特許第6118809号(P6118809)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本テキサス・インスツルメンツ株式会社の特許一覧
特許6118809マスタースレーブ低ノイズチャージポンプ回路及び方法
<>
  • 特許6118809-マスタースレーブ低ノイズチャージポンプ回路及び方法 図000002
  • 特許6118809-マスタースレーブ低ノイズチャージポンプ回路及び方法 図000003
  • 特許6118809-マスタースレーブ低ノイズチャージポンプ回路及び方法 図000004
  • 特許6118809-マスタースレーブ低ノイズチャージポンプ回路及び方法 図000005
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6118809
(24)【登録日】2017年3月31日
(45)【発行日】2017年4月19日
(54)【発明の名称】マスタースレーブ低ノイズチャージポンプ回路及び方法
(51)【国際特許分類】
   H02M 3/07 20060101AFI20170410BHJP
【FI】
   H02M3/07
【請求項の数】20
【全頁数】19
(21)【出願番号】特願2014-541130(P2014-541130)
(86)(22)【出願日】2012年11月5日
(65)【公表番号】特表2014-533090(P2014-533090A)
(43)【公表日】2014年12月8日
(86)【国際出願番号】US2012063496
(87)【国際公開番号】WO2013067474
(87)【国際公開日】20130510
【審査請求日】2015年10月29日
(31)【優先権主張番号】13/373,117
(32)【優先日】2011年11月4日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】390020248
【氏名又は名称】日本テキサス・インスツルメンツ株式会社
(73)【特許権者】
【識別番号】507107291
【氏名又は名称】テキサス インスツルメンツ インコーポレイテッド
(74)【上記1名の代理人】
【識別番号】100098497
【弁理士】
【氏名又は名称】片寄 恭三
(72)【発明者】
【氏名】マイケル ジェイ シェイ
(72)【発明者】
【氏名】バディム ブイ イワノフ
【審査官】 北嶋 賢二
(56)【参考文献】
【文献】 特開2010−124618(JP,A)
【文献】 米国特許出願公開第2011/0109374(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H02M 3/07
(57)【特許請求の範囲】
【請求項1】
チャージポンプ回路要素であって、
(a)マスターチャージポンプ回路要素であって、
(1)第1のレギュレートされていない電圧を生成するマスター電圧マルチプライヤー回路要素
(2)第1のレギュレートされた電圧を生成するために前記第1のレギュレートされていない電圧をレギュレートする関連する第1のレギュレーション回路要素
)ブーストされレギュレートされていない電圧を生成するために前記第1のレギュレートされた電圧をブーストするマスターポンピング回路要素
を含む、前記マスターチャージポンプ回路要素と、
(b)スレーブチャージポンプ回路要素であって、
(1)第2のレギュレートされていない電圧を生成するスレーブ電圧マルチプライヤー回路要素
(2)第2のレギュレートされた電圧を生成するために前記第2のレギュレートされていない電圧をレギュレートする関連する第2のレギュレーション回路
)ブーストされた制御電圧を生成するために前記第2のレギュレートされた電圧をブーストするスレーブポンピング回路要素
を含む、前記スレーブチャージポンプ回路要素と、
(c)ブーストされレギュレートされた低ノイズ電圧を生成するために、前記ブーストされた制御電圧に応答して前記ブーストされレギュレートされていない電圧をレギュレートするように結合される、第3のレギュレーション回路要素と、
(d)所定の基準電圧に従って前記ブーストされた制御電圧のレギュレーションを制御するために、前記ブーストされレギュレートされた低ノイズ電圧と前記第2のレギュレーション回路との間に結合されるフィードバック回路要素と、
を含む、チャージポンプ回路要素。
【請求項2】
請求項1に記載のチャージポンプ回路要素であって、
前記マスター電圧マルチプライヤー回路要素が電圧トリプラーを含み、前記マスターポンピング回路要素が多段ディクソンチャージポンプを含む、チャージポンプ回路要素。
【請求項3】
請求項1に記載のチャージポンプ回路要素であって、
前記スレーブ電圧マルチプライヤー回路要素が電圧トリプラーを含み、前記スレーブポンピング回路要素が多段ディクソンチャージポンプを含む、チャージポンプ回路要素。
【請求項4】
請求項1に記載のチャージポンプ回路要素であって、
前記第3のレギュレーション回路要素がNチャネルソースフォロワートランジスタ、前記ソースフォロワートランジスタのゲートに結合される第1のローパスフィルタを含み、
前記ソースフォロワートランジスタのドレインが前記ブーストされレギュレートされていない電圧を受け取るように結合され、前記ソースフォロワートランジスタのソースが前記ブーストされレギュレートされた低ノイズ電圧を提供するように結合される、チャージポンプ回路要素。
【請求項5】
請求項4に記載のチャージポンプ回路要素であって、
ブーストされレギュレートされた低ノイズバイアス電圧を生成するために、前記ブーストされレギュレートされた低ノイズ電圧を受け取り且つフィルタリングするように結合される第2のローパスフィルタを更に含む、チャージポンプ回路要素。
【請求項6】
請求項5に記載のチャージポンプ回路要素であって、
前記ブーストされレギュレートされた低ノイズバイアス電圧が可変負荷に結合される、チャージポンプ回路要素。
【請求項7】
請求項1に記載のチャージポンプ回路要素であって、
前記ブーストされレギュレートされていない電圧を受け取り、前記ブーストされレギュレートされていない電圧からリップル電圧成分過渡電圧成分をフィルタリングするキャパシタを更に含む、チャージポンプ回路要素。
【請求項8】
請求項1に記載のチャージポンプ回路要素であって、
前記第1のレギュレーション回路要素が、第1のソースフォロワートランジスタ第1の増幅器第1の相互コンダクタンス増幅器を含み、
前記第1のソースフォロワートランジスタのドレインが前記第1のレギュレートされていない電圧に結合され、前記第1のソースフォロワートランジスタのソースが前記第1のレギュレートされた電圧を生成し、
前記第1のソースフォロワートランジスタの前記ソースが前記第1の増幅器の入力にも結合され、前記第1の増幅器の出力が前記第1の相互コンダクタンス増幅器の入力に結合され、
前記第1の相互コンダクタンス増幅器の出力が前記第1のソースフォロワートランジスタのゲートに結合され、前記第1の相互コンダクタンス増幅器が前記第1のレギュレートされていない電圧をフィルタリングするように構成される、チャージポンプ回路要素。
【請求項9】
請求項1に記載のチャージポンプ回路要素であって、
前記第2のレギュレーション回路が、第2のソースフォロワートランジスタ第2の増幅器第2の相互コンダクタンス増幅器を含み、
前記第2のソースフォロワートランジスタのドレインが前記第2のレギュレートされていない電圧に結合され、前記第2のソースフォロワートランジスタのソースが前記第2のレギュレートされた電圧を生成し、
前記第2の相互コンダクタンス増幅器の出力が前記第2のソースフォロワートランジスタのゲートに結合され、
前記第2の増幅器の出力が前記第2の相互コンダクタンス増幅器の入力に結合され、前記第2の増幅器の第1の入力が前記所定の基準電圧を受け取るように結合され、前記第2の増幅器の第2の入力が前記フィードバック回路要素の出力に結合され、
前記第2の相互コンダクタンス増幅器が前記第2のレギュレートされていない電圧をフィルタリングするように構成される、チャージポンプ回路要素。
【請求項10】
請求項9に記載のチャージポンプ回路要素であって、
前記第2の増幅器が積分増幅器として構成される、チャージポンプ回路要素。
【請求項11】
請求項2に記載のチャージポンプ回路要素であって、
前記マスターチャージポンプ回路要素が、クロック信号の振幅に前記第1のレギュレートされた電圧の大きさをトラッキングさせるために、前記マスターポンピング回路要素の前記多段ディクソンチャージポンプへの入力として前記クロック信号を発生する、クロックレベルシフト回路を含む、チャージポンプ回路要素。
【請求項12】
請求項3に記載のチャージポンプ回路要素であって、
前記スレーブチャージポンプ回路要素が、クロック信号の振幅に前記第2のレギュレートされた電圧の大きさをトラッキングさせるために、前記スレーブポンピング回路要素の前記多段ディクソンチャージポンプへの入力として前記クロック信号を発生するクロックレベルシフト回路を含む、チャージポンプ回路要素。
【請求項13】
請求項1に記載のチャージポンプ回路要素であって、
前記フィードバック回路要素が、前記ブーストされた制御電圧を前記所定の基準電圧に対してスケールアップさせるために、前記ブーストされレギュレートされた低ノイズ電圧とフィードバック増幅器の入力との間に結合される分圧器回路要素を含む、チャージポンプ回路要素。
【請求項14】
請求項13に記載のチャージポンプ回路要素であって、
前記フィードバック増幅器がユニティゲインバッファとして構成される、チャージポンプ回路要素。
【請求項15】
ブーストされた低ノイズ基準電圧を発生するための方法であって、
(a)マスター電圧マルチプライヤー回路を用いて第1のレギュレートされていない電圧を生成し、第1のレギュレートされた電圧を生成するために前記第1のレギュレートされていない電圧をレギュレートすることと、
(b)ブーストされてレギュレートされていない電圧を生成するために、マスターポンピング回路を用いて前記第1のレギュレートされた電圧をブーストすることと、
(c)スレーブ電圧マルチプライヤー回路を用いて第2のレギュレートされていない電圧を生成し、第2のレギュレートされた電圧を生成するために前記第2のレギュレートされていない電圧をレギュレートすることと、
(d)ブーストされた制御電圧を生成するために、スレーブポンピング回路を用いて前記第2のレギュレートされた電圧をブーストすることと、
(e)ブーストされてレギュレートされた低ノイズ電圧を生成するために、前記ブーストされた制御電圧に応答して前記ブーストされてレギュレートされていない電圧をレギュレートすることと、
(f)前記ブーストされてレギュレートされた低ノイズ電圧と前記第2のレギュレートされた電圧との間に結合されるフィードバック回路要素を用いて、所定の基準電圧に従って前記ブーストされた制御電圧のレギュレーションを制御することと、
を含む方法。
【請求項16】
請求項15に記載の方法であって、
ローパスフィルタを用いて前記ブーストされた制御電圧をフィルタリングすること
前記フィルタリングされブーストされた制御電圧をNチャネルソースフォロワートランジスタのゲートに印加すること
更に含み、
前記ソースフォロワートランジスタのドレインが前記ブーストされレギュレートされていない電圧を受け取るように結合され、前記ソースフォロワートランジスタのソースが前記ブーストされレギュレートされた低ノイズ電圧を提供するように結合される、方法。
【請求項17】
請求項15に記載の方法であって、
マスター電圧トリプラー回路要素とマスターディクソンチャージポンピング回路要素とを用いて前記ブーストされてレギュレートされていない電圧を生成することと、
スレーブ電圧トリプラー回路要素とスレーブディクソンチャージポンピング回路要素とを用いて前記ブーストされた制御電圧を生成することと、
を更に含む方法。
【請求項18】
請求項16に記載の方法であって、
ブーストされレギュレートされた低ノイズバイアス電圧を生成するために前記ブーストされレギュレートされた低ノイズ電圧をフィルタリングすることを更に含む方法。
【請求項19】
請求項15に記載の方法であって、
前記ブーストされレギュレートされた低ノイズ電圧とフィードバック増幅器の入力との間に結合される分圧器回路要素を用いて所定の基準電圧に対して前記ブーストされた制御電圧をスケールアップすることを更に含む方法。
【請求項20】
ブーストされた低ノイズ基準電圧を発生するシステムであって、
(a)マスター電圧マルチプライヤー回路を用いて第1のレギュレートされていない電圧を生成し、第1のレギュレートされた電圧を生成するために前記第1のレギュレートされていない電圧をレギュレートする手段と、
(b)ブーストされてレギュレートされていない電圧を生成するために、マスターポンピング回路を用いて前記第1のレギュレートされた電圧をブーストする手段と、
(c)スレーブ電圧マルチプライヤー回路を用いて第2のレギュレートされていない電圧を生成し、第2のレギュレートされた電圧を生成するために前記第2のレギュレートされていない電圧をレギュレートする手段と、
(d)ブーストされた制御電圧を生成するために、スレーブポンピング回路を用いて前記第2のレギュレートされた電圧をブーストする手段と、
(e)ブーストされてレギュレートされた低ノイズ電圧を生成するために、前記ブーストされた制御電圧に応答して前記ブーストされてレギュレートされていない電圧をレギュレートする手段と、
(f)前記ブーストされてレギュレートされた低ノイズ電圧と前記第2のレギュレートされた電圧との間に結合されるフィードバック回路要素を用いて、所定の基準電圧に従って前記ブーストされた制御電圧のレギュレーションを制御する手段と、
を含む、システム。
【発明の詳細な説明】
【技術分野】
【0001】
本願は、全般的に、チャージポンプ回路に関し、より特定的に、低ノイズ、高増倍係数(high multiplication factor)チャージポンプ回路に関する。
【背景技術】
【0002】
種々の電圧ブースト回路のインダクタのような大型外部部品が使用できない、寸法に制約のあるシステムを含む多くのパワー重視及びコスト重視用途において、集積回路での「高増倍係数」のバイアス電圧の生成が必要とされる。通信システム用のバイアス電圧生成回路要素は、スプリアスRFノイズレベルの生成、及びシステムのRF部品への結合における厳しい制限を満たすように設計されなければならない。また、バイアス電圧を生成し、様々な用途のために電圧を駆動するために、例えば、RF−MEMSバラクターアレイ製品内のMEMS(マイクロ電子機械システム)アクチュエータを駆動するために、標準RF(無線周波数)通信周波数帯域内で非常に低いスプリアスノイズ成分を備える高電圧増倍又はマルチプライヤー回路要素が必要とされる。そのような高電圧増倍回路要素は、スプリアスの生成及び/又は負荷に敏感なノイズ生成、及び標準RF通信帯域内のノイズエネルギーのレベルについての極めて厳しい制限を満たすことがしばしば重要である。
【0003】
既知の高電圧増倍チャージポンプ回路は、通常、単一の高電圧ポンプに依存し、そこでは負荷に供給される出力電圧のレギュレーションが単一の高電圧チャージポンプによって生成される電圧から引き出される。電圧レギュレーションの制御が、可変負荷を駆動するものと同じチャージポンプから引き出される場合、多くのRF用途に適切な量よりも、はるかに多い負荷依存ノイズ成分及びスプリアスノイズ成分が存在し得る。(出力リップル電圧は、更にフィルタリングされて出力レギュレーションのために使用されるが、チャージポンプによって生成されるスプリアスノイズの生成において主要な影響要因である。また、所謂「モバイル製品市場」の用途のための集積回路設計において、低電力消費は重要な考慮事項である。
【0004】
このように、低ノイズ、高電圧増倍チャージポンプ回路及び方法に対する満たされていない需要が存在する。
【0005】
また、負荷に供給される出力電圧の正確なレギュレーションを提供し、非常に低レベルのスプリアスRFノイズ及びノイズエネルギーを生成する、低ノイズ、高電圧増倍チャージポンプ回路及び方法に対する満たされていない需要が存在する。
【0006】
また、負荷に供給される出力電圧の正確なレギュレーションを提供し、非常に低レベルの負荷依存ノイズを生成する、低ノイズ、高電圧増倍チャージポンプ回路及び方法に対する満たされていない需要が存在する。
【0007】
負荷に供給される出力電圧の正確なレギュレーションを提供し、非常に低いスプリアスRFノイズレベル及びエネルギーを生成し、出力電圧の正確なレギュレーションを提供するためにチャージポンプ回路の出力回路要素からのフィードバックに依存しない、低ノイズ、高電圧増倍チャージポンプ回路及び方法に対する満たされていない需要が存在する。
【0008】
負荷に供給される出力電圧の正確なレギュレーションを提供し、非常に低レベルのスプリアスRFノイズ及びノイズエネルギーを生成し、相対的に小電力を消費する、低ノイズ、高電圧増倍チャージポンプ回路及び方法に対する満たされていない需要が存在する。
【発明の概要】
【0009】
本発明の一つの目的は、低ノイズ、高電圧増倍チャージポンプ回路及び方法を提供することである。
【0010】
負荷に供給される出力電圧の正確なレギュレーションを提供し、非常に低レベルのスプリアスRFノイズ及びノイズエネルギーを生成する、低ノイズ、高電圧増倍チャージポンプ回路及び方法を提供することが本発明の別の目的である。
【0011】
負荷に供給される出力電圧の正確なレギュレーションを提供し、非常に低レベルの負荷依存ノイズを生成する、低ノイズ、高電圧増倍チャージポンプ回路及び方法を提供することが本発明の別の目的である。
【0012】
負荷に供給される出力電圧の正確なレギュレーションを提供し、非常に低いスプリアスRFノイズレベル及びエネルギーを生成し、出力電圧の正確なレギュレーションを提供するためにチャージポンプ回路の出力回路要素からのフィードバックに依存しない、低ノイズ、高電圧増倍チャージポンプ回路及び方法を提供することが本発明の別の目的である。
【0013】
負荷に供給される出力電圧の正確なレギュレーションを提供し、非常に低レベルのスプリアスRFノイズ及びノイズエネルギーを生成し、相対的に小電力を消費する、低ノイズ、高電圧増倍チャージポンプ回路及び方法を提供することが本発明の別の目的である。
【0014】
簡潔に説明すると、及び本発明の一実施形態に従って、本発明は、マスターチャージポンプ(2)を含むチャージポンプ回路要素(1)を提供する。マスターチャージポンプ(2)は、後にフィルタリングされる、ブーストされレギュレートされていない電圧(Vunreg)を生成するように動作する電圧マルチプライヤー(5)及びチャージポンプ(30)を含む。チャージポンプ回路要素(1)はさらに、スレーブチャージポンプ(3)を含む。スレーブチャージポンプ(3)は、後にフィルタリングされる、ブーストされた制御電圧(Vctl)を生成するように動作する電圧マルチプライヤー(36)及びチャージポンプ(50)を含む。ブーストされレギュレートされていない電圧(Vunreg)は、フィルタリングされブーストされた制御電圧(Vctl)に応答してレギュレートされて、ブーストされレギュレートされた低ノイズ電圧(Vreg)を生成する。基準電圧(Vref_SH)に対するブーストされた制御電圧(Vctl)の値は、ブーストされレギュレートされた低ノイズ電圧(Vreg)に応答して、フィードバック回路要素(61、62、65)によって制御される。
【0015】
一実施形態において、本発明はチャージポンプ回路要素(1)を提供する。チャージポンプ回路要素(1)はマスターチャージポンプ回路要素(2)を含む。マスターチャージポンプ回路要素(2)は第1のレギュレートされていない電圧(Mt3x)を生成するためのマスター電圧マルチプライヤー回路要素(5)、及び第1のレギュレートされた電圧(Mt3x_reg)を生成するように第1のレギュレートされていない電圧(Mt3x)をレギュレートするための関連する第1のレギュレーション回路要素(10、12、14)、及びブーストされレギュレートされていない電圧(Vunreg)を生成するように第1のレギュレートされた電圧(Mt3x_reg)をブーストするためのマスターポンピング回路要素(30)を含む。マスターチャージポンプ回路要素(2)はさらにスレーブチャージポンプ回路要素(3)を含む。スレーブチャージポンプ回路要素(3)は、第2のレギュレートされていない電圧(St3x)を生成するためのスレーブ電圧マルチプライヤー回路要素(36)、及び第2のレギュレートされた電圧(St3x_reg)を生成するように第2のレギュレートされていない電圧(St3x)をレギュレートするための関連する第2のレギュレーション回路(40、38、46)、及びブーストされた制御電圧(Vctl)を生成するように第2のレギュレートされた電圧(St3x_reg)をブーストするためのスレーブポンピング回路要素(50)を含む。第3のレギュレーション回路要素(58、56)が、ブーストされた制御電圧(Vctl)に応答して、ブーストされレギュレートされた低ノイズ電圧(Vreg)を生成するために、ブーストされレギュレートされていない電圧(Vunreg)をレギュレートするように結合される。フィードバック回路要素(61、62、65)は、所定の基準電圧(Vref_SH)に従って、ブーストされた制御電圧(Vctl)のレギュレーションを制御するように、ブーストされレギュレートされた低ノイズ電圧(Vreg)と第2のレギュレーション回路(40、38、46)との間に結合される。
【0016】
一実施形態において、マスター電圧マルチプライヤー回路要素(5)は電圧トリプラーを含み、マスターポンピング回路要素(30)は多段ディクソンチャージポンプを含み、スレーブ電圧マルチプライヤー回路要素(36)は電圧トリプラーを含み、スレーブポンピング回路要素(50)は多段ディクソンチャージポンプを含む。
【0017】
一実施形態において、第3のレギュレーション回路要素(58、56)はNチャネルソースフォロワートランジスタ(58)、及びソースフォロワートランジスタ(58)のゲートに結合される第1のローパスフィルタ(56)を含む。ソースフォロワートランジスタ(58)のドレインは、第1のブーストされレギュレートされていない電圧(Vunreg)を受け取るように結合され、ソースフォロワートランジスタ(58)のソースは、ブーストされレギュレートされた低ノイズ電圧(Vreg)を提供するように結合される。一実施形態において、チャージポンプ回路要素は第2のローパスフィルタ(72)を含む。第2のローパスフィルタ(72)は、ブーストされレギュレートされた低ノイズバイアス電圧(VBIAS)を生成するために、ブーストされレギュレートされた低ノイズ電圧(Vreg)を受け取り、且つ、フィルタリングするように結合される。
【0018】
一実施形態において、ブーストされレギュレートされた低ノイズバイアス電圧(VBIAS)は可変負荷(75)に結合される。一実施形態において、キャパシタ(Cdec)が、ブーストされレギュレートされていない電圧(Vunreg)を受け取り、ブーストされレギュレートされていない電圧(Vunreg)からリップル電圧成分及び過渡電圧成分をフィルタリングする。
【0019】
一実施形態において、第1のレギュレーション回路要素(10、12、14)は、第1のソースフォロワートランジスタ(14)、第1の増幅器(10)、及び第1の相互コンダクタンス増幅器(12)を含む。第1のソースフォロワートランジスタ(14)のドレインは、第1のレギュレートされていない電圧(Mt3x)に結合される。第1のソースフォロワートランジスタ(14)のソースは、第1のレギュレートされた電圧(Mt3x_reg)を生成し、さらに、第1の増幅器(10)の入力に結合される。第1の増幅器(10)の出力が、第1の相互コンダクタンス増幅器(12)の入力に結合され、第1の相互コンダクタンス増幅器(12)の出力が、第1のソースフォロワートランジスタ(14)のゲートに結合される。第1の相互コンダクタンス増幅器(12)は、第1のレギュレートされていない電圧(Mt3x)をフィルタリングするように構成される。一実施形態において、第2のレギュレーション回路要素(40、38、46)は、第2のソースフォロワートランジスタ(46)、第2の増幅器(40)、及び第2の相互コンダクタンス増幅器(38)を含む。第2のソースフォロワートランジスタ(46)のドレインは、第2のレギュレートされていない電圧(St3x)に結合される。第2のソースフォロワートランジスタ(46)のソースは、第2のレギュレートされた電圧(St3x_reg)を生成する。第2の相互コンダクタンス増幅器(38)の出力が、第2のソースフォロワートランジスタ(46)のゲートに結合される。第2の増幅器(40)の出力が、第2の相互コンダクタンス増幅器(38)の入力に結合される。第2の増幅器(40)の第1の入力が、所定の基準電圧(Vref_SH)を受け取るように結合され、第2の増幅器(40)の第2の入力が、フィードバック回路要素(61、62、65)の出力(Vfback)に結合される。第2の相互コンダクタンス増幅器(38)は、第2のレギュレートされていない電圧(St3x)をフィルタリングするように構成される。一実施形態において、第2の増幅器(40)は積分増幅器として構成される。一実施形態において、マスターチャージポンプ回路要素(2)は、クロック信号の振幅に第1のレギュレートされた電圧(Mt3x_reg)の大きさをトラッキングさせるように、マスターポンピング回路要素(30)の多段ディクソンチャージポンプへの入力としてクロック信号を生成するためのクロックレベルシフト回路(33)を含む。また、スレーブチャージポンプ回路要素(3)は、クロック信号の振幅に第2のレギュレートされた電圧(St3x_reg)の大きさをトラッキングさせるように、スレーブポンピング回路要素(50)の多段ディクソンチャージポンプへの入力としてクロック信号を生成するための2段クロックレベルシフト回路(49)を含む。
【0020】
一実施形態において、フィードバック回路要素(61、62、65)は、ブーストされた制御電圧(Vctl)を所定の基準電圧(Vref_SH)に対してスケールアップさせるように、ブーストされレギュレートされた低ノイズ電圧(Vreg)とフィードバック増幅器(65)の入力との間に結合される分圧器回路要素(61、62)を含む。フィードバック増幅器(65)はユニティゲインバッファとして構成され得る。
【0021】
一実施形態において、本発明は、ブーストされた低ノイズ基準電圧(Vreg、VBIAS)を生成するための方法を提供する。この方法は、マスター電圧マルチプライヤー回路(5)を用いて第1のレギュレートされていない電圧(Mt3x)を生成し、第1のレギュレートされた電圧(Mt3x_reg)を生成するために第1のレギュレートされていない電圧(Mt3x)をレギュレートすること、ブーストされレギュレートされていない電圧(Vunreg)を生成するためにマスターポンピング回路(30)を用いて第1のレギュレートされた電圧(Mt3x_reg)をブーストすること、スレーブ電圧マルチプライヤー回路(36)を用いて第2のレギュレートされていない電圧(St3x)を生成し、第2のレギュレートされた電圧(St3x_reg)を生成するために第2のレギュレートされていない電圧(St3x)をレギュレートすること、ブーストされた制御電圧(Vctl)を生成するためにスレーブポンピング回路(50)を用いて第2のレギュレートされた電圧(St3x_reg)をブーストすること、ブーストされた制御電圧(Vctl)に応答して、ブーストされレギュレートされた低ノイズ電圧(Vreg)を生成するために、ブーストされレギュレートされていない電圧(Vunreg)をレギュレートすること、及びブーストされレギュレートされた低ノイズ電圧(Vreg)と第2のレギュレーション回路(40、38、46)との間に結合されるフィードバック回路要素(61、62、65)を用いて、所定の基準電圧(Vref_SH)に従って、ブーストされた制御電圧(Vctl)のレギュレーションを制御することを含む。
【0022】
一実施形態において、この方法は、ローパスフィルタ(56)を用いて、ブーストされた制御電圧(Vctl)をフィルタリングすること、及びフィルタリングされブーストされた制御電圧(Vectl_filt)をNチャネルソースフォロワートランジスタ(58)のゲートに印加することを含む。ソースフォロワートランジスタ(58)のドレインは、第1のブーストされレギュレートされていない電圧(Vunreg)を受け取るように結合され、ソースフォロワートランジスタ(58)のソースは、ブーストされレギュレートされた低ノイズ電圧(Vreg)を提供するように結合される。
【0023】
一実施形態において、この方法は、マスター電圧トリプラー回路要素(5)及びマスターディクソンチャージポンピング回路要素(30)を用いて、ブーストされレギュレートされていない電圧(Vunreg)を生成すること、及びスレーブ電圧トリプラー回路要素(36)及びマスターディクソンチャージポンピング回路要素(30)を用いて、ブーストされた制御電圧(Vctl)を生成することを含む。
【0024】
一実施形態において、この方法は、ブーストされレギュレートされた低ノイズバイアス電圧(VBIAS)を生成するために、ブーストされレギュレートされた低ノイズ電圧(Vreg)をフィルタリングすることを含む。
【0025】
一実施形態において、この方法は、ブーストされレギュレートされた低ノイズ電圧(Vreg)とフィードバック増幅器(65)の入力との間に結合される分圧器回路要素(61、62)を用いて、所定の基準電圧(Vref_SH)に対して、ブーストされた制御電圧(Vctl)をスケールアップさせることを含む。
【0026】
一実施形態において、本発明は、ブーストされた低ノイズ基準電圧(Vreg、VBIAS)を生成するためのシステム(1)を提供する。システム(1)は、マスター電圧マルチプライヤー回路を用いて第1のレギュレートされていない電圧(Mt3x)を生成し、第1のレギュレートされた電圧(Mt3x_reg)を生成するために第1のレギュレートされていない電圧(Mt3x)をレギュレートするための手段(5)、ブーストされレギュレートされていない電圧(Vunreg)を生成するためにマスターポンピング回路を用いて第1のレギュレートされた電圧(Mt3x_reg)をブーストするための手段(30)、スレーブ電圧マルチプライヤー回路(36)を用いて第2のレギュレートされていない電圧(St3x)を生成し、第2のレギュレートされた電圧(St3x_reg)を生成するために第2のレギュレートされていない電圧(St3x)をレギュレートするための手段(36)、ブーストされた制御電圧(Vctl)を生成するためにスレーブポンピング回路(50)を用いて第2のレギュレートされた電圧(St3x_reg)をブーストするための手段(50)、ブーストされた制御電圧(Vctl)に応答して、ブーストされレギュレートされた低ノイズ電圧(Vreg)を生成するために、ブーストされレギュレートされていない電圧(Vunreg)をレギュレートするための手段(58)、及び、ブーストされレギュレートされた低ノイズ電圧(Vreg)と第2のレギュレーション回路(40、38、46)との間に結合されるフィードバック回路要素を用いて、所定の基準電圧(Vref_SH)に従って、ブーストされた制御電圧(Vctl)のレギュレーションを制御する手段(61、62、65)を含む。
【図面の簡単な説明】
【0027】
図1】本発明の一実施形態のマスター/スレーブチャージポンプの概略図である。
【0028】
図2図1のブロック5及び36で用いられる電圧トリプラー回路要素回路要素の概略図である。
【0029】
図3図1のブロック30及び50に用いられるディクソンチャージポンプ回路要素の概略図である。
【発明を実施するための形態】
【0030】
図1は高電圧マスター/スレーブチャージポンプ1を示し、高電圧マスター/スレーブチャージポンプ1は、外部可変負荷を駆動するマスターポンプ2、及びマスターポンプ3の出力をレギュレートするために固定の内部負荷を駆動するスレーブポンプ3を含む。マスターポンプ2の出力コンダクタ34上に生成されるレギュレートされていない出力電圧Vunregは、Nチャネルソースフォロワートランジスタ58のドレインに接続される。ソースフォロワートランジスタ58のソースは、コンダクタ60によって二次ローパスフィルタ(LPF)72の入力に接続される。二次ローパスフィルタ(LPF)72の出力74は、可変負荷75に印加される低ノイズバイアス電圧VBIASを導通する。スレーブ段3が可変負荷ではなく本質的に固定の負荷を有するので、スレーブ段3によって生成される出力電圧Vctlに比べ、Vunregはより大きい負荷に起因する摂動及び/又はノイズを被り得る。ソースフォロワートランジスタ58のゲートは、コンダクタ57によって二次LPF56の出力に接続される。二次LPF56の入力は、スレーブポンプ3の出力54に接続される。ソースフォロワートランジスタ58のソース60はフィードバック増幅器65にも結合され、フィードバック増幅器65の出力66は、スレーブポンプ3の基準電圧入力を制御するフィードバック信号Vfbackを提供する。
【0031】
更に具体的には、マスターポンプ2は、詳細を図2に示すマスター電圧トリプラー回路5を含む。クロック生成回路4が、従来の弛緩発振器8を含み、弛緩発振器8は通常のクロック生成回路要素26への入力としてコンダクタ7上にクロック信号OSCを提供する。クロック生成回路要素26は、信号SAMPLEをコンダクタ27上に、及び信号OSC_DIV16をコンダクタ28上に生成する。クロック信号OSC_DIV16は、OSCの周波数の16分の1であり得る周波数を有する。マスタートリプラー回路5のクロック入力が、コンダクタ7上でOSCを受け取るように接続される。
【0032】
マスタートリプラー回路5は、VDDによって電源供給され、接地を基準とする。マスタートリプラー回路5は、3倍されたレギュレートされていない出力信号Mt3xをコンダクタ6上に生成する。コンダクタ6が、Nチャネルソースフォロワートランジスタ14のドレインに、及び相互コンダクタンス増幅器12の高側供給電圧端子に接続され、それは「GmCl」フィルタリング機能を実行する。相互コンダクタンス増幅器12の低側供給電圧端子は接地に接続される。ソースフォロワートランジスタ14のソースは、レギュレートされた電圧Mt3x_regをコンダクタ16上に生成する。コンダクタ16は、レジスタ19及び17を含むフィードバックレジスタディバイダネットワークの第1の端子に接続される。このネットワークの第2の端子は接地に接続される。レジスタ19と17との間の、レジスタディバイダネットワークの中間ノード18は、利得A1を有する演算増幅器10の(−)入力に結合される。このように、マスタートリプラー回路5上のレギュレートされていない出力電圧Mt3xに関連するフィードバック回路要素は、高利得増幅器と、それに続く、相互コンダクタンス増幅器12内に具現化されたGmClフィルタとを含む。GmClフィルタリング回路は、数百ミリボルトのMt3x内に電圧ヘッドルームを有する固定の利得を生成するために用いられる。GmClフィルタリングは、接地を基準とし、レギュレートされていない電圧Mt3xにおける出力リップル電圧成分を減衰させる。
【0033】
増幅器10の出力は、相互コンダクタンス増幅器12の入力に接続される。増幅器10の高側供給端子はVDDに接続され、その低側供給端子は接地に接続される。増幅器10の(+)入力はコンダクタ24上の基準信号Vref_SHを受け取る。固定Mt3x_reg電圧の値は、マスターディクソンチャージポンプ2の負荷及び信頼性要件に従って選択される。増幅器10、相互コンダクタンス増幅器12、ソースフォロワートランジスタ14、及び、ソースフォロワートランジスタ14のソースと増幅器10の(−)入力との間に結合される抵抗分圧器19、17を含むフィードバックループは、マスタートリプラー回路5によって生成されたコンダクタ6上のレギュレートされていない電圧Mt3x上で動作して、コンダクタ16上にレギュレートされた電圧Mt3x_regが生成される。
【0034】
Vref_SHは、イネーブルされた従来のバンドギャップ電圧回路20及びサンプル/ホールド回路22を含む回路によって生成される。バンドギャップ電圧回路20は、バンドギャップ電圧Vbgをコンダクタ21上に生成する。コンダクタ21はサンプル/ホールド回路22の基準電圧入力に接続される。サンプル/ホールド回路22の出力は、コンダクタ24に接続され、それが増幅器10の(+)入力に印加される。出力電圧Vbgは、回路20の固有のバンドギャップ電圧に対して、スケールアップ又はスケールダウンされ得る。サンプル入力信号SAMPLEが、サンプル/ホールド回路22がいつバンドギャップ電圧VbgをサンプリングしてVref_SHを生成するかを制御する。バンドギャップ電圧回路20はイネーブル信号ENによってイネーブルされる。
【0035】
また、マスターポンプ2は、M段(Mは整数)のディクソンチャージポンプ回路30を含む。ディクソンチャージポンプ回路30は、コンダクタ16上のレギュレートされた出力電圧Mt3x_regを受け取り、また、レベルシフター33によって生成される上述のクロック信号OSC_DIV16のレベルシフトされたバージョンも受け取る。コンダクタ32上でOSC_DIV16がシフトされるレベルは、St3x_regによって制御される。マスターディクソンチャージポンプ回路30の詳細を図3に示す。OSC_DIV16がレベルシフター33によってシフトされるレベルは、Mt3x_regによって制御される。マスターディクソンチャージポンプ30の出力は、マスターポンプ出力コンダクタ34に接続され、レギュレートされていない出力電圧Vunregがコンダクタ34上に生成される。
【0036】
マスターポンプ出力コンダクタ34は、キャパシタCdecの一方の端子に接続され、キャパシタCdecの他方の端子は接地に接続される。キャパシタCdecは、高電圧デカプリングストレージキャパシタであり、これは、Vunregにおける出力リップル電圧成分を減衰させ、また、過渡事象の間、コンダクタ34を介してマスターディクソンチャージポンプ30から電荷を受け取るため、及びソースフォロワートランジスタ58のドレインへ電荷を提供するためのストレージデバイスとしても機能する。マスターディクソンチャージポンプ30によってコンダクタ34上に生成される、レギュレートされていない電圧Vunregは、ソースフォロワートランジスタ58のドレインに結合される。ソースフォロワートランジスタ58のソースは、マスターポンプ2のレギュレートされた出力電圧Vregをコンダクタ60上に生成する。コンダクタ60は、二次LPF72の入力及び抵抗分圧器61、62の端子に接続される。ソースフォロワートランジスタ58は、ソースフォロワートランジスタ58のドレインに印加されるレギュレートされていない信号Vunregとそのソース上に生成されるレギュレートされた信号Vregとの間に、およそ40〜60dBのリップル電圧振幅減衰を提供する。
【0037】
マスター/スレーブ高電圧チャージポンプ1のスレーブポンプ3はスレーブトリプラー回路36を含み、その詳細は図2に示すマスタートリプラー回路5のものと本質的に同じである。スレーブトリプラー36のクロック入力が、コンダクタ7上のクロック信号OSCを受け取るように接続される。スレーブポンプ3は、VDDによって電力供給され、接地を基準とする。スレーブトリプラー36は、レギュレートされていない出力信号St3xをコンダクタ37上に生成する。コンダクタ37は、Nチャネルソースフォロワートランジスタ46のドレインに、及び相互コンダクタンス増幅器38の高側供給電圧端子に接続される。相互コンダクタンス増幅器38の低側供給電圧端子は、接地(又はVss)に接続される。ソースフォロワートランジスタ46のソースは、レギュレートされた電圧St3x_regをコンダクタ47上に生成する。コンダクタ47は、N段(Nは整数)のスレーブディクソンチャージポンプ回路50の入力に接続される。その詳細を図3に示す。
【0038】
相互コンダクタンス増幅器38の入力は、コンダクタ41によって、積分増幅器40及び後述するスイッチドキャパシタ回路68、69、70によって生成される出力電圧Vintgを受け取るように接続される。増幅器40の高側供給端子はVDDに接続され、その低側供給端子は接地に接続される。積分増幅器40の(+)入力は、コンダクタ24上の、上述の基準信号Vref_SHを受け取る。積分増幅器40の(−)入力は、積分キャパシタ42によってコンダクタ41に結合され、また、スイッチ70の一方の端子に接続され、スイッチ70の他方の端子は、スイッチ68の一方の端子に、及びキャパシタ69の一方の端子に接続される。スイッチ68の他方の端子は、コンダクタ66上のフィードバック信号Vfbackを受け取るように接続される。キャパシタ69の他方の端子は接地に接続される。
【0039】
スレーブディクソンチャージポンプ50のクロック入力が、従来のレベルシフター33によって生成されるOSC_DIV16のレベルシフトされたバージョンを受け取る。OSC_DIV16がコンダクタ51上でシフトされるレベルは、Mt3x_regによって制御される。スレーブディクソン段50の出力は、スレーブポンプ出力コンダクタ54に接続される。スレーブポンプ3によってコンダクタ54上に生成される出力電圧は、ブーストされた制御電圧Vctlである。これは、ブーストされ、フィルタリングされ、ほぼリップルフリーである信号Vctl_filtをコンダクタ57上に生成するように、二次LPF(ローパスフィルタ)56によってフィルタリングされ得る。フィルタリングされた電圧Vctl_filtは、Nチャネルソースフォロワートランジスタ58のゲートを駆動する。Nチャネルソースフォロワートランジスタ58のドレインは、マスターポンプ2によって生成されるレギュレートされていない出力電圧Vunregを受け取るように接続される。ソースフォロワートランジスタ58のソースは、コンダクタ60に接続され、レギュレートされた出力電圧Vregがコンダクタ60の上に生成される。
【0040】
フィードバック増幅器65はユニティゲインバッファとして動作し得る。その高側供給電圧端子はVDDに接続され、その低側供給電圧端子は接地に接続される。フィードバック増幅器65の(−)入力は、コンダクタ63によって分圧器レジスタ62の一方の端子に接続され、分圧器レジスタ62の他方の端子は接地に接続される。また、コンダクタ63は別の分圧器レジスタ61の一方の端子に接続され、分圧器レジスタ61の他方の端子は、ソースフォロワートランジスタ58、スレーブポンプ3、及び二次LPF56の動作によって、コンダクタ60上に生成されるレギュレートされた電圧信号Vregを受け取る。増幅器65の出力はフィードバック信号Vfbackをフィードバックコンダクタ66上に生成する。フィードバックコンダクタ66は、増幅器65の(+)入力に、及び積分増幅器40及びスイッチドキャパシタ回路68、69、70を含む上述の積分器の入力に接続される。
【0041】
マスターポンプ2によって生成されるレギュレートされていない電圧Vunregは、ソースフォロワートランジスタ58を介して、相対的に大きく可変の負荷75(即ち、ユーザアプリケーション)を駆動するための、レギュレートされ高度にブーストされた電圧VBIASを提供するために用いられる。スレーブチャージポンプ3は、高度にブーストされたリップルフリーの制御電圧Vctlを生成するために用いられる。この制御電圧Vctlは、二次LPF56の入力キャパシタンス、ソースフォロワートランジスタ58のゲートキャパシタンス、及び、微量の関連するPN接合漏れ電圧を含む、非常に小さい一定負荷を駆動する。スレーブトリプラー36は、図2に示すように、スレーブトリプラー36のチャージポンプセクションに結合される高電圧トランジスタからの小さい容量性負荷及び低レベルの逆PN接合漏れを駆動可能であることのみを必要とされるので、スレーブトリプラー36とスレーブディクソンチャージポンプ50とを組み合わせたサイズが最小化され得、クロックされるポンプ事象間の過渡出力ドループ特性が顕著に軽減され得る。
【0042】
Vctl_filtの如何なるリップルノイズ成分もVregに直接的に結合されるため、ソースフォロワートランジスタ58のゲートに印加されるフィルタリングされた電圧Vctl_filtが極く低いノイズ振幅であることが、ソースフォロワートランジスタ58のソース上のレギュレートされた電圧Vregにおける、低い総リップル電圧振幅を達成するために極めて重要である。スレーブチャージポンプ3の上述の非常に軽い負荷は、非常に低いVBIAS出力リップル電圧振幅を達成することに実質的に貢献し、それは、チャージポンプの出力リップル周波数成分とRF信号周波数との間の生成された混合周波数に関連する相互変調ひずみ条件を緩和する。二次LPF56及び二次LPF72は、VBIASにおけるスプリアスRFノイズ成分の一層の減衰を提供し、従って、RF信号との混合のレベルを低減する。
【0043】
スレーブポンプ3の目的はマスターポンプ2によって駆動されるレギュレートされた出力電圧Vregを制御するようにソースフォロワートランジスタ58のゲートキャパシタンスを含む小さい負荷のみを駆動することであるため、スレーブポンプ3の物理的サイズは、マスターポンプ2のサイズよりもかなり小さくなり得る。即ち、マスターポンプ2は、より大きい可変負荷75又はVBIASが印加されるユーザアプリケーションを駆動し、一方、スレーブポンプ3は、ソースフォロワートランジスタ58のゲートの相対的に小さい容量性負荷やスレーブポンプ2の高電圧トランジスタ内に存在する低レベルのPNジャンクション漏れを駆動するだけである。
【0044】
このように、高電圧マスター/スレーブチャージポンプ1では、スレーブチャージポンプ3は、非常に低く且つ固定レベルの負荷のみを有し、また、より一層重く且つ可変の負荷がかかるマスターチャージポンプ2のレギュレーションの供給元である。設計により、スレーブチャージポンプ3によって生成される基準電圧のレギュレーションは、非常に低いリップル電圧を有し、その結果、マスターチャージポンプ2によって生成されるレギュレートされていない出力電圧Vunregをレギュレートすることによって生成されるレギュレートされた電圧Vregもまた非常に低いリップル電圧成分を有する。更に、このことは、標準RF帯域内の周波数成分について特に当てはまる。これに対し、従来技術は、大きく、可変である出力負荷を駆動するため、及びそれ自体の自己レギュレーションを提供するために1つのチャージポンプのみを使用し、そのため、大きく、可変である出力負荷に供給されるレギュレートされた出力電圧においてそのような非常に低いリップル電圧成分を有することができない。
【0045】
一実装において、VDDは3ボルトであり得、コンダクタ6上のレギュレートされていない出力Mt3xは3×VDD×(電圧トリプラー5の効率)であり得、即ち、9ボルトに近いがそれ未満であり得る。相互コンダクタンス増幅器12の「GmClフィルタリング」機能は、ソースフォロワートランジスタ14のゲート電圧を制御するために、レギュレートされていない出力電圧Mt3xを用いる。増幅器10の出力と相互コンダクタンス増幅器12は、ソースフォロワートランジスタ14のゲートを駆動するように、共に動作する。増幅器10の電圧出力は、相互コンダクタンス増幅器12の入力段の電流に変換され、その後、再度変換されて、相互コンダクタンス増幅器12の出力上の入力電圧の4倍に戻される。相互コンダクタンス増幅器12のGmClフィルタリング機能は、マスタートリプラー回路5によって生成されるレギュレートされていない電圧Mt3xからのノイズの大半をフィルタリング除去する。その結果のコンダクタ16上の電圧Mt3x_regは、その信頼性限度の範囲内で、マスターディクソンポンプ30の最大動作効率のために設計された固定電圧までレギュレートされる。マスターディクソンチャージポンプ30によって生成されるレギュレートされていない電圧Vunregは、適切な電圧ヘッドルームを提供するように、コンダクタ60上のレギュレートされた電圧Vregよりも適切に高い一定の範囲内である必要がある。また、Vregは、種々の関連する集積回路構成要素の最大許容動作電圧によって決められる最大動作レベルを超えないものとする。
【0046】
スレーブポンプ3の出力電圧Vctlは、固定電圧までレギュレートされないが、前述のフィードバック制御ループに従ってレギュレートされる。フィードバック制御ループは、Vregがソースフォロワートランジスタ58のゲートに印加される電圧Vctl_filtに厳密に従うため、フィルタリングされ、レギュレートされ、ほぼリップルフリーである出力電圧Vregを提供するようにソースフォロワートランジスタ58を制御する。その結果の、コンダクタ60上のレギュレートされた電圧Vregは、抵抗分圧器61、62によって分割されて、バッファ増幅器65の(−)入力に、スケールダウンされたVregのレプリカを提供する。Vregは、特定された全VDD供給範囲、例えば2.3ボルト〜3.6ボルト、に亘り、およそ30ボルトであり得る。その場合、コンダクタ66上のフィードバック電圧Vfbackは、レジスタディバイダネットワーク61及び62を介して生成され、ユニティゲインバッファ65を介してバッファリングされた、30Vref=ボルトのスケールダウンされた表現であり得、スレーブポンプ3の積分増幅器40の基準電圧Vref_SHに極めて近くなる。コンダクタ66上のフィードバック電圧Vfbackは、スイッチドキャパシタ回路68、69、70と共に、非常に低い帯域幅のフィードバックを提供し、非常に小さい電流/電力消費を必要とする。積分器40の出力Vintgは、GmC2フィルタとして機能する相互コンダクタンス増幅器38の入力に行く(即ち、相互コンダクタンス増幅器12と同様に動作する)。相互コンダクタンス増幅器38の出力は、コンダクタ44によってソースフォロワートランジスタ46のゲートに接続される。スレーブポンプ3内のソースフォロワートランジスタ46のソースは、スレーブディクソンチャージポンプ50の第1段入力に接続される。
【0047】
先行技術の図2は、図1のマスタートリプラー回路5及びスレーブトリプラー36の両方を実装するために用いられ得る電圧トリプラー5を示す。電圧トリプラー5は、電圧トリプラーを含む、多段電圧ブースター回路のための周知の基本構造の僅かな変型である。コンダクタ79上の利用可能な供給電圧VDDは、NチャネルトランジスタMN1及びMN0、PチャネルトランジスタMP0及びMP2、及びキャパシタC6及びC7を含む第1のブースト段への入力である。非重複クロック信号CLK及びその論理相補信号nCLKが、それぞれ、コンダクタ84及び85を介してキャパシタC6及びC7の下側端子に印加される。キャパシタC6の上側端子は、コンダクタ81によってトランジスタMN1のソース、トランジスタMP0のゲート、及びトランジスタMP2のドレインに接続される。キャパシタC7の上側端子は、コンダクタ80によってトランジスタMN0のソース、トランジスタMP2のゲート、及びトランジスタMP0のドレインに接続される。トランジスタMN1及びMN0のドレインは、VDD入力コンダクタ79に接続され、トランジスタMP0及びMP2のソースはコンダクタ78に接続され、ブーストされた電圧2×VDDがコンダクタ78の上に生成される。ストレージキャパシタC1が、コンダクタ78上のブーストされた電圧2×VDDを維持するために必要な、周期的に補充される電荷を蓄積する。ラッチ回路90、NORゲート88及び89、及びバッファ86及び87は、図1のクロック信号回路4によって生成される基本クロック信号OSCに応答して、非重複クロック信号CLK及びnCLKを生成するように動作する。電圧トリプラー5は、システムクロックOSCが継続する場合でも、マスター/スレーブチャージポンプ1がオフにされ得るように、イネーブルされた回路である。
【0048】
同様に、コンダクタ79上の「一度ブーストされた」電圧2×VDDは、電圧トリプラー5の第2のブースト段への入力である。第2のブースト段は、NチャネルトランジスタMN3及びMN4、PチャネルトランジスタMP5及びMP4、及びキャパシタC3及びC4を含む。非重複クロック信号CLK及びnCLKは、それぞれ、コンダクタ84及び85を介してキャパシタC3及びC4の下側端子に印加される。キャパシタC3の上側端子は、コンダクタ82によってトランジスタMN3のソース、トランジスタMP5のゲート、及びトランジスタMP4のドレインに接続される。キャパシタC4の上側端子は、コンダクタ83によりトランジスタMN4のソース、トランジスタMP4のゲート、及びトランジスタMP5のドレインに接続される。トランジスタMN3及びMN4のドレインは、2×VDDコンダクタ78に接続され、トランジスタMP5及びMP4のソースは、「2倍ブーストされた」電圧トリプラー出力コンダクタ6に接続され、ブーストされた電圧3×VDDがコンダクタ6の上に生成される。ストレージキャパシタC2が、電圧トリプラー出力コンダクタ6上のブーストされた電圧3×VDDを維持するために必要な、周期的に補充される電荷を蓄積する。(付加的な「VDDレベルのブースト」を電圧トリプラー出力電圧に提供することが望ましい場合、付加的な同様のブースト段を付加することができることに留意されたい。)
【0049】
ダイオード接続されたPチャネルトランジスタMP3のソース、ゲート、及びバルク電極は、電圧トリプラー5の出力コンダクタ6に接続される。ダイオード接続されたトランジスタMP3のドレインは電圧トリプラー5の入力コンダクタ79に接続される。電圧トリプラー5に電源が供給されると、ダイオード接続されたトランジスタMP3は、出力コンダクタ6上にVDDを1ダイオード降下下回る値に等しい初期電圧を提供するように動作し、これは、出力コンダクタ6上の電圧を3×VDDにブーストする際に有用であり得る。
【0050】
電圧トリプラー5の動作の例として、コンダクタ81上の電圧が高である結果として、トランジスタMNlがオフで、トランジスタMN0がオンであると仮定し、また、nCLKが低でCLKが高であると仮定する。また、トランジスタMP0がオフになると仮定する。トランジスタMN0がオンであるので、キャパシタC7は、コンダクタ80の電圧をVDDまでブーストするように充電される。その後、nCLKが高になり、CLKが低になると、コンダクタ80の電圧は2×VDDまでブーストされ、トランジスタMP0がオンにされる。これによって、コンダクタ78上の2×VDDを補充するように、キャパシタC7上の電荷がトランジスタMP0を介して「プッシュ」される。動作は、コンダクタ80の電圧が高である結果として、トランジスタMN0がオフになり、トランジスタMNlがオンになる場合と同様である。CLKが低であり、nCLKが高であると、トランジスタMP1がオフになり、トランジスタMNlがオンになり、そのため、キャパシタC6は、コンダクタ81の電源をVDDまでブーストするように充電される。その後、CLKが高レベルになり、nCKが低レベルになると、コンダクタ81の電圧が2×VDDまでブーストされ、MP1がオンになる。これによって、コンダクタ78上の2×VDDを補充するように、キャパシタC6上の電荷がトランジスタMP1を介して「プッシュ」される。
【0051】
NチャネルトランジスタMN3及びMN4、PチャネルトランジスタMP5及びMP4、及びキャパシタC3及びC4を含む、上述の第2のブースト段の動作は、全体的に第1のブースト段の上述の動作と同様であるが、第2のブースト段への入力がVDDではなく、2×VDDであり、その出力が2×VDDではなく、3×VDDである点が異なる。
【0052】
図3は、図1のマスターディクソンチャージポンプ30及びスレーブディクソンチャージポンプ50を実装するために用いられ得るディクソンチャージポンプ30を示す。図3を参照すると、コンダクタ16上のディクソンチャージポンプ入力電圧VINは、図1のMt3x_reg又はSt3x_regのいずれかであり得る。コンダクタ16は、ダイオードD0のアノード、NチャネルトランジスタMN0のドレイン、ダイオードDlのアノード、及びNチャネルトランジスタMM5のドレインに接続される。トランジスタMN0のソースは、コンダクタ94によって、ダイオードD0のカソード、ポンプキャパシタC0の一方の端子、PチャネルトランジスタMP0のソース、トランジスタMN5のゲート、及びPチャネルトランジスタMP10のゲートに接続される。トランジスタMN5のソースは、コンダクタ95によって、ダイオードDlのカソード、ポンプキャパシタC1の一方の端子、トランジスタMP10のソース、トランジスタMN0のゲート、及びトランジスタMP0のゲートに接続される。トランジスタMP0及びMP10のドレインはコンダクタ34に接続され、コンダクタ34の上に図1のVunreg又はVctlが生成され得る。ポンプキャパシタC0の他方の端子はnCLKに接続され、ポンプキャパシタC1の他方の端子は、nCLKと位相が180度ずれたCLKに接続される。前述のように、2つのディクソンチャージポンプ30及び50に印加されるクロック信号CLK及びnCLKの周波数は、2つの電圧トリプラー5及び36を駆動するクロック信号の周波数の16分の1である。周波数における大きな差の理由は、ディクソンチャージポンプには、電圧トリプラーにおけるものより、はるかに大きな電圧増があるためであり、これが、ディクソンチャージポンプより高い周波数で電圧トリプラーを動作させることによって維持される大きな電流負荷を電圧トリプラー上にもたらす。より高い出力電圧Vunreg又はVctlを生成するために適切な数のディクソンチャージポンプがカスケードされ得る。
【0053】
ディクソンチャージポンプ30の動作の例として、nCLKが低電圧レベルになり、CLKが高電圧レベルになると仮定する。nCLKの低レベルは、トランジスタMP10をオンにし、トランジスタMN5をオフにする。CLKの高レベルへの遷移により、キャパシタC1上の蓄積された電荷がトランジスタMP10を通して流れ、それによって、コンダクタ34上の電圧をチャージアップ、又は「ポンピング」して、コンダクタ34に結合される可変負荷75(図1)を駆動する。CLKの高レベルは、トランジスタMN0をオンにし、トランジスタMP0をオフにする。その結果、コンダクタ16上の入力電圧が、トランジスタMN0を通して電流を流して、キャパシタC0を充電する。同様に、CLKが低電圧レベルになり、nCLKが高電圧になると、CLKの低レベルが、トランジスタMP0をオンにし、トランジスタMN0をオフにする。nCLKの高レベルへの遷移は、キャパシタC0上に蓄積された電荷をトランジスタMP0を通して流し、それによって、コンダクタ34上の電圧をチャージアップ又はポンピングして、それに接続される負荷を駆動する。nCLKの高レベルは、トランジスタMN5をオンにし、トランジスタMP10をオフにする。その結果、コンダクタ16上の入力電圧が、トランジスタMN5を通して電流を流し、キャパシタC1を充電する。
【0054】
スレーブトリプラーは、レギュレートされていない電圧St3xを生成し、電圧St3xがその後、制御されたレギュレートされた電圧としてSt3x_regを生成するようにレギュレートされる。St3x_reg電圧レベルは、Vfback及び基準電圧Vref_SHに応答して、Vregの値を制御するフィードバックループによって制御される。Vregは、Vfbackを生成するように、抵抗性スケールダウンされ、バッファリングされる。Vfbackはスイッチドキャパシタ積分増幅器40の(−)入力上でサンプリングされ、スイッチドキャパシタ積分増幅器40は、VfbackをVref_SHに合致させるようにスレーブディクソンチャージポンプ3を制御するように動作する。この結果、積分器出力電圧Vintgが低帯域幅となる。Vintgは、その後、固定利得を有する相互コンダクタンス増幅器38のGmC2フィルタリング機能を介して流れて、ソースフォロワートランジスタ46のゲートを駆動し、それによって、制御されレギュレートされた電圧St3x_reg電圧を生成する。St3x_reg電圧はスレーブディクソンチャージポンプ50の入力及びクロックレベルシフター49の2入力に結合される。
【0055】
図1に示すマスタースレーブチャージポンプトポロジーは、マスターポンプ2の出力を、後でソースフォロワートランジスタ58のノイズに敏感なゲートへの入力を制御するために用いられる、スレーブポンプ3のはるかに低いノイズ出力から切断する。その結果、RF通信帯域における非常に低いリップルノイズ振幅及び低スプリアスノイズ成分となり、また、可変負荷75の大きな変動に対するVreg及びVBIASの感応度が極めて低くなる。
【0056】
図1のマスター/スレーブチャージポンプ1は、スプリアスRFノイズが非常に低レベルで、且つブーストされた電圧の負荷依存変動が非常に低い、正確にレギュレートされブーストされた高電圧源を生成することによって、低電力、低ノイズ用途に適する高増倍係数バイアス電圧の生成を提供する。
【0057】
当業者であれば、本発明の特許請求の範囲から逸脱することなく、記載された実施形態に変更が行なわれ得ること、及び他の多くの実施形態が可能であることが理解されるであろう。
図1-1】
図1-2】
図2
図3