【実施例】
【0035】
本発明に係る非水電解液二次電池は、下記の形態に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。
【0036】
(実施例1)
[正極の作製]
コバルト酸リチウム粒子1000gを用意し、この粒子を3.0Lの純水に添加し攪拌して、コバルト酸リチウムが分散した懸濁液を調製した。次に、この懸濁液に、硝酸エルビウム5水和物[Er(NO
3)
3・5H
2O]1.81gが200mLの純水に溶解された溶液を1時間で全量投入するように加えた。この際、コバルト酸リチウムを分散した溶液のpHを9に調整するために、10質量%の硝酸水溶液、或いは、10質量%の水酸化ナトリウム水溶液を適宜加えた。
【0037】
次いで、上記硝酸エルビウム5水和物溶液の添加終了後に、吸引濾過し、更に水洗を行った後、得られた粉末を120℃で乾燥し、上記コバルト酸リチウムの表面の一部に水酸化エルビウム化合物が固着したものを得た。その後、得られた粉末を300℃で5時間空気中にて熱処理した。このように300℃で熱処理すると、全部或いは大部分の水酸化エルビウムがオキシ水酸化エルビウムに変化するので、コバルト酸リチウム粒子の表面の一部にオキシ水酸化エルビウムが固着した状態となる。但し、一部は水酸化エルビウムの状態で残存する場合があるので、コバルト酸リチウム粒子の表面の一部には水酸化エルビウムが固着されている場合もある(オキシ水酸化エルビウムと水酸化エルビウムとを総称して、エルビウム化合物と称することがある)。
なお、表面に固着したエルビウム化合物は、エルビウム元素換算でコバルト酸リチウムに対して0.068質量%であった。また、SEMによる観察の結果、コバルト酸リチウム粒子の表面に、均一に分散してエルビウム化合物が固着しており、その粒子径は100nm以下であった。
【0038】
このようにして得られた正極活物質と、正極導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)とを、分散媒としてのN−メチル−2−ピロリドン中で混練して正極スラリーを調製した。この際、正極活物質と正極導電剤と結着剤との質量比を95:2.5:2.5とした。次に、上記正極スラリーを、アルミニウム箔から成る正極集電体の両面に塗布、乾燥した後、圧延ローラにより圧延し、正極集電タブを取り付けることで、正極を作製した。なお、正極の充填密度は3.60g/cm
3とした。
【0039】
〔負極の作製〕
増粘剤であるCMC(カルボキシメチルセルロースナトリウム)を純水に溶かした水溶液中に、負極活物質として人造黒鉛と、結着剤としてのSBR(スチレン−ブタジエンゴム)とを加えた後に混練して、負極スラリーを調製した。この際、負極活物質と結着剤と増粘剤との質量比を98:1:1とした。次に、上記負極スラリーを銅箔から成る負極集電体の両面に均一に塗布、乾燥した後、圧延ローラにより圧延し、負極集電タブを取り付けることで、負極を作製した。なお、負極の充填密度は1.60g/cm
3とした。
【0040】
〔非水電解液の調製〕
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを、2:8の体積比で混合した混合溶媒に対し、六フッ化リン酸リチウム(LiPF
6)を1.0モル/リットルの濃度になるように溶解させると共に、上記混合溶媒に対して、ビニレンカーボネート(VC)を1.0質量%、ヘキサメチレンジイソシアナート(HMDI)を1.0質量%の割合でそれぞれ添加して、非水電解液を調製した。
【0041】
〔電池の作製〕
上記のようにして得た正極および負極を、厚み22μmでポリエチレンの微多孔膜からなるセパレータを介して対向するように巻取って巻取り体を作製した。次に、アルゴン雰囲気下のグローボックス中にて、上記巻取り体を上記非水電解液と共にアルミニウムラミネートに封入することにより、厚み3.6mm、幅3.5cm、長さ6.2cmの非水電解液二次電池を得た。
このようにして作製した電池を、以下、電池A1と称する。
【0042】
ここで、
図1及び
図2に示すように、上記非水電解液二次電池11の具体的な構造は、正極1と負極2とがセパレータ3を介して対向配置されており、これら正負両極1、2とセパレータ3とから成る扁平型の電極体には非水電解液が含浸されている。上記正極1と負極2は、それぞれ、正極集電タブ4と負極集電タブ5とが接続され、二次電池としての充放電が可能な構造となっている。なお、電極体は、周縁同士がヒートシールされた閉口部7を備えるアルミラミネート外装体6の収納空間内に配置されている。
【0043】
(実施例2)
非水電解液の添加剤として、ヘキサメチレンジイソシアナート(HMDI)に代えて、1,3−ビス(イソシアナートメチル)シクロヘキサンを用いたこと以外は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、電池A2と称する。
【0044】
(実施例3)
正極活物質として、コバルト酸リチウムの表面の一部に、エルビウム化合物に代えてランタン化合物を固着させたものを用いたこと以外は、上記実施例2と同様にして、電池を作製した。
なお、硝酸エルビウム5水和物に代えて、硝酸ランタン6水和物を用いたこと以外は、上記エルビウム化合物で表面改質した正極活物質を作製する方法と同様の方法で、ランタン化合物で表面改質した正極活物質を作製した。
このようにして作製した電池を、以下、電池A3と称する。
【0045】
なお、ランタン化合物は、ICPによる分析の結果、ランタン元素換算で、コバルト酸リチウムに対して、0.057質量%であった(この質量割合であれば、コバルト酸リチウムに対するランタンのモル量は、上記電池A1のコバルト酸リチウムに対するエルビウムのモル量と同一となる)。また、SEMによる観察の結果、100nm以下のランタン化合物の粒子が、コバルト酸リチウムの表面に均一に分散して固着していた。
【0046】
(実施例4)
非水電解液の添加剤として、ヘキサメチレンジイソシアナート(HMDI)に代えて、ドデカメチレンジイソシアナートを用いたこと以外は、上記実施例3と同様にして電池を作製した。
このようにして作製した電池を、以下、電池A4と称する。
【0047】
(比較例1)
非水電解液の調製時に、ヘキサメチレンジイソシアナート(HMDI)を添加しなかったこと以外は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、電池Z1と称する。
【0048】
(比較例2)
正極活物質として、コバルト酸リチウムの表面の一部をジルコニウムの化合物で固着したものを用いた以外は、上記実施例1と同様にして電池を作製した。
なお、硝酸エルビウム5水和物に代えて、オキシ硝酸ジルコニウム2水和物を用いたこと以外は、上記エルビウム化合物で表面改質した正極活物質を作製する方法と同様の方法で、ジルコニウム化合物で表面改質した正極活物質を作製した。
このようにして作製した電池を、以下、電池Z2と称する。
【0049】
なお、ジルコニウム化合物は、ジルコニウム元素換算でコバルト酸リチウムに対して0.037質量%であった。(この質量割合であれば、コバルト酸リチウムに対するジルコニウムのモル量は、上記電池A1のコバルト酸リチウムに対するエルビウムのモル量と同一となる)。また、SEM観察の結果、ジルコニウム化合物は、均一に分散してコバルト酸リチウムの表面に固着していた。
【0050】
(比較例3)
非水電解液の調製時に、ヘキサメチレンジイソシアナート(HMDI)を添加しなかったこと以外は、上記比較例2と同様にして電池を作製した。
このようにして作製した電池を、以下、電池Z3と称する。
【0051】
(比較例4)
非水電解液の調製時に、1,3−ビス(イソシアナートメチル)シクロヘキサンを添加しなかったこと以外は、上記実施例3と同様にして電池を作製した。
このようにして作製した電池を、以下、電池Z4と称する。
【0052】
(比較例5)
非水電解液の調製時に、ヘキサメチレンジイソシアナート(HMDI)に代えて、ヘキシルイソシアナート(イソシアナート基が1つしかない含まれない化合物)を添加した以外は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、電池Z5と称する。
【0053】
(比較例6)
Li
2CO
3(リチウム塩)とCo
3O
4(四酸化三コバルト)とZrO
2(酸化ジルコニウム)を、Li:Co:Zrのモル比が1:0.995:0.005となるようにして石川式らいかい乳鉢にて混合した後、空気雰囲気中にて850℃で20時間熱処理後に粉砕することにより、正極活物質を作製したこと以外は、上記実施例1と同様にして電池を作製した。尚、該正極活物質をTEM観察したところ、コバルト酸リチウムの粒子同士の界面にジルコニウムが存在することを確認した。
このようにして作製した電池を、以下、電池Z6と称する。
【0054】
(比較例7)
非水電解液の調製時に、ヘキサメチレンジイソシアナート(HMDI)を添加しなかったこと以外は、上記比較例6と同様にして電池を作製した。
このようにして作製した電池を、以下、電池Z7と称する。
【0055】
[実験]
上記の電池A1〜A4、Z1〜Z7について下記手順で充放電等を行い、電圧低下量ΔVmaxと残存容量率とを求めたので、それらの結果を表1に示す。
【0056】
(1)下記充放電条件で充放電サイクル試験を1回行い、初期放電容量(Q
0)を測定した。なお、充放電時の温度は室温とした。
・充電条件
1.0It(750mA)の電流で電池電圧が4.40Vとなるまで定電流充電を行い、その後、4.40Vの定電圧で電流値が[1/20]It(37.5mA)となるまで定電圧充電を行った。
・放電条件
1.0It(750mA)の定電流で電池電圧が2.75Vとなるまで定電流放電を行った。
・休止
上記充電と放電との間の休止間隔は10分間とした。
【0057】
(2)初期放電容量(Q
0)を測定後、60℃の恒温槽に入れて1時間放置した。その後、60℃の環境のまま、750mAの定電流で4.40Vまで充電し、さらに4.40Vの定電圧で、充電のトータル時間が80時間となるまで充電した。
しかる後、恒温槽から電池を取り出して室温まで冷却し、室温にて、連続充電試験後の放電容量(Q
1)測定し、以下の式から、残存容量率を求めた。
【0058】
残存容量率(%)=[連続充電試験後の放電容量(Q
1)/連続充電試験前の放電容量(Q
0)]×100
【0059】
また、
図5に示すように、放電開始後100mAh放電時までで、高温連続充電後の放電容量測定時の電圧と、高温連続充電前の放電容量測定時の電圧との差の最大値を電圧低下量ΔVmaxと定義し、これを求めた。
【0060】
なお、この電圧低下量ΔVmaxが大きい場合、電解液の量が少ないような電池の設計では、放電電圧低下がより顕著となって、放電初期に放電終止電圧としている電圧に達する結果、電池容量が著しく低下することがある。したがって、電池の充放電特性を向上するには、放電電圧量ΔVmaxを小さくする必要がある。
【0061】
【表1】
【0062】
上記表1の結果より明らかなように、コバルト酸リチウムの表面の一部にエルビウム化合物、又はランタン化合物が固着された正極活物質を用い、且つ、非水電解液中に2つ以上のイソシアナート基を含む化合物が含有された電池A1〜A4は、コバルト酸リチウムの表面の一部に希土類化合物を固着していない正極活物質を用い、及び/又は、非水電解液中に2つ以上のイソシアナート基を含む化合物が含有されていない比較電池Z1〜Z7よりも、60℃という高温下で連続充電した際の電池特性に優れることがわかる。以下、具体的に考察する。
【0063】
コバルト酸リチウムの表面の一部にエルビウム化合物が固着された正極活物質を用いた電池A1と電池Z1とを比較した場合、2つ以上のイソシアナート基を含む化合物(ヘキサメチレンジイソシアナート)が非水電解液に含有された電池A1は、非水電解液中に2つ以上のイソシアナート基を含む化合物が含有されていない電池Z1に比べて、残存容量率が顕著に向上すると共に、高温連続充電後における放電時の電圧低下量ΔVmaxも顕著に抑制されていることがわかる。これは、電池A1では、2つ以上のイソシアナート基を含む化合物が効果的に分解し、正極活物質の表面上に良好な被膜が形成されたのに対して、電池Z1では、2つ以上のイソシアナート基を含む化合物が添加されていないので、正極活物質の表面上に良好な被膜が形成されないからであると考えられる。
【0064】
また、2つ以上のイソシアナート基を含む化合物として、イソシアナート基の間の部分が鎖状のヘキサメチレンジイソシアナートに代えて、イソシアナート基の間の部分が環状になった1,3−ビス(イソシアナートメチル)シクロヘキサンを用いた電池A2も、電池A1と同様の効果が得られることがわかる。したがって、イソシアナート基の間の部分は、環状でも、鎖状でも、環状にさらに側鎖がついた構造であっても本発明の効果が得られる。
【0065】
但し、電池A1と電池A2とを比較した場合、イソシアナート基の間の部分が環状になった1,3−ビス(イソシアナートメチル)シクロヘキサンを添加した電池A2の方が、イソシアナート基の間の部分が鎖状であるヘキサメチレンジイソシアナアート(HMDI)を添加した電池A1よりも、放電時の電圧低下量ΔVmaxが更に抑制されていることがわかる。これは、イソシアナート基の間の部分が鎖状よりも環状である方が、化合物の構造がより立体的であるため、正極活物質の表面に立体的で良好な被膜を形成することができ、これによって、電解液との反応をより抑えるためと考えられる。以上のことから、イソシアナート基の間の部分は、鎖状よりも環状である方が好ましいことがわかる。
【0066】
また、コバルト酸リチウムの表面の一部にエルビウム化合物が固着された正極活物質を用いた電池Z1と電池Z5とを比較した場合、イソシアナート基が1つしかない化合物(ヘキシルイソシアナート)が非水電解液に含有された電池Z5は、イソシアナート基を含む化合物が全く非水電解液に含有されていない電池Z1に比べて、放電時の電圧低下量ΔVmaxが大きく、残存容量率も低下していることがわかる。この結果より、本発明の効果は、表面の少なくとも一部に希土類元素を含有する化合物が固着している正極活物質を用いた場合に、2つ以上のイソシアナート基を含む化合物が非水電解液に含有されていることが必要となることがわかる。即ち、表面の少なくとも一部に希土類元素を含有する化合物が固着している正極活物質を用いたとしても、非水電解液に含有された化合物がイソシアナート基を1つしか含まなければ、本発明の効果は発揮されないことがわかる。
【0067】
これは、イソシアナート基が1つしかない化合物(ヘキシルイソシアナート)は、希土類元素を含有する化合物との反応性が良くないので、正極活物質の表面上に良好な被膜が形成されないからと考えられる。
【0068】
更に、コバルト酸リチウムの表面の一部にエルビウム化合物以外の希土類元素であるランタン化合物が固着された正極活物質を用いた電池A3と電池A4と電池Z4とを比較した場合、2つ以上のイソシアナート基を含む化合物が非水電解液に含有された電池A3及び電池A4は、2つ以上のイソシアナート基を含む化合物が非水電解液に含有されていない電池Z4に比べて、残存容量率が顕著に向上すると共に、高温連続充電後における放電時の電圧低下量ΔVmaxも顕著に抑制されていることがわかる。
【0069】
但し、コバルト酸リチウムの表面の一部にエルビウム化合物が固着された正極活物質を用いた電池A2と電池Z1とを比較した場合、1,3−ビス(イソシアナートメチル)シクロヘキサンが非水電解液に含有された電池A2は、1,3−ビス(イソシアナートメチル)シクロヘキサンが非水電解液に含有されていない電池Z1に比べて、電圧低下量ΔVmaxが80mV(130mV−50mV)改善している。これに対して、コバルト酸リチウムの表面の一部にランタン化合物が固着された正極活物質を用いた電池A3と電池Z4とを比較した場合、1,3−ビス(イソシアナートメチル)シクロヘキサンが非水電解液に含有された電池A3は、1,3−ビス(イソシアナートメチル)シクロヘキサンが非水電解液に含有されていない電池Z4に比べて、電圧低下量ΔVmaxが25mV(190mV−165mV)しか改善していない。
【0070】
このように、同じ、1,3−ビス(イソシアナートメチル)シクロヘキサンを非水電解液に含有させた場合でも、エルビウム化合物を固着させた方が、ランタン化合物を固着させるより電圧低下量ΔVmaxの改善幅が大きくなる。したがって、コバルト酸リチウムの表面の少なくとも一部に固着させる化合物としては、ランタン化合物よりもエルビウム化合物であることが好ましい。
【0071】
次に、コバルト酸リチウムの表面の一部にジルコニウム化合物が固着された正極活物質を用いた電池Z2と電池Z3とを比較した場合、ヘキサメチレンジイソシアナアート(HMDI)が非水電解液に含有された電池Z2は、ヘキサメチレンジイソシアナアート(HMDI)が非水電解液に含有されていない電池Z3に比べて、残存容量率は改善するものの、電圧低下量ΔVmaxが大きくなっていることがわかる。このことから、正極活物質の表面上に良好な被膜を形成するには、コバルト酸リチウムの表面の少なくとも一部に希土類元素を含有する化合物が固着している正極活物質を用いる必要があることがわかる。詳細は不明であるが、コバルト酸リチウムの表面の一部にジルコニウム化合物が固着されている場合には、ヘキサメチレンジイソシアナアート(HMDI)が効果的に分解せず、正極活物質の表面上に良好な被膜が形成されないためと考えられる。
【0072】
また、正極活物質の粒子同士の界面にジルコニウムが存在する電池Z6と電池Z7とを比較した場合も、ヘキサメチレンジイソシアナアート(HMDI)が非水電解液に含有された電池Z6は、ヘキサメチレンジイソシアナアート(HMDI)が非水電解液に含有されていない電池Z7に比べて、残存容量率は改善するものの、電圧低下量ΔVmaxが大きくなっていることがわかる。
【0073】
以上のことから、本発明の効果は、コバルト酸リチウム等のリチウム遷移金属複合酸化物の表面の少なくとも一部に希土類元素を含有する化合物が固着している正極活物質を用い、且つ、非水電解液に2つ以上のイソシアナート基を含む化合物を含有させた場合に特異的に得られる。