【実施例】
【0152】
本発明がより完全に理解されるために、以下のスキームおよび実施例を示す。これらの実施例は、例示目的だけのものであり、本発明の範囲を限定するものとして決して解釈されるべきでない。
【0153】
以下の定義は、本明細書で使用される用語および略語を説明するものである:
Ac アセチル
Bu ブチル
Et エチル
Ph フェニル
Me メチル
THF テトラヒドロフラン
DCM ジクロロメタン
CH
2Cl
2 ジクロロメタン
EtOAc 酢酸エチル
CH
3CN アセトニトリル
EtOH エタノール
Et
2O ジエチルエーテル
MeOH メタノール
MTBE メチルtert−ブチルエーテル
DMF N,N−ジメチルホルムアミド
DMA N,N−ジメチルアセトアミド
DMSO ジメチルスルホキシド
HOAc 酢酸
TEA トリエチルアミン
TFA トリフルオロ酢酸
TFAA トリフルオロ酢酸無水物
Et
3N トリエチルアミン
DIPEA ジイソプロピルエチルアミン
DIEA ジイソプロピルエチルアミン
K
2CO
3 炭酸カリウム
Na
2CO
3 炭酸ナトリウム
Na
2S
2O
3 チオ硫酸ナトリウム
Cs
2CO
3 炭酸セシウム
NaHCO
3 炭酸水素ナトリウム
NaOH 水酸化ナトリウム
Na
2SO
4 硫酸ナトリウム
MgSO
4 硫酸マグネシウム
K
3PO
4 リン酸カリウム
NH
4Cl 塩化アンモニウム
LC/MS 液体クロマトグラフィー/質量スペクトル
GCMS ガスクロマトグラフィー質量スペクトル
HPLC 高速液体クロマトグラフィー
GC ガスクロマトグラフィー
LC 液体クロマトグラフィー
IC イオンクロマトグラフィー
IM 筋肉内
CFU/cfu コロニー形成単位
MIC 最小阻害濃度
Hrまたはh 時間
atm 気圧
rtまたはRT 室温
TLC 薄層クロマトグラフィー
HCl 塩酸
H
2O 水
EtNCO イソシアン酸エチル
Pd/C 炭素上のパラジウム
NaOAc 酢酸ナトリウム
H
2SO
4 硫酸
N
2 窒素ガス
H
2 水素ガス
n−BuLi n−ブチルリチウム
DI 脱イオン化された
Pd(OAc)
2 酢酸パラジウム(II)
PPh
3 トリフェニルホスフィン
i−PrOH イソプロピルアルコール
NBS N−ブロモスクシンイミド
Pd[(Ph
3)P]
4 テトラキス(トリフェニルホスフィン)パラジウム(0)
PTFE ポリテトラフルオロエチレン
rpm 毎分回転数
SM 出発物質
Equiv. 当量
1H−NMR プロトン核磁気共鳴。
【0154】
化合物の合成
(実施例)
6−フルオロベンゾイミダゾリル尿素化合物
(R)−1−エチル−3−(6−フルオロ−5−(2−(2−ヒドロキシプロパン−2−イル)ピリミジン−5−イル)−7−(テトラヒドロフラン−2−イル)−1H−ベンゾ[d]イミダゾール−2−イル)尿素の合成
スキーム3は、6−フルオロベンゾイミダゾリル尿素化合物を調製するための方法を提供する。
【0155】
【化5】
(実施例1.a)
2−(2−フルオロ−6−ニトロ−フェニル)−2,3−ジヒドロフラン(15A)および2−(2−フルオロ−6−ニトロ−フェニル)−2,5−ジヒドロフラン(15B)の調製
【0156】
【化6】
2−ブロモ−1−フルオロ−3−ニトロ−ベンゼン(14)(200.3g、98%、892.3mmol、Bosche F6657)、1,4−ジオキサン(981.5mL、Sigma−Aldrich 360481)および2,3−ジヒドロフラン(2)(341.1mL、99%、4.462mol、Aldrich 200018)を反応フラスコに入れ、続いてN,N−ジイソプロピルエチルアミン(155.4mL、892.3mmol、Sigma−Aldrich 550043)およびブロモ(トリ−tert−ブチルホスフィン)パラジウム(I)ダイマー(6.936g、8.923mmol、Johnson Matthey C4099)を加えた。この混合物を還流させて2時間撹拌した(HPLCは、出発アリールブロマイドの98%消費を示した)。この反応混合物を冷却し、濾過により沈殿物を除去し、EtOAcでリンスし、濾液を真空濃縮して、濃い赤褐色の半固体の油状物とした。この半固体の油状物をCH
2Cl
2に溶解させ、シリカのプラグを通してCH
2Cl
2で溶出し、真空濃縮して、15Aおよび15Bの混合物を濃い琥珀色の油状物として得た(291.3g)。この粗生成物をさらに精製することなく先に進んだ。主生成物は、2−(2−フルオロ−6−ニトロ−フェニル)−2,3−ジヒドロフラン(15A)(96%)であった:LCMS(C18カラム、ギ酸モディファイアを用いて、5分間かけて10〜90%CH
3CN/水勾配で溶出)M+1:210.23(3.13分間);
1H NMR (300 MHz, CDCl
3) δ 7.54 (dt, J = 8.0, 1.2 Hz, 1H), 7.43 (td, J = 8.2, 5.2 Hz, 1H), 7.32 (ddd, J = 9.7, 8.3, 1.3 Hz, 1H), 6.33 (dd, J = 4.9, 2.4 Hz, 1H), 5.80 (t, J = 10.9 Hz, 1H), 5.06 (q, J = 2.4 Hz, 1H), 3.18 − 3.07 (m, 1H), 2.94 − 2.82 (m, 1H) ppm.副生成物は、2−(2−フルオロ−6−ニトロ−フェニル)−2,5−ジヒドロフラン(15B)(4%)であった:GCMS(Agilent HP−5MS 30m×250μm×0.25μmカラム、60℃で2分間から300℃に15分間かけて加熱、流速1mL/分)M+1:210(11.95分間)。
1H NMR (300 MHz, CDCl
3) δ 7.47 (d, J = 8.0 Hz, 1H), 7.43 − 7.34 (m, 1H), 7.30 − 7.23 (m, 1H), 6.21 − 6.15 (m, 1H), 6.11 − 6.06 (m, 1H), 5.97 − 5.91 (m, 1H), 4.89 − 4.73 (m, 2H) ppm。
【0157】
(実施例1.b)
3−フルオロ−2−テトラヒドロフラン−2−イル−アニリン(16)の調製
【0158】
【化7】
窒素下、炭素上の5%パラジウム(37.3g、50%ウェット、8.76mmol、Aldrich 330116)をParrボトル内に入れ、続いてMeOH(70mL、JT−Baker 909333)を加えた。MeOH(117mL)中の2−(2−フルオロ−6−ニトロフェニル)−2,3−ジヒドロフランおよび2−(2−フルオロ−6−ニトロフェニル)−2,5−ジヒドロフラン(15A&15B)(186.6g、892.1mmol)の粗混合物をParrボトルに添加し、続いてNEt
3(124.3mL、892.1mmol、Sigma−Aldrich 471283)を加えた。Parr振盪機にボトルを置き、H
2で飽和させた。45psi H
2を添加した後、出発物質の消費が完了するまで反応混合物を振盪した(HPLCおよびLCMSは、完全な反応を示した)。反応混合物を窒素でパージし、セライト(商標)を通して濾過し、EtOAcでリンスした。濾液をロータリーエバポレーターにおいて濃縮して、褐色の油状物を得、これをEt
2Oに溶解させ、水(2×)で洗浄した。エーテル相を1N HCl水溶液(5×250mL)で抽出し、これをEt
2O(3×)で洗浄し、続いて6N NaOH水溶液でpH12〜14となるまで塩基性化した。塩基性水相をジクロロメタン(CH
2Cl
2、4×)で抽出し、合わせた有機抽出物を飽和NH
4Cl水溶液で洗浄し、MgSO
4で乾燥し、CH
2Cl
2から25%EtOAc/ヘキサンで溶出しつつシリカのパッドを通して濾過した。所望の濾液を減圧下で濃縮して、16を淡褐色の油状物として得た(121.8g、84%GCMSプラスNMR純度)。GCMS(Agilent HP−5MS 30m×250μm×0.25μmカラム、60℃で2分間〜300℃に15分間かけて加熱、流速1mL/分)M+1:182.0(11.44分間)。LCMS(C18カラム、ギ酸モディファイアを用いて、5分間かけて10〜90%CH
3CN/水勾配で溶出)M+1:182.10(2.61分間)。
1H NMR (300 MHz, CDCl
3) δ 6.97 (td, J = 8.1, 6.3 Hz, 1H), 6.43 − 6.35 (m, 2H), 5.21 − 5.13 (m, 1H), 4.54 (s, 2H), 4.16 − 4.07 (m, 1H), 3.90 − 3.81 (m, 1H), 2.23 − 2.00 (m, 4H) ppm.次の通り、追加の収穫物を得た。合わせたエーテル相を飽和NaHCO
3水溶液、ブラインで洗浄し、Na
2SO
4で乾燥し、デカントし、減圧下で濃縮した。油状物を真空蒸留し(約15torr)、留出物を101〜108℃で収集した。EtOH(1容量)中の蒸留油状物の溶液に撹拌下2℃で、iPrOH中5MのHCl(1eq)を徐々に添加した。得られた懸濁液を室温にし、EtOAc(3容量、vol/vol)で希釈し、2時間撹拌した。白色の固体を濾過により収集し、EtOAcで洗浄し、減圧下で乾燥して、生成物の2回目の収穫物をHCl塩として得た。母液を濃縮してスラリーとし、EtOAcで希釈し、固体を濾過により収集し、EtOAcで洗浄し、真空乾燥して、生成物の3回目の収穫物としてHCl塩を得た。LCMS(C18カラム、ギ酸モディファイアを用いて、5分間かけて10〜90%CH
3CN/水勾配で溶出)M+1:182.10(2.58分間)。
1H NMR (300 MHz, CDCl
3) δ 10.73 (br.s, 3H), 7.66 (d, J = 8.1 Hz, 1H), 7.33 (td, J = 8.2, 5.9 Hz, 1H), 7.13 − 7.05 (m, 1H), 5.26 (dd, J = 9.0, 6.5 Hz, 1H), 4.38 − 4.28 (m, 1H), 4.00 − 3.91 (m, 1H), 2.59 − 2.46 (m, 1H), 2.30 − 1.95 (m, 3H) ppm.3回の収穫の全収率は、76%であった。
【0159】
(実施例1.c)
4−ブロモ−3−フルオロ−2−テトラヒドロフラン−2−イル−アニリン(17)の調製。
【0160】
【化8】
メチルtert−ブチルエーテル(1.456L)およびアセトニトリル(485mL)中の3−フルオロ−2−テトラヒドロフラン−2−イル−アニリン(16)(131.9g、92%、669.7mmol)の溶液を−20℃まで冷却し、これに撹拌下、N−ブロモスクシンイミド(120.4g、99%、669.7mmol、Aldrich B81255)を3回に分けて添加して、約−15℃を下回る反応温度を維持した。完全に添加した後、撹拌を−15〜−10℃で30分間継続した。後処理したアリコートの
1H NMRは、出発アニリンの96%消費を示した。さらに4.82gのNBSを反応混合物に添加し、−10℃でさらに30分間撹拌した。1N Na
2S
2O
3水溶液(670mL)を反応混合物に添加した。冷浴を除去し、混合物を20分間撹拌し、次にEtOAcで希釈した。層を分離した。有機相を飽和NaHCO
3水溶液(2×)、水、ブラインで洗浄し、Na
2SO
4で乾燥し、デカントし、減圧下で濃縮して、濃い琥珀色の油状物を得た。残渣をヘキサンで希釈し、25%EtOAc/ヘキサンから50%EtOAc/ヘキサンでシリカの短いプラグを通して溶出した。所望の濾液を真空濃縮して、17を濃い琥珀色の油状物として得た(182.9g、90%収率;86%NMR純度)。LCMS(C18カラム、ギ酸モディファイアを用いて、5分間かけて10〜90%AcN/水勾配で溶出)M+1:260.12(3.20分間)。
1H NMR (300 MHz, CDCl
3) δ 7.15 (dd, J = 8.6, 7.6 Hz, 1H), 6.30 (dd, J = 8.7, 1.3 Hz, 1H), 5.19 − 5.12 (m, 1H), 4.58 (s, 2H), 4.16 − 4.07 (m, 1H), 3.90 − 3.81 (m, 1H), 2.23 − 1.99 (m, 4H) ppm。
【0161】
(実施例1.d)
N−(4−ブロモ−3−フルオロ−6−ニトロ−2−テトラヒドロフラン−2−イル−フェニル)−2,2,2−トリフルオロ−アセトアミド(18)の調製。
【0162】
【化9】
トリフルオロ酢酸無水物(565.3mL、4.067mol、Sigma−Aldrich 106232)に撹拌下2℃で、ニートの4−ブロモ−3−フルオロ−2−テトラヒドロフラン−2−イル−アニリン(17)(123.0g、86%、406.7mmol)を濃厚油状物として、滴下漏斗により約20分間かけて徐々に添加した(反応温度は13℃まで上昇)。残りの油状物を無水THF(35mL)でリンスして反応混合物に入れた。冷浴を除去し、反応液を35℃に加熱し、続いてNH
4NO
3(4.88g×20回、1.22mol、Sigma−Aldrich A7455)を2.5時間かけて数回に分けて添加し、必要なときのみ氷水浴を用いて反応温度を30〜41℃の間に維持して、発熱を制御した。完全に添加した後、反応混合物をさらに10分間撹拌した(HPLCは、反応99%完了を示した)。これをクラッシュアイス(1.23kg)に徐々に注ぎ、1時間撹拌して、濾過可能な固体沈殿物を生成させ、これを収集し、水、控えめな量の飽和NaHCO
3水溶液で、再度水で(pH7となるまで)洗浄した。対流式オーブンにおいて一晩40℃、続いてオーブンにおいて減圧下で50℃一晩生成物を乾燥させて、18をベージュ色の固体として得た(152.5g、90%収率;96%HPLC純度)。LCMS(C18カラム、ギ酸モディファイアを用いて、5分間かけて10〜90%CH
3CN/水勾配で溶出)M+1:401.30(3.41分間)。
1H NMR (300 MHz, CDCl
3) δ 10.56 (s, 1H), 8.19 (d, J = 6.6 Hz, 1H), 5.22 (dd, J = 10.3, 6.4 Hz, 1H), 4.22 (dd, J = 15.8, 7.2 Hz, 1H), 3.99 (dd, J = 16.1, 7.5 Hz, 1H), 2.50 − 2.38 (m, 1H), 2.22 − 2.11 (m, 2H), 1.86 − 1.71 (m, 1H) ppm。
【0163】
(実施例1.e)
4−ブロモ−3−フルオロ−6−ニトロ−2−テトラヒドロフラン−2−イル−アニリン(19)の調製。
【0164】
【化10】
反応フラスコにN−(4−ブロモ−3−フルオロ−6−ニトロ−2−テトラヒドロフラン−2−イル−フェニル)−2,2,2−トリフルオロ−アセトアミド(18)(242.3g、604.1mmol)、1,4−ジオキサン(1.212L)、水性2M硫酸(362.4mL、724.9mmol)を入れ、還流させて5日間撹拌した(HPLCは、98%転換を示した)。この反応混合物を冷却し、EtOAcで希釈し、飽和NaHCO
3水溶液で中和し、層を分離し、水相をEtOAcで再度抽出した(2×)。合わせた有機相をブライン(2×)で洗浄し、MgSO
4で乾燥し、濾過し、真空濃縮して、19を緑褐色の固体として得た(181.7g、94%収率;95%HPLC純度)。この生成物をさらに精製することなく次のステップを行った。LCMS(C18カラム、ギ酸モディファイアを用いて、5分間かけて10〜90%CH
3CN/水勾配で溶出)M+1:305.20(3.63分間)。
1H NMR (300 MHz, CDCl
3) δ 8.35 (d, J = 7.3 Hz, 1H), 7.45 (s, 2H), 5.23 − 5.16 (m, 1H), 4.23 − 4.14 (m, 1H), 3.93 − 3.84 (m, 1H), 2.31 − 1.96 (m, 4H) ppm。
【0165】
(実施例1.f)
2−[5−(4−アミノ−2−フルオロ−5−ニトロ−3−テトラヒドロフラン−2−イル−フェニル)ピリミジン−2−イル]プロパン−2−オール(20)の調製。
【0166】
【化11】
1,4−ジオキサン(4.20L、Sigma−Aldrich 360481)中の4−ブロモ−3−フルオロ−6−ニトロ−2−テトラヒドロフラン−2−イル−アニリン(19)(525.0g、1.721mol、Bridge Organics Co.)の溶液に撹拌下、NaHCO
3の1.2M水溶液(4.302L、5.163mol)を添加した。撹拌下の混合物に窒素流を通して2時間泡立て、続いて2−[5−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ピリミジン−2−イル]プロパン−2−オール(7)(545.4g、2.065mol、Bridge Organics Co.)および1,1’−ビス(ジフェニルホスフィノ)フェロセンジクロロパラジウムジクロロメタン付加物(42.16g、51.63mmol、Strem 460450)を添加した。反応混合物を還流させて一晩撹拌し、冷却し、EtOAc(8.4L)で希釈し、層を分離した。有機相を飽和NH
4Cl水溶液、続いてブラインで洗浄した。水相をEtOAc(4L)で再度抽出し、この有機抽出物をブラインで洗浄した。合わせた有機相をMgSO
4で乾燥し、フロリジル(登録商標)の短いプラグを通して濾過し、EtOAcで溶出し、濾液をロータリーエバポレーターにおいて濃縮して、暗褐色の湿った固体を得た。これをCH
2Cl
2に溶解させ、シリカゲルのパッド上にロードし、ヘキサン、続いて25%EtOAc/ヘキサン、続いて50%EtOAc/ヘキサンで溶出した。ロータリーエバポレーターにおいて所望の濾液を濃縮して濃厚懸濁液とし、固体を濾過により収集し、MTBEと摩砕し、真空乾燥して、20を鮮黄色の固体として得た(55.8%収率、90〜97%HPLC純度)。濾液を濃縮し、上述の精製を反復して、20の2回目の収穫物を鮮黄色の固体として得た(19.7%収率)。濾液を再度濃縮して、暗褐色の油状物を得、これをトルエンおよび最小CH
2Cl
2と共にシリカカラム上にロードした。これをEtOAc/ヘキサン(0%〜50%)により溶出した。所望の画分を濃縮してスラリーとし、MTBE/ヘキサンで希釈した。固体を濾過により収集し、最小MTBEで洗浄して、20の3回目の収穫物を鮮黄色の固体として得た(4.9%収率)ところ、3回の収穫から80%の全収率が得られた。LCMS(C18カラム、ギ酸モディファイアを用いて、5分間かけて10〜90%CH
3CN/水勾配で溶出)M+1:363.48(2.95分間)。
1H NMR (300 MHz, CDCl
3) δ 8.84 (d, J = 1.6 Hz, 2H), 8.27 (d, J = 8.0 Hz, 1H), 7.62 (s, 2H), 5.31 − 5.24 (m, 1H), 4.63 (s, 1H), 4.27 − 4.18 (m, 1H), 3.97 − 3.87 (m, 1H), 2.33 − 2.05 (m, 4H), 1.64 (s, 6H) ppm。
【0167】
(実施例1.g)
2−[5−(4,5−ジアミノ−2−フルオロ−3−テトラヒドロフラン−2−イル−フェニル)ピリミジン−2−イル]プロパン−2−オール(21)の調製。
【0168】
【化12】
窒素下、炭素上の5%パラジウム(14.21g、50%ウェット、3.339mmol、Aldrich 330116)をParrボトル内に入れ、続いて、MeOH(242mL、JT−Baker 909333)およびNEt
3(46.54mL、333.9mmol、Sigma−Aldrich 471283)を加えた。2−[5−(4−アミノ−2−フルオロ−5−ニトロ−3−テトラヒドロフラン−2−イル−フェニル)ピリミジン−2−イル]プロパン−2−オール(20)(121.0g 333.9mmol)を熱THF(360mL)に溶解させ、冷却し、反応混合物に添加し、20の残量をさらに1回のTHF(124mL)でリンスした。ボトルをParr振盪機に置き、H
2で飽和させた。45psiでH
2を添加した後、20の消費が完了するまでボトルを振盪した(HPLCおよびLCMSは、完全な反応を示した)。この反応混合物を窒素でパージし、セライト(商標)を通して濾過し、EtOAcでリンスした。これを、ペーパー(ガラスマイクロファイバー)を通して再濾過し、濾液を真空濃縮した。反応を同一スケールでさらに3回反復し、バッチを合わせて、21を褐色の固体として得た(447g、99%収率;93%HPLC純度)。LCMS(C18カラム、ギ酸モディファイアを用いて、5分間かけて10〜90%CH
3CN/水勾配で溶出)M+1:333.46(1.79分間)。
1H NMR (300 MHz, CDCl
3) δ 8.81 (d, J = 1.4 Hz, 2H), 6.69 (d, J = 7.3 Hz, 1H), 5.27 − 5.20 (m, 1H), 4.73 (s, 1H), 4.70 (s, 2H), 4.23 − 4.14 (m, 1H), 3.94 − 3.86 (m, 1H), 3.22 (s, 2H), 2.32 − 2.22 (m, 1H), 2.18 − 1.99 (m, 3H), 1.63 (s, 6H) ppm。
【0169】
(実施例1.h)
1−エチル−3−[6−フルオロ−5−[2−(1−ヒドロキシ−1−メチル−エチル)ピリミジン−5−イル]−7−テトラヒドロフラン−2−イル−1H−ベンゾイミダゾール−2−イル]尿素(22)の調製
【0170】
【化13】
2−[5−(4,5−ジアミノ−2−フルオロ−3−テトラヒドロフラン−2−イル−フェニル)ピリミジン−2−イル]プロパン−2−オール(21)(111.3g、334.9mmol)および1,4−ジオキサン(556.5mL、Sigma−Aldrich 360481)の懸濁液に撹拌下、1−エチル−3−(N−(エチルカルバモイル)−C−メチルスルファニル−カルボンイミドイル)尿素(10)(93.36g、401.9mmol、CB Research and Development)を添加し、続いてNaOAc三水和物(158.1g)を1NのH
2SO
4水溶液(1.100L)に溶解させることにより調製したpH3.5バッファー(1.113L)を加えた。反応混合物を還流させて一晩撹拌し(HPLCは、完全な転換を示した)、室温に冷却し、撹拌下の飽和NaHCO
3(2.23L)水溶液に数回に分けて注いで(起泡を最小限にするため)、pH8〜9とした。得られた混合物を30分間撹拌し、固体を濾過により収集し、大量の水で洗浄して中性pHとし、次により控えめな量のEtOHで洗浄した。固体を減圧下で乾燥させて、22をオフホワイトの黄色がかった固体として得た(135.2g、94%収率;99%HPLC純度)。LCMS(C18カラム、ギ酸モディファイアを用いて、5分間かけて10〜90%CH
3CN/水勾配で溶出)M+1:429.58(2.03分間)。
1H NMR (300 MHz, MeOD) δ 8.95 (d, J = 1.6 Hz, 2H), 7.45 (d, J = 6.5 Hz, 1H), 5.38 (br.s, 1H), 4.27 (dd, J = 14.9, 7.1 Hz, 1H), 4.01 (dd, J = 15.1, 7.0 Hz, 1H), 3.37 − 3.29 (m, 2H), 2.55 (br.s, 1H), 2.19 − 2.07 (m, 2H), 2.02 − 1.82 (br.s, 1H), 1.63 (s, 6H), 1.21 (t, J = 7.2 Hz, 3H) ppm。
【0171】
(実施例1.i)
1−エチル−3−[6−フルオロ−5−[2−(1−ヒドロキシ−1−メチル−エチル)ピリミジン−5−イル]−7−[(2R)−テトラヒドロフラン−2−イル]−1H−ベンゾイミダゾール−2−イル]尿素(23)のキラルクロマトグラフィー単離
【0172】
【化14】
CHIRALPAK(登録商標)IC(登録商標)カラム(Chiral Technologies製)において、25℃でCH
2Cl
2/MeOH/TEA(60/40/0.1)で溶出して、1−エチル−3−[6−フルオロ−5−[2−(1−ヒドロキシ−1−メチル−エチル)ピリミジン−5−イル]−7−テトラヒドロフラン−2−イル−1H−ベンゾイミダゾール−2−イル]尿素(22)(133.60g)のラセミ試料を分割し、所望のエナンチオマー23をオフホワイトの固体として得た(66.8g、45%収率;99.8%HPLC純度、99+%ee)。分析的キラルHPLC保持時間は、7.7分間であった(CHIRALPAK(登録商標)IC(登録商標)4.6×250mmカラム、流速1mL/分、30℃)。固体を2:1EtOH/Et
2O(5容量)に懸濁させ、10分間撹拌し、濾過により収集し、2:1EtOH/Et
2Oで洗浄し、減圧下で乾燥して、白色の固体を得た(60.6g)。
【0173】
単結晶X線回折解析により、23の構造および絶対立体化学を確認した。密封したチューブCu K−アルファ源(Cu Kα放射線、γ=1.54178Å)およびApex II CCD検出器を備えるBruker Apex II回折計において、単結晶回折データを取得した。0.15×0.15×0.10mmの寸法を有する結晶を選択し、鉱物油を用いてきれいにし、MicroMountにマウントし、Bruker APEXIIシステムの中央に置いた。逆格子空間において分離した40フレームの3回のバッチを得て、配向マトリックスおよび初期セルパラメータをもたらした。最終セルパラメータを得て、データ収集が完了した後に、完全データセットに基づき精緻化した。系統的非存在および強度統計に基づき構造を解明し、中心を外れたP2
1空間群において精緻化した。
【0174】
各フレーム30秒間の曝露による0.5°ステップを用いて、0.85Åの分解能まで逆格子空間の回折データセットを得た。100(2)Kにおいてデータを収集した。APEXIIソフトウェアを用いて、強度の統合およびセルパラメータの精緻化を達成した。データ収集後の結晶の観察は、分解の兆候を示さなかった。
図2に示す通り、構造において2個の対称的な独立した分子が存在し、対称的な独立した分子のどちらもR異性体である。
【0175】
Apex IIソフトウェアを用いてデータを収集、精緻化および整理した。SHELXS97(Sheldrick、1990)プログラム(複数可)を用いて構造を解明し、SHELXL97(Sheldrick、1997)プログラムを用いて構造を精緻化した。結晶は、P2
1空間群を有する単斜セルを示す。格子パラメータは、a=9.9016(2)Å、b=10.9184(2)Å、c=19.2975(4)Å、β=102.826(1)°である。体積=2034.19(7)Å
3。
【0176】
(実施例1.j)
1−エチル−3−[6−フルオロ−5−[2−(1−ヒドロキシ−1−メチル−エチル)ピリミジン−5−イル]−7−[(2R)−テトラヒドロフラン−2−イル]−1H−ベンゾイミダゾール−2−イル]尿素のメタンスルホン酸塩(24)の調製。
【0177】
【化15】
ジクロロメタン(60mL、J.T.Baker 931533)および無水エタノール(15mL、Pharmco−AAPER 111000200)中の1−エチル−3−[6−フルオロ−5−[2−(1−ヒドロキシ−1−メチル−エチル)ピリミジン−5−イル]−7−[(2R)−テトラヒドロフラン−2−イル]−1H−ベンゾイミダゾール−2−イル]尿素(23)(15.05g、35.13mmol)の懸濁液に撹拌下、メタンスルホン酸(2.392mL、36.89mmol、Sigma−Aldrich 471356)を添加した。清澄な溶液が観察されるまで室温で撹拌した。約1時間かけてヘプタン(300mL)を徐々に添加し、固体沈殿物を濾過(Whatman GF/Fガラスマイクロファイバーペーパー上に置かれたWhatman qualitative#3ペーパーを使用)により収集した。真空オーブンにおいて減圧下で一晩40℃にて乾燥して(硫酸カルシウムおよび水酸化カリウムでデシケートし)、24を白色の固体として得た(13.46g、99+%HPLC純度、99+%ee)。分析的キラルHPLCは、CHIRALPAK(登録商標)IC(登録商標)4.6×250mmカラムにおいて、流速1mL/分、30℃でCH
2Cl
2/MeOH/TEA(60/40/0.1)により溶出して、8.6分間の保持時間を有する1種のエナンチオマーを示す。濾液から、白色の固体生成物24の2回目の収穫物(4.36g、98%HPLC純度、99+%ee)を得た。LCMS(C18カラム、ギ酸モディファイアを用いて、5分間かけて10〜90%CH
3CN/水勾配で溶出)M+1:429.58(2.03分間)。
1H NMR (300 MHz, MeOD) δ 9.00 (d, J = 1.6 Hz, 2H), 7.67 (d, J = 6.1 Hz, 1H), 5.39 (t, J = 7.7 Hz, 1H), 4.30 (dd, J = 14.9, 6.9 Hz, 1H), 4.03 (dd, J = 14.8, 7.7 Hz, 1H), 3.40 − 3.31 (m, 2H), 2.72 (s, 3H), 2.70 − 2.60 (m, 1H), 2.21 − 2.08 (m, 2H), 1.98 − 1.84 (m, 1H), 1.65 (s, 6H), 1.22 (t, J = 7.2 Hz, 3H) ppm。
【0178】
(実施例1.k)
1−エチル−3−[6−フルオロ−5−[2−(1−ヒドロキシ−1−メチル−エチル)ピリミジン−5−イル]−7−テトラヒドロフラン−2−イル−1H−ベンゾイミダゾール−2−イル]尿素の調製
2−[5−(4,5−ジアミノ−2−フルオロ−3−テトラヒドロフラン−2−イル−フェニル)ピリミジン−2−イル]プロパン−2−オール(7.220g、21.72mmol)、および1−エチル−3−(N−(エチルカルバモイル)−C−メチルスルファニル−カルボンイミドイル)尿素(6.054g、26.06mmol、CB Research and Development)の1,4−ジオキサン(36.1mL、Sigma−Aldrich 360481)溶液に、1NのH
2SO
4水溶液(37mL)中にNaOAc三水和物(5.32g)を溶解させることによって調製したpH3.5のバッファー(72.2mL)を添加した。この反応混合物を、還流させながら一晩撹拌し(HPLCは、完全な変換を示した)、室温に冷却し、飽和NaHCO
3水溶液(144mL)の撹拌溶液中に少量ずつ注ぎ(起泡)、pH8〜9にした。これを20分間撹拌し、固体を濾過によって収集し、水で大量に洗浄して中性pHにし、次いでより少なめにEtOHで洗浄した。固体を減圧下で乾燥させ、ベージュ色固体を得た(7.90g、99%のHPLC純度)。LCMS(ギ酸モディファイアを用いて、5分にわたって10〜90%のCH
3CN/水の勾配で溶出するC18カラム)M+1:429.45(2.03分)。HPLC保持時間は、3.89分であった(0.1%のTFAモディファイアおよび1mL/分の流量を用いて、8分にわたって10〜90%のCH
3CN/水の勾配で溶出するYMC ODS−AQ 150×3.0mmカラム)。
【0179】
形態Iの調製
(実施例1.l)
(R)−1−エチル−3−[6−フルオロ−5−[2−(1−ヒドロキシ−1−メチル−エチル)ピリミジン−5−イル]−7−(テトラヒドロフラン−2−イル]−1H−ベンゾイミダゾール−2−イル]尿素のキラルクロマトグラフィー単離
1−エチル−3−[6−フルオロ−5−[2−(1−ヒドロキシ−1−メチル−エチル)ピリミジン−5−イル]−7−テトラヒドロフラン−2−イル−1H−ベンゾイミダゾール−2−イル]尿素のラセミ試料(133.60g)を、25℃で、DCM/MeOH/TEA(60/40/0.1)で溶出するCHIRALPAK(登録商標)IC(登録商標)カラム(Chiral Technologies製)で分割して、オフホワイト色固体として所望のエナンチオマーを得た(66.8g、99.8%のHPLC純度、99+%のee)。分析的キラルHPLC保持時間は、7.7分であった(CHIRALPAK(登録商標)IC(登録商標)4.6×250mmカラム、1mL/分の流量、30℃)。固体を2:1のEtOH/Et
2O(5容積)中に懸濁させ、10分間撹拌し、濾過によって収集し、2:1のEtOH/Et
2Oで洗浄し、減圧下で乾燥させて、白色固体を得た(60.6g)。
1H NMR (300 MHz, MeOD) δ 8.95 (d, J = 1.6 Hz, 2H), 7.45 (d, J = 6.5 Hz, 1H), 5.38 (br.s, 1H), 4.27 (dd, J = 14.9, 7.1 Hz, 1H), 4.01 (dd, J = 15.1, 7.0 Hz, 1H), 3.37 − 3.29 (m, 2H), 2.55 (br.s, 1H), 2.19 − 2.07 (m, 2H), 2.02 − 1.82 (br.s, 1H), 1.63 (s, 6H), 1.21 (t, J = 7.2 Hz, 3H) ppm。
【0180】
形態IIの調製
(実施例1.m)
6−フルオロベンゾイミダゾリル尿素化合物100mgに、THF 1mlを添加した。化学量論量のHClを、12Mの水溶液として添加した。次いでMTBE 4mLを添加し、懸濁液を、室温で撹拌しながら一晩平衡化させた。次いでこれを濾過し、白色固体を真空下で数時間乾燥させた。
【0181】
形態IIIの調製
(実施例1.n)
6−フルオロベンゾイミダゾリル尿素化合物100mgを量り分け、ジクロロメタン/メタノールの1:1(v:v)混合物200mL中に溶解させた。100%の噴霧率で、冷却器が取り付けられたBuchi B−90 Nano噴霧乾燥器(ポンププログラム2)でこの溶液を噴霧乾燥させた。101℃の入り口温度を使用し、窒素流量は10L/分であり、窒素の最大圧力は10psiであり、CO
2の最大圧力は15psiであった。白色粉末55mgを回収した。
【0182】
冷却器が取り付けられたBuchi B−90 Nano噴霧乾燥器で、噴霧乾燥を実施した。6−フルオロベンゾイミダゾリル尿素化合物の溶液を、CH
2Cl
2:メタノール(1:1)から構成される溶媒系中で調製し、以下に列挙したパラメータに従って噴霧した。
【0183】
形態IVの調製
(実施例1.o)
(R)−1−エチル−3−[6−フルオロ−5−[2−(1−ヒドロキシ−1−メチル−エチル)ピリミジン−5−イル]−7−(テトラヒドロフラン−2−イル)−1H−ベンゾイミダゾール−2−イル]尿素のメタンスルホン酸塩の調製
ジクロロメタン(22.8mL、Sigma−Aldrich 270997)および無水エタノール(2.5mL)中の(R)−1−エチル−3−[6−フルオロ−5−[2−(1−ヒドロキシ−1−メチル−エチル)ピリミジン−5−イル]−7−(テトラヒドロフラン−2−イル)−1H−ベンゾイミダゾール−2−イル]尿素(2.530g、5.905mmol)の撹拌懸濁液を、氷−水浴で冷却した。メタンスルホン酸(0.402mL、6.20mmol、Sigma−Aldrich 471356)を添加し、冷浴を取り除き、室温で10分間撹拌した。30℃で、ロータリーエバポレーターでこの混合物を濃縮して、濃密油状物にし、次いで撹拌中のEt
2Oに徐々に添加し、残留生成物をCH
2Cl
2ですすいでエーテル中に入れた。ゴム状析出物を、これが分解してペースト状固体になるまで撹拌し、これを濾過によって収集し、Et
2Oで洗浄し、減圧下で乾燥させて、オフホワイト色固体を得た(2.85g、99%のHPLC純度、99+%のee)。LCMS(ギ酸モディファイアを用いて、5分にわたって10〜90%のCH
3CN/水の勾配で溶出するC18カラム)M+1:429.51(2.49分)。HPLC保持時間は、3.86分であった(0.1%のTFAモディファイアおよび1mL/分の流量を用いて、8分にわたって10〜90%のCH
3CN/水の勾配で溶出するYMC ODS−AQ 150×3.0mmカラム)。分析的キラルHPLCによって1つのエナンチオマーが示され、保持時間は、30℃で1mL/分の流量を用いて、CHIRALPAK(登録商標)IC(登録商標)4.6×250mmカラムで、DCM/MeOH/TEA(60/40/0.1)で溶出して7.8分であった。
1H NMR (300 MHz, MeOD) δ 8.99 (d, J = 1.6 Hz, 2H), 7.67 (d, J = 6.1 Hz, 1H), 5.38 (t, J = 7.7 Hz, 1H), 4.30 (dd, J = 15.0, 6.9 Hz, 1H), 4.02 (dd, J = 14.8, 7.6 Hz, 1H), 3.38 − 3.30 (m, 2H), 2.73 (s, 3H), 2.70 − 2.60 (m, 1H), 2.20 − 2.07 (m, 2H), 1.99 − 1.84 (m, 1H), 1.64 (s, 6H), 1.22 (t, J = 7.2 Hz, 3H) ppm。
【0184】
(実施例1.p)
安定性データ
6−フルオロベンゾイミダゾリル尿素化合物のメシル酸塩は、1週間の時点で、25℃/60%のRHで化学的および物理的に不安定であり、40℃/周囲で貯蔵したとき、t=2週間で化学的に不安定であることが判明した。
【0185】
遊離塩基の6−フルオロベンゾイミダゾリル尿素化合物は、1カ月の時点で、すべての貯蔵条件(25℃/60%のRH、40℃/周囲、および40℃/75%のRH)下で化学的および物理的に安定であった。XRPDパターンにおいて小さな変化が観察されたが、すべては、時間ゼロ(t=0)におけるものと同じ形態であるとみなされた。
【0186】
6−フルオロベンゾイミダゾリル尿素化合物の塩酸塩は、1カ月の時点で、すべての貯蔵条件(25℃/60%のRH、40℃/周囲、および40℃/75%のRH)下で化学的および物理的に安定であった。
【0187】
(実施例2)
酵素学研究
後述する実験において、本発明の化合物の酵素阻害活性を決定することができる。
【0188】
DNAジャイレースATPaseアッセイ
ピルビン酸キナーゼ/乳酸脱水素酵素によるADP産生を、NADHの酸化に結び付けて考えることにより、S.aureus DNAジャイレースのATP加水分解活性を測定する。この方法は、以前に記載されている(TamuraおよびGellert、1990年、J. Biol. Chem.、265巻、21342頁)。
【0189】
100mM TRIS pH7.6、1.5mM MgCl
2、150mM KClを含有する緩衝溶液において、ATPaseアッセイを30℃で行った。カップリングシステムは、2.5mMホスホエノールピルビン酸、200μMニコチンアミドアデニンジヌクレオチド(NADH)、1mM DTT、30μg/mlピルビン酸キナーゼおよび10μg/ml乳酸脱水素酵素の最終濃度を含有する。酵素(90nM最終濃度)および化合物のDMSO溶液(3%最終濃度)を添加する。反応混合物を10分間30℃でインキュベートする。最終濃度0.9mMのATPの添加により、反応を開始し、340ナノメートルで10分の経過にわたり、NADH消失率をモニターする。率対濃度プロファイルからK
iおよびIC
50値を決定する。
【0190】
【表3】
DNA Topo IV ATPaseアッセイ
S.aureus TopoIV酵素によるATPからADPへの転換を、NADHからNAD+への転換に結び付けて考え、340nmにおける吸光度の変化により反応の進行を測定する。TopoIV(64nM)を、バッファー中の選択された化合物(3%DMSO最終)と共に10分間30℃でインキュベートする。バッファーは、100mM Tris7.5、1.5mM MgCl2、200mM K・グルタメート、2.5mMホスホエノールピルビン酸、0.2mM NADH、1mM DTT、5μg/mL直鎖化DNA、50μg/mL BSA、30μg/mLピルビン酸キナーゼおよび10μg/mL乳酸脱水素酵素(lactate dehyrodgenase)(LDH)からなる。ATPにより反応を開始し、20分間30℃でMolecular Devices SpectraMAXプレートリーダーにおいて、率を継続的にモニターする。密接な結合阻害剤のためのMorrison方程式に適合させた、率対選択された化合物の濃度のプロットから、阻害定数KiおよびIC
50を決定する。
【0191】
【表4】
(実施例3)
液体培地における感受性試験
本発明の化合物を、液体培地における感受性試験により抗菌活性に関して試験した。このようなアッセイは、このような実施を統制する最新のCLSI文書の指針内で行われ得る。「M07−A8 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard−−Eighth Edition(2009年)」。「Antibiotics in Laboratory Medicine」(V. Lorian編集、出版社Williams and Wilkins、1996年)等、他の刊行物は、研究室の抗生物質試験における基本的な実際の技法を提供する。用いた具体的なプロトコールは、次の通りであった。
【0192】
プロトコール#1:微量希釈ブロス方法を用いた化合物のジャイレースMICの決定
材料:
丸底96ウェルマイクロタイタープレート(Costar 3788)
Mueller Hinton II寒天プレート(MHII;BBLプレミックス)
Mueller Hinton II液体ブロス(MHII;BBLプレミックス)
BBL Prompt接種システム(Fisher B26306)
Test Reading Mirror(Fisher)
細菌を画線してシングルコロニーとした寒天プレート、新たに調製
無菌DMSO
ヒト血清(U.S.Biologicals S1010−51)
溶血させたウマ血液(Quad Five 270−100)
レサズリン0.01%
スプラーグドーリーラット(Sprague Dawley Rat)血清(U.S. Biologicals 1011−90BまたはValley BioMedical AS3061SD)
プールしたマウス血清(Valley BioMedical AS3054) 。
【0193】
株(培地、ブロスおよび寒天):
1.Staphylococcus aureus ATCC#29213
a.MHII
b.MHII+50%ヒト血清
c.MHII+50%ラット血清
d.MHII+50%マウス血清
2.Staphylococcus aureus ATCC#29213GyrB T173I(MHII)
3.Staphylococcus aureus、JMIコレクション株;表9を参照(MHII)
4.Staphylococcus epidermidis、JMIコレクション株;表9を参照(MHII)
5.Enterococcus faecalis ATCC#29212(MHII+3% 溶血させたウマ血液)
6.Enterococcus faecium ATCC#49624(MHII+3% 溶血させたウマ血液)
7.Enterococus faecalis、JMIコレクション株;表9を参照(MHII+3% 溶血させたウマ血液)
8.Enterococus faecium、JMIコレクション株;表9を参照(MHII+3% 溶血させたウマ血液)
9.Streptococcus pneumoniae ATCC#10015(MHII+3% 溶血させたウマ血液)
10.Streptococcus pneumoniae、JMIコレクション株;表9を参照(MHII+3% 溶血させたウマ血液)
11.β−haemolytic streptococci、群A、B、C、G)JMIコレクション株;表9を参照(MHII+3% 溶血させたウマ血液)
12.Bacillus cereus ATCC10987(MHII)
13.Bacillus cereus ATCC14579(MHII)
14.Bacillus subtilis ATCC6638(MHII)
15.Bacillus subtilis(168)ATCC6051(MHII) 。
【0194】
接種物プレップ(S.aureus+50%血清以外のあらゆる株に関する):
1.BBL Promptキットを使用して、上に表示する適切な寒天培地において増殖した培養物から、5個の大型または10個の小型の十分に離間したコロニーをつついて、キットに提供されている1mLの無菌食塩水に接種した。
2.約30秒間ウェルをボルテックスして、約10
8細胞/mLの懸濁液を生じた。実際の密度は、この懸濁液の希釈物をプレーティングする(plate out)ことにより確認することができた。
3.試験する化合物のプレート毎に0.15mLの細胞を15mL(約10
6細胞/mL)無菌ブロス(または後述を参照)に移すことにより、懸濁液を1/100希釈し、次に回旋して混合した。化合物23または24を含む、化合物(>8化合物)の2枚以上のプレートを試験する場合、容積はそれに応じて増加した。
【0195】
a.E.faecalis、E.faeciumおよびS.pneumoniaeに関しては、14.1mL MHII+0.9mLの溶血させたウマ血液を用いた。
4.50μlの細胞(約5×10
4細胞)を用いて、ブロス(後述を参照)に希釈した薬物を50μl含有する各マイクロタイターウェルに接種した。
【0196】
薬物希釈、接種、MICの決定:
1.全薬物/化合物ストックは通常、100%DMSOにおいて12.8mg/mL濃度で調製した。
2.薬物/化合物ストックを、50μLのDMSOにおいて200×所望の最終濃度に希釈した。MICの出発濃度が8μg/mL最終濃度である場合、6.25μLのストック+43.75μL DMSOを必要とした。各200×ストックを、新しい96ウェルマイクロタイタープレートのカラム1の別個の列に置いた。
3.25μLのDMSOを、200×化合物ストックを含有するマイクロタイタープレートの全列のカラム2〜12に添加し、カラム1の25μLをカラム11まで系列的に希釈し、カラム毎にチップを交換した。即ち、25μL化合物+25μL DMSO=2×希釈。対照のため、系列の最後に「化合物なし」DMSOウェルを残した。
4.試験した株(S.aureus+50%ヒト血清を除く)毎に、マトリックスピペッターを用いて50μLのMHIIブロスを有する2枚のマイクロタイタープレートを調製した。
5.50μlの細胞の添加前に、50μLの培地/マイクロタイターウェルに0.5μLの各希釈物を移した(w/マトリックス自動ピペッター)。化合物の通常の出発濃度は、培地+細胞に1/200希釈した後に8μg/mLであった − 化合物濃度は、マイクロタイタープレートの列にわたり2×ステップで減少した。全MICは、2連で行った。
6.全ウェルに、50μlの希釈細胞懸濁液(前述を参照)を接種して、最終容積100μlとした。
7.接種物を添加した後、手動の多チャネルピペッターにより、各ウェルを徹底的に混合した。同一マイクロタイタープレートにおける低濃度から高濃度の薬物に向かう場合、同一チップを用いた。
8.プレートを37℃で少なくとも18時間インキュベートした。
9.18時間後にtest reading mirrorによりプレートを観測して、MICを、増殖が観察されなかった(ウェルにおける光学的透明性)薬物の最低濃度として記録した。
【0197】
S.aureus+50%ヒト血清、S.aureus+50%ラット血清またはS.aureus+50%マウス血清の調製。
1.15mLのMHII+15mLヒト血清を合わせることにより、50%血清培地を調製した − 合計30mL。2枚以上の化合物プレートを試験する場合、容積を30mL増分で増加させた。
2.上に記載されている通り、S.aureus ATCC#29213の同じBBL Prompt接種物を用いて、上述において調製した30mL(約5×10
5細胞/mL)の50%ヒト血清培地に0.15mLの細胞を移すことにより1/200希釈し、回旋して混合した。
3.所望の数のマイクロタイタープレートの全試験ウェルを、50%血清培地における100μL細胞で満たした。
4.0.5μLの各化合物希釈物を100μLの細胞/培地に移した(w/マトリックス自動ピペッター)。化合物の通常の出発濃度は、培地+細胞に1/200希釈した後に8μg/mLであった − 化合物濃度は、マイクロタイタープレートの列にわたり2×ステップで減少した。全MICは、2連で行った。
5.手動の多チャネルピペッターにより各ウェルを徹底的に混合した。同一マイクロタイタープレートにおける低濃度から高濃度の薬物に向かう場合、同一チップを用いた。
6.プレートを37℃で少なくとも18時間インキュベートした。インキュベーション後に、25μLの0.01%レサズリンを各ウェルに添加し、37℃で少なくとも追加的に1時間またはレサズリンの色が変化するまでインキュベートを継続した。
7.test reading mirrorによりプレートを観測し、MICを記録した。レサズリンを用いる場合、該色素の色は、増殖なしのウェルにおいて紺青色から明るいピンク色へと変化する。色素をピンク色にする薬物の最低濃度がMICである。
【0198】
プロトコール#2:微量希釈ブロス方法を用いた、グラム陰性に対する化合物のジャイレースMICの決定
材料:
丸底96ウェルマイクロタイタープレート(Costar 3788)
Mueller Hinton II寒天プレート(MHII;BBLプレミックス)
Mueller Hinton II液体ブロス(MHII;BBLプレミックス)
BBL Prompt接種システム(Fisher b26306)
Test Reading Mirror(Fisher)
細菌を画線してシングルコロニーとした寒天プレート、新たに調製
無菌DMSO 。
【0199】
株(全株のためのMHII培地;ブロスおよび寒天):
1.Escherichia coli ATCC#25922
2.Escherichia coli、JMIコレクション株、表9を参照
3.Escherichia coliAG100 WT
4.Escherichia coli AG100 tolC
5.Acinetobacter baumannii ATCC#BAA−1710
6.Acinetobacter baumannii ATCC#19606
7.Acinetobacter baumannii、JMIコレクション株、表9を参照
8.Klebsiella pneumoniae ATCC#BAA−1705
9.Klebsiella pneumoniae ATCC#700603
10.Klebsiella pneumoniae、JMIコレクション株、表9を参照
11.Moraxella catarrhalis ATCC#25238
12.Moraxella catarrhalis ATCC#49143
13.Moraxella catarrhalis、JMIコレクション株、表9を参照
14.Haemophilus influenzae ATCC49247
15.Haemophilus influenzae(Rd1 KW20)ATCC51907
16.Haemophilus influenzae Rd0894(AcrA−)
17.Haemophilus influenzae、JMIコレクション株、表9を参照
18.Pseudomonas aeruginosa PAO1
19.Pseudomonas aeruginosa、JMIコレクション株、表9を参照
20.Proteus mirabilis、JMIコレクション株、表9を参照
21.Enterobacter cloacae、JMIコレクション株、表9を参照
22.Stenotrophomonas maltophilia ATCC BAA−84
23.Stenotrophomonas maltophilia ATCC13637 。
【0200】
接種物プレップ:
1.BBL Promptキットを用いて、寒天培地において増殖した培養物から5個の大型または10個の小型の十分に離間したコロニーをつついて、キットに添えられた1mL無菌食塩水に接種した。
2.約30秒間ウェルをボルテックスし、約10
8細胞/mLの懸濁液を得た。実際の密度は、この懸濁液の希釈物をプレーティングすることにより確認することができた。
3.試験する化合物のプレート毎に0.15mLの細胞を15mL(約10
6細胞/mL)無菌ブロス(後述を参照)に移すことにより、懸濁液を1/100希釈し、回旋して
混合した。化合物23または24を含む、化合物(>8化合物)の2枚以上のプレートを試験する場合、それに応じて容積を増加させた。
4.50μlの細胞(約5×10
4細胞)を用いて、ブロス(後述を参照)に希釈した薬物を50μl含有する各マイクロタイターウェルに接種した。
【0201】
薬物希釈、接種、MICの決定:
1.全薬物/化合物ストックは通常、100%DMSOにおける12.8mg/mL濃度で調製した。
2.薬物/化合物ストックを、50μL DMSOにおいて200×所望の最終濃度に希釈した。MICの出発濃度が8μg/mL最終濃度である場合、6.25μLのストック+43.75μL DMSOを必要とした。各200×ストックを、新しい96ウェルマイクロタイタープレートのカラム1の別個の列に置いた。
3.25μLのDMSOを、200×化合物ストックを含有するマイクロタイタープレートの全列のカラム2〜12に添加し、カラム1の25μLをカラム11まで系列的に希釈し、カラム毎にチップを交換した。即ち、25μL化合物+25μL DMSO=2×希釈。対照のため、系列の最後に「化合物なし」DMSOウェルを残した。
4.試験した株毎に、マトリックスピペッターを用いて50μLのMHIIブロスを有する2枚のマイクロタイタープレートを調製した。
5.50μlの細胞の添加前に、50μLの培地/マイクロタイターウェルに0.5μLの各希釈物を移した(w/マトリックス自動ピペッター)。化合物の通常の出発濃度は、培地+細胞に1/200希釈した後、8μg/mLであった − 化合物濃度は、マイクロタイタープレートの列にわたり2×ステップで減少した。全MICは、2連で行った。
6.全ウェルに、50μlの希釈細胞懸濁液(前述を参照)を接種して、最終容積100μlとした。
7.接種物を添加した後、各ウェルを手動の多チャネルピペッターにより徹底的に混合した。同一マイクロタイタープレートにおける低濃度から高濃度の薬物に向かう場合、同一チップを用いた。
8.プレートを37℃で少なくとも18時間インキュベートした。
9.18時間後にtest reading mirrorによりプレートを観測し、MICを、増殖が観察されなかった(ウェルにおける光学的透明性)薬物の最低濃度として記録した。
【0202】
プロトコール#3:寒天希釈方法を用いた化合物のジャイレースMICの決定
材料:
ペトリプレート60×15mm(Thermo Scientific Cat.#12567100)
遠心分離チューブ、15mL(Costar)
BBL Prompt接種システム(Fisher b26306)
細菌を画線してシングルコロニーとした寒天プレート、新たに調製
無菌DMSO
GasPak(商標)インキュベーションコンテナ(BD Cat.#260672)
GasPak(商標)EZ嫌気性菌コンテナシステムサシェ(BD Cat.#260678)
GasPak(商標)EZ C02コンテナシステムサシェ(BD Cat.#260679)
GasPak(商標)EZ Campyコンテナシステムサシェ(BD Cat.#260680) 。
【0203】
株:
1.Clostridium difficile ATCC BAA−1382;
2.Clostridium difficile、CMIコレクション株、表8を参照
3.Clostridium perfringens、CMIコレクション株、表8を参照
4.Bacteroides fragilisおよびBacteroides spp.、CMIコレクション株、表8を参照
5.Fusobacterium spp.、CMIコレクション株、表8を参照
6.Peptostreptococcus、spp.、CMIコレクション株、表8を参照
7.Prevotella spp.、CMIコレクション株、表8を参照
8.N. gonorrhoeae ATCC 35541
9.N. gonorrhoeae ATCC 49226
10.Neisseria gonorrhoeae、JMIコレクション株、表8を参照
11.Neisseria meningitidis、JMIコレクション株、表8を参照 。
【0204】
培地調製および増殖条件:
CLSI刊行物「M11−A7 Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard − 第7版(2007年)」に従って、各微生物種に推奨される増殖培地を調製したが、例外として、N.gonorrhoeaeおよびN.meningitidisの培地は、「M07−A8 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard−−第8版(2009年)」に従って調製した。
【0205】
プレート注液:
1.表1に記載されている各被験化合物の100×薬物ストックを調製した。15mL遠心分離チューブを用いて、100μLの各薬物ストックを、10mLの融解した寒天(水浴において約55℃まで冷却)に添加した。チューブを2〜3回反転することにより混合し、次に、個々にラベル付けした60×15mmペトリ皿に注ぎ入れた。
2.慣用的な試験濃度:0.002μg/mL〜16μg/mL(14プレート)であった。
3.4枚の薬物不含プレートを注いだ:2枚は陽性対照、2枚は好気的対照。
4.プレートを乾かした。同日に使用、あるいはRTで一晩保存、あるいは最大3日間4℃で保存した。
5.薬物濃度および株の配置に従ってプレートにラベル付けした。
【0206】
嫌気的環境の維持を必要とする細胞の増殖:
1.嫌気細菌を用いて行った全作業は、可能な限り迅速になされた。バイオセーフティーキャビネット内(即ち、好気的環境)で行う作業は、細胞を嫌気チャンバーに戻す前に30分未満で完了させた。
2.嫌気細菌のインキュベーションは、GasPak(商標)チャンバーを用いて達成した。大型のボックススタイルのチャンバー(VWR90003−636)は、2個の嫌気的サシェ(VWR90003−642)を必要としたが、背の高いシリンダースタイルのチャンバー(VWR90003−602)は、1個のサシェしか必要としなかった。
【0207】
プレート接種(バイオセーフティーキャビネット内で行った):
1.上に記載されている個々の寒天プレート上に各株を画線した。要求される時間および環境条件(即ち、嫌気性、微好気性等)でインキュベートした。
2.直接的なコロニー懸濁方法を用いて、白金耳量の新たに画線した細胞を、約4mLの0.9%NaCl
2に懸濁して、ボルテックスした。
3.懸濁液をO.D.
600 0.05(5×10e7 cfu/mL)に調整した。ボルテックスして混合した。
4.約0.2mLの調整・混合済培養物を96ウェルプレートに移した。5つ以下の株を試験する場合、全株を共に一列に並べた。5つより多い株を試験する場合、5株以下が一列に収まるよう株をプレートに移した。このことは、小型のプレートに適合させるために必要であった。
5.多チャネルピペッターを用いて、調製した96ウェルプレートから、各MIC試験プレートへと0.002mLの各株をスポットした。これにより、約1×10e5 cfu/スポットとなった。C.difficileを試験する場合、株は増殖の際にスウォーミングするが、多チャネルピペッタースポット間の距離は、スウォーミングする細胞がアッセイ結果を損なわないように、十分に開いている。
【0208】
a.2枚の薬物不含プレートを先ず接種し、一方、他の2枚の薬物不含プレートは、MIC試験プレート後の最後に接種した。前者および後者は、増殖および接種対照とした。薬物不含対照の各セット由来の1枚のプレートを、要求される大気条件下でMICプレートと共にインキュベートし、1セットを好気的にインキュベートして、好気細菌によるコンタミネーションを試験した。厳密な嫌気性菌または微好気性株で作業した場合、好気的培養は、増殖に対し陰性であった。N.gonorrhoeaeの場合、ある程度の増殖が目に見えた。
6.接種物を乾燥させ(必要な限り短い時間)、次に、適切な数のサシェと共にGasPakにおいてひっくり返して置き、インキュベートした。
7.Neisseria spp.を、37℃、5%CO
2環境で24時間インキュベートした。
【0209】
MICの決定:
正確なインキュベーション時間後に試験プレートを検査し、陽性対照プレートにおける増殖の出現と比較して試験プレートにおける増殖の出現において著しい低下が生じた濃度におけるMICエンドポイントを読み取った。
【0210】
【表5】
プロトコール#4.Mycobacterium属の種のためのMICの決定手順
材料
丸底96ウェルマイクロタイタープレート(Costar 3788)または類似物
フィルムプレートシール(PerkinElmer、TopSeal−A#6005250または類似物)
Middlebrook 7H10ブロス、0.2%グリセロール含有
Middlebrook 7H10寒天、0.2%グリセロール含有
Middlebrook OADC Enrichment
M.tuberculosisの接種物調製:
1.−70℃に保存した調製済凍結M.tuberculosisストックを用いた。M.tuberculosisは、7H10ブロス+10%OADCにおいて増殖させ、次に100 Klettまたは5×10
7cfu/mlの濃度で凍結した。
2.1mlの凍結ストックを取り出し、これを19mlの7H10ブロス+10%OADCに添加することにより、1:20希釈物を調製した(最終濃度2.5×10
6cfu/ml)。
3.この希釈物から、第二の1:20希釈物を調製した、即ち、1mlを取り出して、これを19mlの新鮮ブロスに添加した。これが、96ウェルプレートに添加するための最終接種物である。
【0211】
M.kansasii、M.avium、M.abscessusおよびNocardia spc.の接種物調製:
1.10 Klettまたは5×10
7/mlの濃度の、7H10ブロスにおいて増殖した培養物の調製済凍結ストックまたは新鮮培養物を用いた。
2.1.0mlの培養ストックを取り出し、これを19mlの7H10ブロスに添加することにより、1:20希釈物を調製した(最終濃度2.5×10
6cfu/ml)。
3.この希釈物から、1:20希釈物を調製した、即ち、1mlを取り出し、これを19mlの新鮮ブロスに添加した(最終懸濁液)。
【0212】
プレート調製:
1.プレートにラベル付けした。
2.多チャネル電子ピペッターを用いて、50μlの7H10ブロス+10%OADCを、MICの決定に利用されている全ウェルに添加した。
3.試験する薬物のストック溶液(例えば、1mg/ml濃度)を調製した。
4.凍結ストック溶液を解凍し、7H10ブロス+10%OADCを用いて希釈して、作業溶液(working solution)4×被験最大濃度を得た(例えば、最終濃度32μg/ml、被験最高濃度8μg/ml)。ストック溶液から希釈物を作製した。1μg/mlの濃度から出発するために4μg/mlの薬物を調製し、これにより出発濃度は1μg/mlとなった。1mg/mlストックの25μlを取り出し、6.2mlのブロスに添加した。薬物の全希釈は、ブロスにおいて行った。
5.50μlの4×作業溶液を、指定の列の第一のウェルに添加した。試験する全化合物に対し継続した。多チャネル電子ピペッターを用いて、4×を混合し、11番目のウェルまで化合物を系列希釈した。残った50μlを廃棄した。12番目のウェルを陽性対照として用いた。
6.M.tuberculosisは、約18日間;M.aviumおよびM.kansasiiは、約7日間;NocardiaおよびM.abcessusは、約4日間、プレートをフィルムシールして37℃でインキュベートした。
7.結果を視覚的に読み取り、記録した。増殖が観察されなかった(ウェルにおける光学的透明性)薬物の最低濃度としてMICを記録した。
【0213】
プロトコール#5.Mycobacterium tuberculosis血清シフトMICアッセイのプロトコール
材料および試薬:
Costar#3904 側面が黒色の平底96ウェルマイクロタイタープレート
Middlebrook 7H9ブロス(BD271310)、0.2%グリセロール含有
Middlebrook OADC Enrichment
ウシ胎仔血清
カタラーゼ(Sigma C1345)
デキストロース
NaCl
2
BBL Prompt接種システム(Fisher b26306)
寒天プレート(Middlebrook 7H11、0.2%グリセロールおよびOADC enrichment含有)、細菌を画線してシングルコロニーとした
無菌DMSO 。
【0214】
培地プレップ:
1.血清シフトMICのため、すべて7H9+0.2%グリセロールの基剤を有する3種の異なる培地が必要とされる。あらゆる培地およびサプリメントをMIC前に滅菌することが重要であった。
2.下の全培地を調製し、次のセクションに記載されている通りに接種した。各培地を用いて全化合物をMtbに対し試験した。
【0215】
a.7H9+0.2%グリセロール+10%OADC(「標準」MIC培地)。
【0216】
b.7H9+0.2%グリセロール+2g/Lデキストロース+0.85g/L NaCl+0.003g/Lカタラーゼ(0%FBS)。
【0217】
c.2×7H9+0.2%グリセロール+2g/Lデキストロース+0.85g/L NaCl+0.003g/Lカタラーゼ、等容積のウシ胎仔血清(50%FBS)と合わせる。
【0218】
接種物プレップ:
1.BBL Promptを用いて、5〜10個の十分に離間したコロニーをつついて、キットに添えられた1mlの無菌食塩水に接種した。この生物は培養物において増殖が遅いため、通例、プレートは、本アッセイに用いるときには培養2〜3週間経過したものである。
2.十分にボルテックスし、次に水浴において30秒間超音波処理して、約10
8細胞/mlの懸濁液を得た。実際の密度は、この懸濁液の希釈物のプレーティングにより確認することができた。
3.BBL Prompt懸濁液を1/200希釈することにより(例えば、0.2mlの細胞を40mlの培地に移し)、3種の培地処方物それぞれにおいて接種物を調製して、約10
6細胞/mlの出発細胞密度を得た。
4.100μlの細胞(約5×10
4細胞)を用いて、1μlのDMSOに溶解させた薬物(後述を参照)を含有する各マイクロタイターウェルに接種した。
【0219】
薬物希釈、接種、MICの決定:
1.対照薬物ストック、イソニアジドおよびノボビオシンは、100%DMSOにおける10mMで調製し、一方、シプロフロキサシンおよびリファンピンは、それぞれ50%DMSOおよび100%DMSOにおいて1mMで調製した。希釈物の調製 − 100μLのストック溶液を、96ウェルプレートの第一のカラムに分注した。カラム1の50μlを、カラム2における50μlのDMSOに移すことにより、化合物毎に列にわたり、11ステップの2倍系列希釈物を調製した。混合し、カラム毎にチップを交換しつつ、引き続きカラム2の50μLをカラム11まで移した。対照としてカラム12をDMSOのみのまま残した。
2.100μlの細胞の添加前に、1μlの各希釈物を空のマイクロタイターウェルに移した。イソニアジドおよびノボビオシンの出発濃度は、培地+細胞に希釈した後に100μMであった。シプロフロキサシンおよびリファンピンの出発濃度は、培地+細胞に希釈した後に10μMであった。化合物濃度は、マイクロタイタープレートの列にわたり進む毎に2×ステップで減少した。全MICは、3種の培地条件のそれぞれにおいて2連で行った。
3.化合物の試験セットは通例、10mMおよび50μL容積であった。
4.多チャネルピペッターを用いて、マスタープレートの各カラムから全容積を取り出し、新しい96ウェルマイクロタイタープレートの第一のカラムに移した。マスタープレートにおける化合物の各カラムについて反復し、新しい96ウェルプレートのカラム1に移した。
5.対照化合物に関して上に記載されている通り、DMSOを希釈剤として用いて、各化合物の2倍、11点の希釈物を作製した。全事例において、対照のためカラム12はDMSOのみとして残した。全希釈を完了した後、100μlの細胞の添加前に、対照化合物に対してなされた通り、各希釈物の1μlを空のマイクロタイターウェルに再度移した。
6.全ウェルを100μlの希釈細胞懸濁液(前述を参照)で接種した。
7.接種物を添加した後、プレートの側面を穏やかにタッピングすることによりプレートを混合した。
8.プレートを加湿した37℃チャンバーにおいて9日間インキュベートした。
9.9日目に、25μlの0.01%無菌レサズリンを各ウェルに添加した。励起492nm、発光595nmでバックグラウンド蛍光を測定し、プレートをさらに24時間インキュベーターに戻した。
【0220】
24時間後、励起492nm、発光595nmで各ウェルの蛍光を測定した。
【0221】
所定の化合物によるパーセント阻害を次の通りに計算した。パーセント阻害=100−([ウェル蛍光−平均バックグラウンド蛍光]/[DMSO対照−平均バックグラウンド蛍光]×100)。全3種の培地条件に対し、所定の培地条件においてレサズリンの還元シグナルを≧70%阻害する最低化合物濃度(「%−阻害」)としてMICを点数化した。
【0222】
表6は、本発明のベンゾイミダゾリル尿素化合物のメシル酸塩のためのMICアッセイの結果を示す。
【0223】
表6ならびにその後の表および実施例において、「化合物24」は、「化合物23」のメシル酸塩であり、化合物24は実施例1.j(上述)に従って調製されてもよい。これは、上述の実施例において使用される番号と同じである、前記化合物を同定するために使用される番号である。
【0224】
【表6-1】
【0225】
【表6-2】
【0226】
【表6-3】
表7は、本発明の選択された化合物のMIC90アッセイの結果を示す。
【0227】
【表7】
下の表8において、用語「CMI」は、オレゴン州ウィルソンヴィルに位置するThe Clinical Microbiology Instituteの略である。
【0228】
【表8-1】
【0229】
【表8-2】
【0230】
【表8-3】
【0231】
【表8-4】
【0232】
【表8-5】
【0233】
【表8-6】
【0234】
【表8-7】
下の表9において、用語「JMI」は、アイオワ州ノースリバティーに位置するThe Jones Microbiology Instituteの略である。
【0235】
【表9-1】
【0236】
【表9-2】
【0237】
【表9-3】
【0238】
【表9-4】
【0239】
【表9-5】
【0240】
【表9-6】
【0241】
【表9-7】
【0242】
【表9-8】
【0243】
【表9-9】
【0244】
【表9-10】
【0245】
【表9-11】
【0246】
【表9-12】
【0247】
【表9-13】
【0248】
【表9-14】
【0249】
【表9-15】
【0250】
【表9-16】