソフトベークされて、900Åのレジスト層厚さを提供した。
【0075】
フォトレジストコーティングしたウェハは、1.35のNA、0.9アウターシグマ、0.7インナーシグマおよびXY偏光で、環状照明を使用して、ASML TWINSCAN(ツインスキャン)XT:1900i液浸スキャナにおいて、マスクを通して露光された。露光されたウェハは、TEL CLEAN TRACK
(商標)LITHIUS
(商標)i+コータ/デベロッパにおいて、90℃で60秒間露光後ベークされ、そして次いで2−ヘプタノンとプロピオン酸n−ブチルとの50/50ブレンドを25秒間用いて現像されて、ネガティブトーンパターンを生じさせた。〜45nmコンタクトホールについて各配合物の解像能を比較するために、日立CG4000CD SEMにおいて、60nmでのマスクCD(マスク上の不透明円の直径)および90nmでのピッチCD(マスクCDプラス不透明円間の距離)を用いて限界寸法(CD)が測定された。CD均一性、112nmピッチで53nmホールをプリントするための露光エネルギー(E
s)、および露光寛容度が決定され、結果は表4にまとめられる。
【0076】
比較例27〜29と実施例30〜32とをそれぞれ比較すると、HADAまたはHAMAに代えて、それぞれEHADAまたはEHAMAの使用によって達成されるCDU値は結果的に向上したCDU値を生じさせた。また、HAMA含有レジストポリマーを含んでいた比較例29は45nmコンタクトホールの劣った解像度を示した。HAMAを実施例32においてEHAMAに置き換えることによって、SEM像の目視検査によって決定されるリソグラフィ解像度が非常に向上させられた。
【0077】
【表4】
*90nmピッチで45nmホールをプリントするための露光エネルギー