特許第6121693号(P6121693)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東芝ライフスタイル株式会社の特許一覧

<>
  • 特許6121693-衣類乾燥機 図000002
  • 特許6121693-衣類乾燥機 図000003
  • 特許6121693-衣類乾燥機 図000004
  • 特許6121693-衣類乾燥機 図000005
  • 特許6121693-衣類乾燥機 図000006
  • 特許6121693-衣類乾燥機 図000007
  • 特許6121693-衣類乾燥機 図000008
  • 特許6121693-衣類乾燥機 図000009
  • 特許6121693-衣類乾燥機 図000010
  • 特許6121693-衣類乾燥機 図000011
  • 特許6121693-衣類乾燥機 図000012
  • 特許6121693-衣類乾燥機 図000013
  • 特許6121693-衣類乾燥機 図000014
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6121693
(24)【登録日】2017年4月7日
(45)【発行日】2017年4月26日
(54)【発明の名称】衣類乾燥機
(51)【国際特許分類】
   D06F 58/28 20060101AFI20170417BHJP
   D06F 58/00 20060101ALI20170417BHJP
【FI】
   D06F58/28 C
   D06F58/00 F
【請求項の数】3
【全頁数】15
(21)【出願番号】特願2012-244360(P2012-244360)
(22)【出願日】2012年11月6日
(65)【公開番号】特開2014-90955(P2014-90955A)
(43)【公開日】2014年5月19日
【審査請求日】2015年10月6日
(73)【特許権者】
【識別番号】503376518
【氏名又は名称】東芝ライフスタイル株式会社
(74)【代理人】
【識別番号】110000567
【氏名又は名称】特許業務法人 サトー国際特許事務所
(72)【発明者】
【氏名】鹿島 弘次
【審査官】 根本 徳子
(56)【参考文献】
【文献】 特開2009−195364(JP,A)
【文献】 特開2010−082112(JP,A)
【文献】 特開2007−232327(JP,A)
【文献】 特開2009−250464(JP,A)
【文献】 特開2003−106733(JP,A)
【文献】 特開2010−012074(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
D06F 58/00−59/08
F25B 30/02
(57)【特許請求の範囲】
【請求項1】
外箱と、
前記外箱内に設けられ排気口と給気口とを有する乾燥室と、
前記乾燥室外に設けられ前記排気口と前記給気口とを連通する循環風路と、
この循環風路内に設けられ前記乾燥室内の空気を前記排気口から前記循環風路内に流入させて前記給気口から前記乾燥室内に供給するように循環させる送風機と、
圧縮機、凝縮器、キャピラリーチューブ、蒸発器を冷媒管で閉ループに繋いで構成された冷凍サイクルを備えると共に、前記蒸発器を前記循環風路内に設け且つ前記凝縮器を前記循環風路内に前記蒸発器より空気の流れに対して下流側に設けてなるヒートポンプと、
前記送風機が前記乾燥室内の空気を前記排気口から前記循環風路内に流入させて前記給気口から前記乾燥室内に供給するように循環させている状態で、前記圧縮機の運転周波数を下げ、前記送風機の回転数を上げることにより、前記蒸発器の着霜を抑制する制御手段と、
を備えた衣類乾燥機。
【請求項2】
さらに、前記蒸発器の温度を検出する蒸発器温度センサを備え、
前記制御手段は、前記蒸発器温度センサによる検出温度の変化が下がる方向であるか上がる方向であるかを判定し、前記検出温度の変化が下がる方向であると判定した時には、上がる方向であると判定した場合に比して、前記圧縮機の運転能力を相対的に下げると共に送風機の送風能力を相対的に上げる制御を実行する請求項1に記載の衣類乾燥機。
【請求項3】
さらに、記憶手段を備え、
前記記憶手段には、乾燥運転開始から前記蒸発器に着霜が発生しないことが保障される又は着霜が発生しても着霜が解消することが保障される前記圧縮機の上限運転能力及び当該上限運転能力での運転時間を夫々初期運転能力及び初期運転時間として記憶すると共に、前記初期運転能力より高い所定運転能力及びこれに対応した所定運転時間を記憶し、
前記制御手段は、乾燥運転開始から前記記憶された初期運転時間は前記圧縮機を前記記憶された初期運転能力で運転制御し、前記初期運転時間が経過した以後は前記圧縮機を前記所定運転能力と前記所定運転時間とに基づいて運転制御する請求項1に記載の衣類乾燥機。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、衣類乾燥機に関する。
【背景技術】
【0002】
例えば家庭用の洗濯乾燥機においては、従来の加熱用のヒータを用いて乾燥運転を行うものに代えて、ヒートポンプを用いて乾燥運転を行うものが供されている。この洗濯乾燥機では、ヒートポンプの他に、水槽の給気口と排気口とに連通接続された循環風路と、水槽内の空気をこの循環風路を通して循環させる送風機とを備えている。前記ヒートポンプは、冷凍サイクルを備えて構成されている。冷凍サイクルは、圧縮機、凝縮器、減圧手段、蒸発器を順に冷媒管により閉ループに接続し、冷媒を圧縮機で圧縮し、減圧手段で減圧し、凝縮器で凝縮(放熱)し、蒸発器で蒸発(冷却)することを循環して行う。
【0003】
前記蒸発器は、前記循環風路内に、前記水槽の排気口側に位置し、且つ前記凝縮器はこの蒸発器よりも前記給気口側へ位置するように配設されている。従って、送風機の運転によって前記水槽の前記排気口から出た空気は、一旦、蒸発器で冷却されることで除湿され、そして、凝縮器で加熱されて(温風化されて)、水槽の給気口から水槽内に供給され、この水槽内の衣類の湿気を奪って前記排気口から出ることを繰り返す。
このヒートポンプを用いた乾燥は、ヒータを用いた乾燥に比べて、エネルギー効率に優れると共に、加熱温度が低く、しわや縮みが少ない等のメリットがある。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2011−24659号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
一般に、このようなヒートポンプの蒸発器は、微小な間隔で設けられた多数のフィンを有する管で構成されており、この管の内部に冷媒を流すことで、蒸発器のフィン間を通過する空気を冷却し除湿する。ヒートポンプによる冷凍サイクルの運転が開始されると、蒸発器の温度は低下し、凝縮器の温度は上昇する。この場合、例えば冬場などで周囲の温度が比較的低い場合には、冷凍サイクルの運転の初期段階で蒸発器がマイナス温度まで低下することがある。このとき、比較的湿度の高い空気が蒸発器を通過すると、蒸発器に着霜が生じ、この霜によりフィン間の風路抵抗が増大することがある。
【0006】
この状態で冷凍サイクルの運転を継続した場合、凝縮器の温度上昇に伴って蒸発器の温度も上昇し、これにより蒸発器の着霜が解消されることがある一方、凝縮器の温度上昇よりも蒸発器側の着霜が進行してフィン間が閉塞状態となることがある。すると、蒸発器および凝縮器を空気が通過しないため熱交換が行われなくなり、蒸発器および凝縮器の温度上昇が進まずに冷凍サイクルの運転が正常に立ち上がらない、つまりヒートポンプの運転が正常に立ち上がらない不具合が発生する。
【0007】
ここで、冷凍サイクルにおいて、凝縮器及び蒸発器の間に設けられた減圧手段として開口度調節が可能な電子弁を備えているタイプがあり、このものでは、冷凍サイクルの運転初期に電子弁の開口度(絞り度)を調整することで、蒸発器の着霜を防止することが可能であるが、この場合、重量が増加すると共に部品コストも高い。これに対して、減圧手段として、キャピラリーチューブ(開口度が固定であるいわゆる細管)を用いるタイプでは、軽量で部品コストも安くシンプルで故障の少ない冷凍サイクル構成となるが、開口度が不変であるため、上述の不具合が発生する。
そこで、冷凍サイクルの減圧手段としてキャピラリーチューブを使用したヒートポンプを用いながらも、着霜によるヒートポンプの運転不良を防止できる衣類乾燥機を提供する。
【課題を解決するための手段】
【0008】
実施形態による衣類乾燥機は、外箱と、前記外箱内に設けられ排気口と給気口とを有する乾燥室と、前記乾燥室外に設けられ前記排気口と前記給気口とを連通する循環風路と、この循環風路内に設けられ前記乾燥室内の空気を前記排気口から前記循環風路内に流入させて前記給気口から前記乾燥室内に供給するように循環させる送風機と、圧縮機、凝縮器、キャピラリーチューブ、蒸発器を冷媒管で閉ループに繋いで構成された冷凍サイクルを備えると共に、前記蒸発器を前記循環風路内に設け且つ前記凝縮器を前記循環風路内に前記蒸発器より空気の流れに対して下流側に設けてなるヒートポンプと、前記送風機が前記乾燥室内の空気を前記排気口から前記循環風路内に流入させて前記給気口から前記乾燥室内に供給するように循環させている状態で、前記圧縮機の運転周波数を下げ、前記送風機の回転数を上げることにより、前記蒸発器の着霜を抑制する制御手段とを備えた構成である。
【図面の簡単な説明】
【0009】
図1】第1実施形態による洗濯乾燥機の縦断側面図
図2】ヒートポンプの概略構成を示す図
図3】制御系の機能ブロック図
図4】制御装置の制御内容を示すフローチャート
図5】運転制御(A)の制御内容を示すフローチャート
図6】運転制御(B)の制御内容を示すフローチャート
図7】運転制御(C)の制御内容を示すフローチャート
図8】圧縮機及び送風機の各調整値を示す図
図9】第2実施形態を示す図3相当図
図10】制御データを示す図
図11】調査データを示し、(a)は第1の運転周波数が60Hzである場合の制御パターンを示し、(b)は各制御パターンでの蒸発器の温度変化を示す図
図12】調査データを示す図
図13図4相当図
【発明を実施するための形態】
【0010】
第1実施形態では、衣類乾燥機として洗濯乾燥機を示している。この洗濯乾燥機について図1図8を参照して説明する。図1において、外箱1の内部には水槽2が配設され、その水槽2の内部にはドラム3が配設されている。水槽2及びドラム3は、共に一端部が閉塞された円筒状を成している。この場合、水槽2及びドラム3により、衣類の洗い(洗剤洗い及びすすぎ洗い)、脱水、乾燥に用いる槽が構成される。前記水槽2の内部(実質的にはドラム3の内部)は、乾燥室3aを構成している。
【0011】
これら水槽2及びドラム3は、前側、即ち、図1中、左側の端面部にそれぞれの開口部4,5を有している。このうち、ドラム3の開口部5は、衣類が出し入れされ、その開口部5は水槽2の開口部4に囲繞されている。開口部4は、外箱1の前面部に形成された衣類出し入れ用の開口部6に、ベローズ7を介して連結されている。外箱1の開口部6には扉8が開閉可能に設けられている。
【0012】
ドラム3は、開口部5の周囲に、例えば液体封入形の回転バランサ9が設けられ、周側部、つまり、ドラム3の胴部のほぼ全域に孔10が形成されている(図1に一部のみ図示)。この孔10は、洗濯時及び脱水時に通水孔として機能し、乾燥時には通風孔として機能する。ドラム3の周側部の内面には複数のバッフル11が該ドラム3の内方に突出して設けられている。ドラム3の後側の端面部には、その中心と同心となる環状配置により複数の温風導入口12が形成されている。
【0013】
水槽2には、前側の端面部の上部、つまり、開口部4より上方の部分に排気口13が形成され、後側の端面部の上部に、温風導入口12の回転軌跡に対向させて給気口14が形成されている。水槽2の底部には排水口15が設けられている。この排水口15には、水槽2外で排水弁16が接続され、更に、排水弁16に排水ホース17が接続されて、これらにより水槽2内の水を機外に排出できるようにしている。
【0014】
水槽2の背面部には洗濯機モータ18が取り付けられており、これの回転軸19を水槽2内に挿通させて、その先端部に、ドラム3の後側の端面部の中心部が取り付けられている。これにより、ドラム3は、水槽2に同軸状で回転可能に支持されている。即ち、ドラム3は、洗濯機モータ18により直接回転駆動される構成で、洗濯機モータ18によるダイレクトドライブ方式が採用されている。
【0015】
なお、水槽2は、複数のサスペンション20(図1に、1つのみ図示)を介して外箱1に弾性支持されている。その支持形態は、水槽2の軸方向が、前後となる横軸状かつ、前上がりの傾斜状をなしている。さらに、この水槽2に支持されたドラム3も、同形態となっている。洗濯機モータ18は、この場合アウターロータ形のブラシレスDCモータで構成されており、ドラム3を回転させる駆動手段として機能するようになっている。
【0016】
水槽2の下方、即ち、外箱1の底面上には、台板21が配置され、この台板21上に通風ダクト22が配置されている。通風ダクト22は、前端部の上部に吸風口23を有している。この吸風口23には、水槽2の排気口13が、還風ダクト24及び接続ホース25を介して接続されている。なお、還風ダクト24は、水槽2の開口部4の左側を迂回するように配管されている。
【0017】
通風ダクト22の後端部には、送風機26のケーシング27が連設されている。このケーシング27の出口部28は、接続ホース29及び給風ダクト30を介して、水槽2の給気口14に接続されている。なお、給風ダクト30は、前記洗濯機モータ18の左側を迂回するように配管されている。ここで、還風ダクト24、接続ホース25、通風ダクト22、送風機26のケーシング27、接続ホース29、給風ダクト30により、水槽2の排気口13と給気口14とが連通接続されて、循環風路31が構成されている。この循環風路31は、水槽2内と連通していると共にドラム3内とも連通している。なお、送風機26は、この場合、遠心ファンであり、ケーシング27の内部に遠心羽根車32を有すると共に、その遠心羽根車32を回転させる送風機モータ33をケーシング27の外部に有している。送風機26は、ドラム3内の空気を、循環風路31を通して循環させる送風手段を構成している。この送風機26の運転により循環風路31内に矢印Eで示す循環空気流が形成される。又、この送風機モータ33は回転数変更可能である。
【0018】
そして、循環風路31中、通風ダクト22の内部において、乾燥室3aの空気出口側である排気口13側には蒸発器34が配設されている。又、循環風路31中、通風ダクト22の内部において、当該蒸発器34より前記循環空気流(空気の流れ)の下流側には凝縮器35が配設されている。これらの蒸発器34及び凝縮器35は、いずれも詳しくは図示しないが、冷媒流通パイプに伝熱フィンを細かいピッチで多数配設して成るフィン付きチューブ形のもので、熱交換性に優れており、それらの伝熱フィンの各間を、通風ダクト22内の前述の循環空気流(循環風)が通るようになっている。
【0019】
蒸発器34及び凝縮器35は、圧縮機36、及び、減圧手段であるキャピラリーチューブ43(図2参照)と共に温風供給手段たるヒートポンプ37を構成するもので、このヒートポンプ37においては、圧縮機36、凝縮器35、キャピラリーチューブ43、除湿手段たる蒸発器34が冷媒管路37aによって閉ループに接続されることで、冷凍サイクル49が構成されている。
【0020】
そして、圧縮機36が作動することによって冷媒を循環させるようになっている。この圧縮機36は詳細には図示しないが、例えばロータリー形であり、後述する制御装置は、前記圧縮機36のモータを、例えばインバータ制御(運転周波数の制御)により可変周波数で運転制御するようになっている。この運転周波数を上げることにより圧縮機36の回転数が上がるようになっている。
【0021】
前記ヒートポンプ37の能力(乾燥能力)は、圧縮機36の前記運転周波数(運転能力)や送風機26の回転数(送風機モータ33の回転数、送風能力)により決定されるものである。つまり、圧縮機36の運転周波数を高くするほど圧縮機36の運転能力が高くなり、又、送風機26の回転数を高くするほぼ圧縮機36の送風能力が高くなる。
【0022】
なお、外箱1の内上部には、洗濯乾燥機の制御に必要な電源系の制御部38及び表示系の制御部39と、水槽2内に給水するための給水弁40、給水ケース41、及び給水ホース42が配設されている。そして、循環風路31の内部には、排気口13の近傍部位に排気温度を検出する排気温度センサ44が設けられ、又、給気口14の近傍部位に給気温度を検出する給気温度センサ45が設けられている。又、前記蒸発器34には、図2に示すように、蒸発器の温度(例えばフィンの温度)を検出する蒸発器温度センサ46が設けられている。
【0023】
図3に制御系の機能ブロック図を示すが、制御装置47は、前記制御部38,39(図1参照)を含むもので、例えばマイクロコンピュータやRAM、ROM等で構成されている。この制御装置47は、予め記憶された制御プログラムを実行することで、蒸発器34の着霜を抑制する制御手段47aとして機能する。
【0024】
前記制御装置47には、洗濯乾燥機の運転に係る操作をユーザーがするための操作手段たる操作部53から各種操作信号が入力される。そして、その操作結果や現在の運転状況、及び異常表示などを含めた各種表示が、例えば液晶ディスプレイからなる表示手段たる表示部54に表示される。また、制御装置47には、水槽2内の水位を検知するように設けられた水位センサ48から、水位検知信号が入力される。そして、制御装置47には、排気温度センサ44や、給気温度センサ45、さらには蒸発器温度センサ46から温度検知信号が入力される。
【0025】
そして、制御装置47は、各種の入力信号並びに予め記憶された制御プログラムに基づいて、水槽2内(ドラム3内)に給水するように設けた給水弁40と、ドラム3駆動用の洗濯機モータ18、水槽2内(ドラム3内)から排水するように設けた排水弁16、圧縮機36及び送風機26といった制御対象を、駆動回路52を介して駆動制御する。なお、この駆動回路52は、各制御対象に応じた駆動回路を含む。
【0026】
前記制御装置47の制御手段47aの制御内容について図4のフローチャートを参照して説明する。
制御装置47の制御に基づいて行われる乾燥行程について説明する。なお、乾燥行程は、洗濯行程(これは洗剤洗い行程、すすぎ洗い行程、脱水行程を含む)の後に実行されることもあるし、単独で実行されることもある。
【0027】
この乾燥行程の実行前には、ドラム3内に脱水後の衣類が収容されているものとする。さて、この乾燥行程では、図4に示すように、制御装置47は、ステップS10で、初期設定をする。この初期設定では、圧縮機36の運転周波数を予め定められた初期値である60Hzに設定すると共に、送風機26の回転数を予め定められた初期値である4000rpmに設定する。
【0028】
そして、ステップS20で洗濯機モータ18を低速で正逆回転させることでドラム3を低速で正逆両方向に回転させる。
次のステップS30では、圧縮機36を現在設定されている運転周波数この場合60Hzで運転すると共に、送風機26の送風機モータ33を現在設定されている回転数この場合4000rpmで駆動する(送風機26を運転する)。この送風機26の運転により、遠心羽根車32の送風作用で、図1に実線矢印Eで示すように、循環空気流が発生する。すなわち、水槽2内の空気が排気口13から還風ダクト24及び接続ホース25を経て通風ダクト22内に流入する。また、この時に、ヒートポンプ37の圧縮機36の運転により、ヒートポンプ37に封入された冷媒が圧縮されて高温高圧の冷媒となり、その高温高圧の冷媒が凝縮器35に流れて、通風ダクト22内の空気と熱交換する。その結果、通風ダクト22内の空気が加熱され、反対に、冷媒の温度は低下して液化される。この液化された冷媒が、次に、キャピラリーチューブ43を通過して減圧された後、蒸発器34に流入し、気化する。それにより、蒸発器34は通風ダクト22内の空気を冷却する。蒸発器34を通過した冷媒は圧縮機36に戻る。
【0029】
これらにより、水槽2内から通風ダクト22内に流入した空気は、蒸発器34で冷却されて除湿され、その後に凝縮器35で加熱されて温風化される。そして、その温風が接続ホース29、給風ダクト30を経て、給気口14から水槽2内に供給され、更に、温風導入口12からドラム3内に供給される。ドラム3内に供給された温風は衣類の水分を奪った後、排気口13から還風ダクト24及び接続ホース25を経て通風ダクト22内に流入する。このように、蒸発器34と凝縮器35を有する通風ダクト22とドラム3との間、即ち、循環風路31を空気が循環することにより、ドラム3内の衣類が乾燥される。
【0030】
次のステップS40では、蒸発器温度センサ46による検出温度(蒸発器初期温度)を取得する。そして、この蒸発器初期温度が、0℃未満であれば(ステップS50の判断で「YES」)、ステップS60に移行して蒸発器34の温度変化に応じた運転制御(A)(図5参照、後述する)を実行する。又、蒸発器初期温度が0℃超〜10℃未満であれば(ステップS70の判断で「YES」)、ステップS80に移行して蒸発器34の温度変化に応じた運転制御(B)(図6参照、後述する)を実行する。又、蒸発器初期温度が10℃超〜20℃未満であれば(ステップS90の判断で「YES」)、ステップS100に移行して蒸発器34の温度変化に応じた運転制御(C)(図7参照、後述する)を実行する。又、蒸発器初期温度が20℃超であれば(ステップS90の判断で「NO」)、ステップS110に移行して、圧縮機36の運転周波数を最大値である100Hzに変更すると共に送風機26の回転数を最大値である5500rpmに変更する。
【0031】
上記ステップS60、ステップS80、ステップS100、ステップS110の後は、ステップS120に移行して、乾燥行程が予め定められた乾燥終了条件となったか否かを判断する。この乾燥終了条件は、衣類量に応じて定められる運転時間でも良いし、排気温度センサ44と給気温度センサ45の温度差が所定温度差に集束したことでも良い。
このステップS120で未だ乾燥終了条件となっていないと判断すると前記ステップS30に移行し、乾燥終了条件となったと判断すると、ステップS130で各機器(洗濯機モータ18、圧縮機36、送風機26)の運転を停止して乾燥行程を終了する。
【0032】
前記ステップS60(運転制御(A))の制御内容を示す図5において、ステップT10では所定時間間隔(例えば10分間隔)での蒸発器34の温度変化(検出温度の変化)を算出する。
この温度変化が−1℃以下(温度変化が下がる方向)であれば(ステップT20の判断で「YES」)、圧縮機36の運転周波数を、現在設定の運転周波数に対して10Hz下げるように調整すると共に、送風機26の回転数を、現在設定の回転数に対して500rpm上げるように調整する(ステップT30)。
【0033】
前記温度変化が−1℃超〜1℃以下(温度変化がほぼ横ばい)の場合(ステップT40の判断で「YES」)には、圧縮機36の運転周波数を、現在設定の運転周波数に対して5Hz下げるように調整すると共に、送風機26の回転数を、現在設定の回転数に対して250rpm上げるように調整する(ステップT50)。
温度変化が+1℃超(温度変化が上がる方向)の場合には(ステップT40の判断で「NO」)、圧縮機36の運転周波数を、現在設定の運転周波数に対して調整値0(そのまま)とすると共に、送風機26の回転数を、現在設定の回転数に対して調整値0(そのまま)とする(ステップT60)。
【0034】
このように、制御装置47は、温度変化が、−1℃以下の場合(下がる方向であると判断した場合)では、+1℃超の場合(上がる方向であると判断した場合)に比して、相対的に圧縮機36の運転能力を下げると共に送風機26の送風能力を上げる制御を行う。
前記ステップS80(運転制御(B))の制御内容を示す図6において、ステップU10では所定時間間隔(例えば10分間隔)での蒸発器34の温度変化(検出温度の変化)を算出する。
【0035】
この温度変化が−1℃以下であれば(ステップU20の判断で「YES」)、圧縮機36の運転周波数を、現在設定の運転周波数に対して5Hz下げるように調整すると共に、送風機26の回転数を、現在設定の回転数に対して250rpm上げるように調整する(ステップU30)。
前記温度変化が−1℃超〜1℃以下の場合(ステップU40の判断で「YES」)には、圧縮機36の運転周波数を、現在設定の運転周波数に対して調整値0とする(そのまま)と共に、送風機26の回転数を、現在設定の回転数に対して125rpm上げるように調整する(ステップU50)。
【0036】
温度変化が+1℃超の場合には(ステップU40の判断で「NO」)、圧縮機36の運転周波数を、現在設定の運転周波数に対して2Hz上げるように調整すると共に、送風機26の回転数を、現在設定の回転数に対して調整値0(そのまま)とする(ステップU60)。
この場合も、制御装置47は、温度変化が、−1℃以下の場合(下がる方向であると判断した場合)では、+1℃超の場合(上がる方向であると判断した場合)に比して、相対的に圧縮機36の運転能力を下げると共に送風機26の送風能力を上げる制御を行う。
【0037】
前記ステップS90(運転制御(C))の制御内容を示す図7において、ステップV10では所定時間間隔(例えば10分間隔)での蒸発器34の温度変化(検出温度の変化)を算出する。
この温度変化が−1℃以下であれば(ステップV20の判断で「YES」)、圧縮機36の運転周波数を、現在設定の運転周波数に対して3Hz下げるように調整すると共に、送風機26の回転数を、現在設定の回転数に対して150rpm上げるように調整する(ステップV30)。
【0038】
前記温度変化が−1℃超〜1℃以下の場合(ステップV40の判断で「YES」)には、圧縮機36の運転周波数を、現在設定の運転周波数に対して調整値0とする(そのまま)と共に、送風機26の回転数を、現在設定の回転数に対して調整値0とする(そのまま)(ステップV50)。
温度変化が+1℃超の場合には(ステップV40の判断で「NO」)、圧縮機36の運転周波数を、現在設定の運転周波数に対して6Hz上げるように調整すると共に、送風機26の回転数を、現在設定の回転数に対して調整値0(そのまま)とする(ステップV60)。
この場合も、制御装置47は、温度変化が、−1℃以下の場合(下がる方向であると判断した場合)では、+1℃超の場合(上がる方向であると判断した場合)に比して、相対的に圧縮機36の運転能力を下げると共に送風機26の送風能力を上げる制御を行う。
【0039】
なお、上述の制御における圧縮機36及び送風機26の各調整値を図8に示している。
このような実施形態によれば、蒸発器温度センサ46による検出温度の変化が下がる方向であるか上がる方向であるかを判定するようにしている。ここで、検出温度の変化が下がる方向であるということは、蒸発器34に対する着霜が発生する方向又は着霜量が増加する傾向にあると判断できる。逆に、検出温度の変化が上がる方向であるということは、着霜が無い又は着霜が発生しない傾向にあると判断できる。
【0040】
そこで、この実施形態によれば、蒸発器温度センサ46による検出温度の変化が下がる方向であると判定した場合には、上がる方向であると判定した場合に比して、圧縮機36の運転能力である運転周波数を相対的に下げる制御を実行するから、圧縮機36の冷却能力を緩和できて、着霜の発生を抑制できる。これにより、冷凍サイクル49の減圧手段としてキャピラリーチューブ43を使用したヒートポンプ37を用いながらも、上述の制御を行うことにより、着霜によるヒートポンプ37の運転不良を防止できる。
【0041】
さらにこの実施形態によれば、蒸発器温度センサ46による検出温度の変化が下がる方向であると判定した場合には、上がる方向であると判定した場合に比して、送風機26の運転能力である回転数を相対的に上げる制御を実行するから、上述した圧縮機36の冷却能力を緩和することに加えて、循環風量を増加させることによっても着霜の発生抑制に寄与できる。さらに、この送風機26の回転数を上げることによる循環風量増加によって、圧縮機36の冷却能力緩和による乾燥能力低下を、補うことができ、総じて乾燥能力全体の低下も抑制しつつ、着霜を抑止できる。
【0042】
又、この実施形態によれば、蒸発器34の初期温度を、0℃未満、0℃超〜10℃未満、10℃超〜20℃未満の区分で判断し、各初期温度帯に応じて圧縮機36の運転周波数の調整値、送風機26の回転数の調整値を変更するようにしたから、蒸発器34の初期温度に応じた効率の良い乾燥運転を実行できる。
【0043】
つまり、着霜抑制のみを図るのであれば、図8での(A)の横方向一列の欄に示す調整値(初期温度0℃未満に対応した調整値)を一義的に採用すれば、蒸発器34がどの初期温度であっても着霜を抑制できる。しかし、この場合、この蒸発器34の初期温度が高いときには、着霜発生確率が低いにもかかわらず、圧縮機36が過剰に低い運転周波数となって冷凍サイクルの運転効率が低く、乾燥運転時間が長くなってしまう。しかも冷凍サイクルの効率が低いにもかかわらず送風機26の回転数も過剰に高くて必要以上の電力を消費してしまう。
【0044】
この点、この実施形態では、上述したように、蒸発器34の初期温度に応じて(0℃未満、0℃超〜10℃未満、10℃超〜20℃未満の区分に応じて)圧縮機36の運転周波数の調整値、送風機26の回転数の調整値を変更するようにしたから、着霜の抑制を図りながら蒸発器34の初期温度に応じた効率の良い乾燥運転を実行できる。
【0045】
図9図13は第2実施形態を示している。この第2実施形態では、制御手段47aの制御内容が異なると共に、記憶手段として不揮発性メモリ47bを備えている。又、蒸発器温度センサ46は備えていない。前記不揮発性メモリ47bには、図10に示す制御データを記憶している。この制御データとしては、圧縮機36の第1の運転周波数(初期運転能力)及びこれに対応した第1の運転時間(初期運転時間)、第2〜第4の運転周波数(所定運転能力)及びこれに対応した第2〜第4の運転時間(所定運転時間)がある。
【0046】
前記各制御データは、次のような実験を経て設定されている(図11図12参照)。図11図12において、今、実験的に、送風機26の回転数を最大値である5500rpmとし、蒸発器34に着霜が発生する・しないの境界温度を例えば0℃とし、蒸発器34の初期温度(これは室温でも良い)と、圧縮機36の運転周波数(運転能力)と、運転時間とを変更しつつ、圧縮機36を運転してみた。
【0047】
例えば蒸発器34の初期温度が3℃の場合、乾燥運転開始から前記蒸発器34に着霜が発生しないことが保障される又は着霜が発生しても着霜が解消することが保障される圧縮機36の第1の運転周波数(上限運転周波数)は40Hzで、これに対応する第1の運転時間は30分、この後の第2の運転周波数が50Hzで、これに対応する第2の運転時間が30分、この後の第3の運転周波数が70Hzで、これに対応する第3の運転時間が30分、この後の第4の運転周波数が90Hzで、これに対応する第4の運転時間が乾燥終了まで、であり、この時の蒸発器34の温度変化は、線L1で示される。
【0048】
同様に、蒸発器34の初期温度が5℃の場合では、第1の運転周波数が60Hz及び第1の運転時間が30分、第2の運転周波数が70Hz及び第2の運転時間が30分、第3の運転周波数が80Hz及び第3の運転時間が30分、第4の運転周波数が90Hz及び第4の運転時間が乾燥終了まで、であり、この時の蒸発器34の温度変化は、線Lkで示される。
【0049】
同様に、初期温度が7℃の場合では、第1の運転周波数が70Hz及び第1の運転時間が30分、第2の運転周波数が80Hz及び第2の運転時間が30分、第3の運転周波数が90Hz及び第3の運転時間が30分、第4の運転周波数が90Hz及び第4の運転時間が乾燥終了まで、であり、この時の蒸発器34の温度変化は、線L2で示される。
【0050】
同様に、初期温度が10℃の場合では、運転周波数は一律(乾燥開始から終了まで)90Hzであり、この時の蒸発器34の温度変化は、線L3で示される。
ここで、線L1で示すように圧縮機36の第1の運転周波数が40Hzであってその後順次運転周波数を上げる制御パターンであると、冷凍サイクルの始動性が悪いと共に冷凍サイクルの能力も低く、乾燥所要時間が過度に長くなってしまい、実用的でない。一方、線Lkで示すように第1の運転周波数が60Hzであってその後順次運転周波数を上げる制御パターンであると、乾燥所要時間がさほど長くならないと共に、蒸発器34(又は室温)の初期温度が5℃を若干下回って、一旦着霜が発生したとしても着霜が解消することが保障され、且つ、その後の運転周波数の増加によって乾燥所要時間の減縮を図り得るものであり、この制御パターンを、乾燥所要時間の長時間化を抑えつつ着霜を抑制するための制御パターンとして採用できる。
【0051】
このような第1の運転周波数(初期運転能力)60Hz及び第1の運転時間(初期運転時間)30分、前記第1の運転周波数60Hzより高い第2〜第4運転周波数(所定運転能力)70Hz、80Hz、90Hz及び第2〜第4運転周波数に対応した第2〜第4運転時間(所定運転能力)を、制御データとして不揮発性メモリ47bに記憶している(図10参照)。
【0052】
制御装置47における制御手段47aは次のように制御する。図13に示すように、ステップW10で不揮発性メモリ47bに記憶した制御データを読み込む。そしてステップW20で、圧縮機36の初期運転周波数を60Hzに設定すると共に、送風機26の回転数を5500rpmに設定する。次にステップW30で、洗濯機モータ18を低速で正逆回転させることでドラム3を低速で正逆両方向に回転させる。次のステップW40で、圧縮機36を初期運転周波数60Hzで運転すると共に、送風機26の送風機モータ33を5500rpmで駆動する(送風機26を運転する)。
【0053】
次のステップW50では、ステップW40の実行時点からの経過時間が、初期運転時間30分を経過したか否かを判断し、経過すれば、ステップW60に移行して圧縮機36の運転周波数を所定運転周波数70Hzに変更して運転する。
次のステップW70では、ステップW60の実行時点からの経過時間が、第2の運転時間30分を経過したか否かを判断し、経過すれば、ステップW80に移行して圧縮機36の運転周波数を所定運転周波数80Hzに変更して運転する。
【0054】
次のステップW90では、ステップW80の実行時点からの経過時間が、第3の運転時間30分を経過したか否かを判断し、経過すれば、ステップW100に移行して圧縮機36の運転周波数を所定運転周波数90Hzに変更して運転する。
次のステップW110では、ステップW100の実行時点からの経過時間が、第4の運転時間(これは乾燥運転終了判断まで)となったか否かを判断し、乾燥運転終了が判断されれば、ステップW120に移行して各機器(洗濯機モータ18、圧縮機36、送風機26)の運転を停止して乾燥行程を終了する。
【0055】
このような第2実施形態においては、不揮発性メモリ47bに、乾燥運転開始から蒸発器34に着霜が発生しないことが保障される又は着霜が発生しても着霜が解消することが保障される圧縮機36の上限運転能力及び当該上限運転能力での運転時間を夫々初期運転能力(運転周波数60Hz)及び初期運転時間(第1の運転時間)として記憶すると共に、前記初期運転能力より高い所定運転能力(運転周波数70Hz、80Hz、90Hz)及びこれに対応した所定運転時間(第2、第3、第4の運転時間)を記憶する。
【0056】
そして、制御手段47aは、乾燥運転開始から前記記憶された初期運転時間は前記圧縮機を前記記憶された初期運転能力で運転制御するから、蒸発器温度センサを用いることなく、蒸発器34に対する着霜を抑制できる。しかも前記初期運転時間が経過した以後は圧縮機36を前記初期運転能力より高い所定運転能力とこれに対応した所定運転時間とに基づいて運転制御するから、蒸発器34に対する着霜を抑制しつつ、乾燥時間の長時間化を抑制できる。
【0057】
なお、圧縮機36を前記初期運転能力及び初期運転時間で運転した後については、前記所定運転周波数(所定能力)への変更は上述した3回でなくても、1回、2回でも、あるいは4回以上でも良い。又所定運転周波数は、初期運転周波数より高ければ、適宜変更しても良い。又、実施形態では洗濯乾燥機を示したが、衣類乾燥の機能のみを有する衣類乾燥機でも良い。
【0058】
上述した実施形態による衣類乾燥機は、外箱と、前記外箱内に設けられ排気口と給気口とを有する乾燥室と、前記乾燥室外に設けられ前記排気口と前記給気口とを連通する循環風路と、この循環風路内に設けられ前記乾燥室及びこの循環風路内の空気を循環させる送風機と、圧縮機、凝縮器、キャピラリーチューブ、蒸発器を冷媒管で閉ループに繋いで構成された冷凍サイクルを備えると共に、前記蒸発器を前記循環風路内に設け且つ前記凝縮器を前記循環風路内に前記蒸発器より空気の流れに対して下流側に設けてなるヒートポンプと、前記圧縮機と前記送風機とを制御して前記蒸発器の着霜を抑制する制御手段とを備えた構成であり、これにより、冷凍サイクルの減圧手段としてキャピラリーチューブを使用したヒートポンプを用いながらも、着霜によるヒートポンプの運転不良を防止できる。
【0059】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変更は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0060】
図面中、2は水槽、3はドラム、3aは乾燥室、12は温風導入口、13は排気口、14は給気口、22は通風ダクト、26は送風機、31は循環風路、34は蒸発器、35は凝縮器、36は圧縮機、37はヒートポンプ、43はキャピラリーチューブ、44は排気温度センサ、45は給気温度センサ、46は蒸発器温度センサ、47は制御装置、47aは制御手段、47bは不揮発性メモリ(記憶手段)、49は冷凍サイクルを示す。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13