特許第6124303号(P6124303)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三洋電機株式会社の特許一覧

<>
  • 特許6124303-非水電解液二次電池 図000003
  • 特許6124303-非水電解液二次電池 図000004
  • 特許6124303-非水電解液二次電池 図000005
  • 特許6124303-非水電解液二次電池 図000006
  • 特許6124303-非水電解液二次電池 図000007
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6124303
(24)【登録日】2017年4月14日
(45)【発行日】2017年5月10日
(54)【発明の名称】非水電解液二次電池
(51)【国際特許分類】
   H01M 4/525 20100101AFI20170424BHJP
   H01M 4/36 20060101ALI20170424BHJP
   H01M 10/052 20100101ALI20170424BHJP
   H01M 10/0567 20100101ALI20170424BHJP
【FI】
   H01M4/525
   H01M4/36 A
   H01M10/052
   H01M10/0567
【請求項の数】8
【全頁数】15
(21)【出願番号】特願2013-501157(P2013-501157)
(86)(22)【出願日】2012年2月27日
(86)【国際出願番号】JP2012054714
(87)【国際公開番号】WO2012115263
(87)【国際公開日】20120830
【審査請求日】2015年1月28日
(31)【優先権主張番号】特願2011-39602(P2011-39602)
(32)【優先日】2011年2月25日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000001889
【氏名又は名称】三洋電機株式会社
(74)【代理人】
【識別番号】100126963
【弁理士】
【氏名又は名称】来代 哲男
(74)【代理人】
【識別番号】100131864
【弁理士】
【氏名又は名称】田村 正憲
(72)【発明者】
【氏名】野村 峻
(72)【発明者】
【氏名】長谷川 和弘
(72)【発明者】
【氏名】小笠原 毅
(72)【発明者】
【氏名】藤本 洋行
【審査官】 赤樫 祐樹
(56)【参考文献】
【文献】 特開2006−164759(JP,A)
【文献】 国際公開第2010/004973(WO,A1)
【文献】 特開2007−242411(JP,A)
【文献】 特開2010−245016(JP,A)
【文献】 特表2003−500318(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/00− 4/62
H01M 10/05−10/0587
(57)【特許請求の範囲】
【請求項1】
正極活物質を含む正極と、
負極活物質を含む負極と、
非水電解液と、
上記正極及び上記負極の間に設けられたセパレータと、
を備え、
上記正極活物質は、コバルト酸リチウムと、このコバルト酸リチウムにおける表面の少なくとも一部に固着されエルビウムを含有する化合物と、を含み、且つ、上記非水電解液中には、2つ以上のイソシアナート基を含む化合物が含有されている非水電解液二次電池。
【請求項2】
上記エルビウムを含有する化合物が水酸化物もしくはオキシ水酸化物である、請求項1に記載の非水電解液二次電池。
【請求項3】
上記エルビウムを含む化合物の平均粒径が100nm以下である、請求項1又は2に記載の非水電解液二次電池。
【請求項4】
上記2つ以上のイソシアナート基を含む化合物の炭素数が4以上12以下である、請求項1〜請求項3の何れか1項に記載の非水電解液二次電池。
【請求項5】
上記2つ以上のイソシアナート基を含む化合物が非水電解液全体の質量に対して、0.1質量%以上5.0質量%以下含まれている、請求項1〜請求項4の何れか1項に記載の非水電解液二次電池。
【請求項6】
上記コバルト酸リチウムの総量に対する上記希土類元素を含有する化合物の割合が、0.005質量%以上0.8質量%以下である、請求項1〜請求項5の何れか1項に記載の非水電解液二次電池。
【請求項7】
上記2つ以上のイソシアナート基を含む化合物のイソシアナート間が環状である、請求項1〜請求項6の何れか1項に記載の非水電解液二次電池。
【請求項8】
上記2つ以上のイソシアナート基を含む化合物が1,3−シクロヘキサンジイソシアナートである、請求項7に記載の非水電解液二次電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、非水電解液二次電池に関するものである。
【背景技術】
【0002】
近年、携帯電話、ノートパソコン、PDA等の移動情報端末の小型・軽量化が急速に進展しており、その駆動電源としての電池にはさらなる高容量化が要求されている。リチウムイオンが正、負極間を移動することにより充放電を行うリチウムイオン電池は、高いエネルギー密度を有し、高容量であるので、上記のような移動情報端末の駆動電源として広く利用されている。
【0003】
上記移動情報端末は、動画再生機能、ゲーム機能といった機能の充実に伴って、更に消費電力が高まる傾向にあり、更なる高容量化が強く望まれるところである。上記非水電解液二次電池を高容量化する方策としては、単位質量当りの容量が高い活物質を使用したり、単位体積当りの活物質の充填量を増やすといった方策の他、電池の充電電圧を高くするという方策がある。電池の充電電圧を高くした場合、正極活物質と非水電解液との酸化分解反応が生じやすくなる。
【0004】
ここで、非水電解液電池の充放電サイクルを向上するために、非水電解液中に鎖状イソシアネート化合物を含有されることが示されている(特許文献1参照)。
【0005】
また、非水電解液の溶媒の分解及び電池の変形を抑制するために、非水電解液中に脂肪族炭素鎖を有するジイソシアネート化合物を含有させることが示されている(特許文献2参照)。
更に、正極活物質の表面に希土類元素を含む化合物で分散・付着することにより、充電電圧を高くした場合等において、正極活物質と非水電解液との反応を抑制できることが示されている(特許文献3参照)。
【0006】
また、コバルト酸リチウムに適量のジルコニウムを添加することにより、充放電サイクル特性および高温保存特性に優れた非水電解液二次電池を得ることができることが示されている(特許文献4参照)。
更に、コバルト酸リチウムの粒子表面にジルコニウム化合物を付着させることにより、充放電サイクル特性の低下を伴うことなく、充電終止電圧を4.3V以上にすることができ、これによって充放電容量を高めることができることが示されている。(特許文献5参照)
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2006−164759
【特許文献2】特開2007−242411
【特許文献3】特開2010−245016
【特許文献4】特許第2855877
【特許文献5】特開2005−85635
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明者らは、上記特許文献1及び2を検討した結果、これらのイソシアネート化合物を非水電解液に添加した場合には、高温連続充電後の電圧降下が大きくなり、高温連続充電後の放電特性の低下が大きいことがわかった。
【0009】
また、上記特許文献3には、コバルト酸リチウムを主たる正極活物質として、充電電圧を高くした場合等において、正極活物質と非水電解液との反応抑制を主目的としていることが記載されている。しかし、高温連続充電後の放電特性や保存特性を改良する余地が残されている。
【0010】
更に、特許文献4及び5には高容量及びサイクル特性を向上させるために、コバルト酸リチウムにジルコニウムを添加することが記載されているが、高温連続充電後の電圧低下が大きくなるという問題がある。
【課題を解決するための手段】
【0011】
本発明の非水電解液二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、非水電解液と、上記正極及び上記負極の間に設けられたセパレータとを備え、上記正極活物質は、リチウム遷移金属複合酸化物と、このリチウム遷移金属複合酸化物における表面の少なくとも一部に固着され希土類元素を含有する化合物と、から成り、且つ、上記非水電解液中には、2つ以上のイソシアナート基を含む化合物が含有されていることを特徴とする。
【発明の効果】
【0012】
本発明の非水電解液二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、非水電解液と、上記正極及び上記負極の間に設けられたセパレータとを備え、上記正極活物質は、コバルト酸リチウムと、このコバルト酸リチウムにおける表面の少なくとも一部に固着されエルビウムを含有する化合物と、を含み、且つ、上記非水電解液中には、2つ以上のイソシアナート基を含む化合物が含有されていることを特徴とする。
【図面の簡単な説明】
【0013】
図1】本発明の実施の形態に係る非水電解液二次電池の正面図。
図2図1のA−A線矢視断面図。
図3】本発明のコバルト酸リチウムの表面状態を示す説明図。
図4】参考例のコバルト酸リチウムの表面状態を示す説明図。
図5】高温連続充電前後での放電容量測定時の電圧低下量ΔVmaxを示すグラフ。
【発明を実施するための形態】
【0014】
本発明の非水電解液二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、非水電解液と、上記正極及び上記負極の間に設けられたセパレータとを備え、上記正極活物質は、リチウム遷移金属複合酸化物と、このリチウム遷移金属複合酸化物における表面の少なくとも一部に固着され希土類元素を含有する化合物と、から成り、且つ、上記非水電解液中には、2つ以上のイソシアナート基を含む化合物が含有されていることを特徴とする。
【0015】
上記構成であれば、高温連続充電後の放電特性に優れ、かつ、高温連続充電後の残存容量の低下を抑制した非水電解液二次電池を提供することができる。これは、リチウム遷移金属複合酸化物の表面の少なくとも一部に固着した希土類元素を含有する化合物によって、正極活物質の表面で2つ以上のイソシアナート基を含む化合物が効果的に分解し、正極活物質の表面に良質な被膜が形成される。この形成された被膜によって正極活物質が保護され、この結果、非水電解液の酸化分解反応が抑制されるからである。
【0016】
ここで、コバルト酸リチウム粒子等のリチウム遷移金属複合酸化物の表面の一部に、エルビウム等の希土類元素を含有する化合物(以下、希土類化合物と略すことがある)が固着された状態とは、図3に示すように、リチウム遷移金属複合酸化物の粒子21の表面に、希土類化合物の粒子22が固着された状態をいうものである。即ち、当該状態には、図4に示すように、リチウム遷移金属複合酸化物の粒子21と希土類化合物の粒子22とを単に混合して、希土類化合物の粒子22の一部がリチウム遷移金属複合酸化物の粒子21とたまたま接している状態を含まない。
【0017】
上記希土類元素を含有する化合物が水酸化物もしくはオキシ水酸化物であることが好ましい。これは、水酸化物もしくはオキシ水酸化物であると、高温充電状態で、正極活物質表面における非水電解液の分解反応を抑制することができるためである。
【0018】
上記希土類元素を含む化合物の平均粒径が100nm以下であることが好ましい。これは、当該化合物の平均粒径が100nmを超えると、固着部位が一部に偏ってしまうため、前述の効果が十分に発揮されないためである。
【0019】
なお、平均粒径の下限は1nm以上であることが望ましく、特に10nm以上であることが好ましい。平均粒径が1nm未満となると、当該化合物が小さ過ぎて、わずかな量でも正極活物質表面を過剰に覆うことになるからである。
【0020】
上記2つ以上のイソシアナート基を含む化合物の炭素数が4以上12以下であることが好ましい。これは、炭素数が3以下であると、該化合物が不安定で分解し易く、分解反応が制御し難いためである。また、炭素数が13以上であると、該化合物が安定で分解し難く、正極活物質の表面上に良好な保護被膜が形成され難いためである。
【0021】
また、本発明において用いる上記イソシアナート基を含む化合物は、環状でも、鎖状でも、環状にさらに側鎖がついてもよい。その中でも、特に環状の方がより好ましい。上記イソシアナート基を含む化合物は、一般に市販されているので、容易に入手することができる。上記の鎖状構造のものとしては、例えば、ヘキサメチレンジイソシアナート(Hexamethylene diisocyanate:以下略してHMDIと記載することがある。)、テトラメチレンジイソシアナート、ペンタメチレンジイソシアナート、ヘプタメチレンジイソシアナート、オクタメチレンジイソシアナート、ノナメチレンジイソシアナート、デカメチレンジイソシアナート、ウンデカメチレンジイソシアナート、ドデカメチレンジイソシアナートなどが挙げられ、環状構造のものとしては、1,3−ビス(イソシアナートメチル)シクロヘキサン、1,4−ビス(イソシアナートメチル)シクロヘキサン、1,3−シクロペンタンジイソシアナート、1,3−シクロヘキサンジイソシアナート、1,4−シクロヘキサンジイソシアナートなどが挙げられる。
【0022】
上記2つ以上のイソシアナート基を含む化合物が非水電解液全体の質量に対して、0.1質量%以上5.0質量%以下含まれていることが特に好ましい。これは、0.1質量%未満であるとイソシアナート基を含む化合物由来の正極に形成される被膜形成が不十分となる一方、5.0質量%を超えると過剰に被膜が形成され、正極のリチウム挿入、脱離反応を阻害するためである。
【0023】
上記正極活物質の総量に対する上記希土類元素を含有する化合物の割合が、0.005質量%以上0.8質量%以下であることが望ましい。
当該割合が0.005質量%未満ではリチウム遷移金属複合酸化物の表面に付着している化合物の量が過小となって、上記効果を十分に得ることができないことがある。一方、当該割合が0.8質量%を超えると、電子伝導性が低い物質で過剰に覆いすぎるために、正極のリチウム挿入、脱離反応を阻害するためである。
【0024】
上記2つ以上のイソシアナート基を含む化合物のイソシアナート間が環状であることが望ましい。
イソシアナート基の間の部分が鎖状よりも環状である方が、化合物の構造がより立体的である。このため、正極活物質の表面に立体的で良好な被膜を形成することができるので、電解液との反応をより抑えることができる。
【0025】
(その他の事項)
(1)正極活物質として用いられるリチウム遷移金属複合酸化物(例えば、コバルト酸リチウム)の表面の一部に、上記希土類化合物を固着する方法としては、例えば、これらのリチウム遷移金属複合酸化物の粉末を分散した溶液に、希土類化合物を溶解した溶液を混合する方法や、リチウム遷移金属複合酸化物の粉末を混合しながら、希土類化合物を含む溶液を噴霧する方法等によって得ることができる。
【0026】
このような方法を用いることにより、上記リチウム遷移金属複合酸化物の表面の一部に、上記希土類の水酸化物を固着することができる。また、希土類の水酸化物が固着したリチウム遷移金属複合酸化物を熱処理すると、表面の一部に固着した希土類の水酸化物は、希土類のオキシ水酸化物に変化する。
上記希土類の水酸化物を固着させる際に用いる溶液に溶解させる希土類化合物としては、希土類の酢酸塩、希土類の硝酸塩、希土類の硫酸塩、希土類の酸化物、又は、希土類の塩化物等を用いることができる。
【0027】
熱処理の温度としては、一般に80〜600℃の範囲であることが好ましく、特に、80〜400℃の範囲にあることが特に好ましい。熱処理の温度が600℃を超えると、表面に付着した希土類化合物の微粒子の一部が正極活物質の内部に拡散し、初期の充放電効率が低下する。また、熱処理の温度が600℃を超えると、表面の一部に固着した希土類の水酸化物及び/又は希土類のオキシ水酸化物の大部分が希土類の酸化物になる。このため、上記2つ以上のイソシアナート基を含む化合物が効果的に分解し難くなって、正極活物質の表面上に良好な被膜が形成され難くなるためである。一方、熱処理の温度が80℃未満になると、熱処理に長時間を要するので、製造コストが上昇するからである。
【0028】
また、正極活物質として、コバルト酸リチウム以外にニッケルコバルトマンガン酸リチウムを用いることができる。ニッケルコバルトマンガン酸リチウムとしては、ニッケルとコバルトとマンガンのモル比が、1:1:1であったり、5:3:2である等の組成のものを用いることができるが、特に、正極容量を増大させうるように、ニッケルの割合がコバルトやマンガンの割合より多いものを用いることが好ましい。
また、ニッケルマンガンアルミニウム酸リチウム、ニッケルコバルトアルミニウム酸リチウム、リン酸鉄リチウム、リン酸マンガンリチウム等も例示される。また、これらを単独で用いても良いし、混合して用いても良い。
【0029】
(2)本発明に用いる非水電解液の溶媒は限定するものではなく、非水電解液二次電池に従来から用いられてきた溶媒を使用することができる。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネートや、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の鎖状カーボネートや、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ−ブチロラクトン等のエステルを含む化合物や、プロパンスルトン等のスルホン基を含む化合物や、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、1,2−ジオキサン、1,4−ジオキサン、2−メチルテトラヒドロフラン等のエーテルを含む化合物や、ブチロニトリル、バレロニトリル、n−ヘプタンニトリル、スクシノニトリル、グルタルニトリル、アジポニトリル、ピメロニトリル、1,2,3−プロパントリカルボニトリル、1,3,5−ペンタントリカルボニトリル等のニトリルを含む化合物や、ジメチルホルムアミド等のアミドを含む化合物等を用いることができる。特に、これらのHの一部がFにより置換されている溶媒が好ましく用いられる。
【0030】
また、これらを単独又は複数組み合わせて使用することができ、特に環状カーボネートと鎖状カーボネートとを組み合わせた溶媒や、さらにこれらに少量のニトリルを含む化合物やエーテルを含む化合物が組み合わされた溶媒が好ましい。
一方、非水電解液の溶質としては、従来から用いられてきた溶質を用いることができる。例えば、LiPF、LiBF、LiN(SOCF、LiN(SO、LiPF6−x(C2n−1[但し、1<x<6、n=1又は2]等が例示でき、更に、これらの1種もしくは2種以上を混合して用いても良い。溶質の濃度は特に限定されないが、電解液1リットル当り0.8〜1.7モルであることが望ましい。
【0031】
(3)本発明に用いる負極には、従来から用いられてきた材料を用いることができる。例えば、リチウムを吸蔵放出可能な炭素材料、リチウムと合金を形成可能な金属、その金属を含む合金、又は、その合金の化合物等が例示される。更に、それらの混合物であっても良い。
上記炭素材料としては、天然黒鉛や難黒鉛化性炭素、人造黒鉛等のグラファイト類、コークス類等を用いることができ、上記合金化合物としては、リチウムと合金可能な金属を少なくとも1種類含むものが挙げられる。特に、リチウムと合金形成可能な元素としてはケイ素やスズであることが好ましく、これらが酸素と結合した、酸化ケイ素や酸化スズ等も用いることもできる。また、上記炭素材料と上記ケイ素やスズの化合物とを混合したものを用いることができる。
上記の他、エネルギー密度は低下するものの、負極材料としてはチタン酸リチウム等の金属リチウムに対する充放電の電位が、炭素材料等より高いものも用いることができる。
【0032】
(4)正極とセパレータとの界面、又は、負極とセパレータとの界面には、従来から用いられてきた無機物のフィラーからなる層を形成することができる。フィラーとしても、従来から用いられてきたチタン、アルミニウム、ケイ素、マグネシウム等を単独もしくは複数用いた酸化物やリン酸化合物、またその表面が水酸化物等で処理されているものを用いることができる。
上記フィラー層の形成方法は、正極、負極、或いはセパレータに、フィラー含有スラリーを直接塗布して形成する方法や、フィラーで形成したシートを、正極、負極、或いはセパレータに貼り付ける方法等を用いることができる。
【0033】
(5)本発明に用いるセパレータとしては、従来から用いられてきたセパレータを用いることができる。具体的には、ポリエチレンからなるセパレータのみならず、ポリエチレン層の表面にポリプロピレンからなる層が形成されたものや、ポリエチレンのセパレータの表面にアラミド系の樹脂等の樹脂が塗布されたものを用いても良い。
【0034】
(6)後述の如く、希土類元素の水酸化物又はオキシ水酸化物として、エルビウム及びランタンの2種の希土類元素の水酸化物又はオキシ水酸化物についての実験データを記載した。しかしながら、本発明はこれらの化合物に限定するものではなく、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、ツリウム、イッテルビウム、ルテチウムでも同様の効果が得られるとみなせる。これは、これらの希土類元素の水酸化物やオキシ水酸化物においても、正極活物質の表面上で2つ以上のイソシアナート基を含む化合物が効果的に分解し、良好な被膜を正極活物質の表面上に形成することができると考えられるためである。
【実施例】
【0035】
本発明に係る非水電解液二次電池は、下記の形態に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。
【0036】
(実施例1)
[正極の作製]
コバルト酸リチウム粒子1000gを用意し、この粒子を3.0Lの純水に添加し攪拌して、コバルト酸リチウムが分散した懸濁液を調製した。次に、この懸濁液に、硝酸エルビウム5水和物[Er(NO・5HO]1.81gが200mLの純水に溶解された溶液を1時間で全量投入するように加えた。この際、コバルト酸リチウムを分散した溶液のpHを9に調整するために、10質量%の硝酸水溶液、或いは、10質量%の水酸化ナトリウム水溶液を適宜加えた。
【0037】
次いで、上記硝酸エルビウム5水和物溶液の添加終了後に、吸引濾過し、更に水洗を行った後、得られた粉末を120℃で乾燥し、上記コバルト酸リチウムの表面の一部に水酸化エルビウム化合物が固着したものを得た。その後、得られた粉末を300℃で5時間空気中にて熱処理した。このように300℃で熱処理すると、全部或いは大部分の水酸化エルビウムがオキシ水酸化エルビウムに変化するので、コバルト酸リチウム粒子の表面の一部にオキシ水酸化エルビウムが固着した状態となる。但し、一部は水酸化エルビウムの状態で残存する場合があるので、コバルト酸リチウム粒子の表面の一部には水酸化エルビウムが固着されている場合もある(オキシ水酸化エルビウムと水酸化エルビウムとを総称して、エルビウム化合物と称することがある)。
なお、表面に固着したエルビウム化合物は、エルビウム元素換算でコバルト酸リチウムに対して0.068質量%であった。また、SEMによる観察の結果、コバルト酸リチウム粒子の表面に、均一に分散してエルビウム化合物が固着しており、その粒子径は100nm以下であった。
【0038】
このようにして得られた正極活物質と、正極導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)とを、分散媒としてのN−メチル−2−ピロリドン中で混練して正極スラリーを調製した。この際、正極活物質と正極導電剤と結着剤との質量比を95:2.5:2.5とした。次に、上記正極スラリーを、アルミニウム箔から成る正極集電体の両面に塗布、乾燥した後、圧延ローラにより圧延し、正極集電タブを取り付けることで、正極を作製した。なお、正極の充填密度は3.60g/cmとした。
【0039】
〔負極の作製〕
増粘剤であるCMC(カルボキシメチルセルロースナトリウム)を純水に溶かした水溶液中に、負極活物質として人造黒鉛と、結着剤としてのSBR(スチレン−ブタジエンゴム)とを加えた後に混練して、負極スラリーを調製した。この際、負極活物質と結着剤と増粘剤との質量比を98:1:1とした。次に、上記負極スラリーを銅箔から成る負極集電体の両面に均一に塗布、乾燥した後、圧延ローラにより圧延し、負極集電タブを取り付けることで、負極を作製した。なお、負極の充填密度は1.60g/cmとした。
【0040】
〔非水電解液の調製〕
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを、2:8の体積比で混合した混合溶媒に対し、六フッ化リン酸リチウム(LiPF)を1.0モル/リットルの濃度になるように溶解させると共に、上記混合溶媒に対して、ビニレンカーボネート(VC)を1.0質量%、ヘキサメチレンジイソシアナート(HMDI)を1.0質量%の割合でそれぞれ添加して、非水電解液を調製した。
【0041】
〔電池の作製〕
上記のようにして得た正極および負極を、厚み22μmでポリエチレンの微多孔膜からなるセパレータを介して対向するように巻取って巻取り体を作製した。次に、アルゴン雰囲気下のグローボックス中にて、上記巻取り体を上記非水電解液と共にアルミニウムラミネートに封入することにより、厚み3.6mm、幅3.5cm、長さ6.2cmの非水電解液二次電池を得た。
このようにして作製した電池を、以下、電池A1と称する。
【0042】
ここで、図1及び図2に示すように、上記非水電解液二次電池11の具体的な構造は、正極1と負極2とがセパレータ3を介して対向配置されており、これら正負両極1、2とセパレータ3とから成る扁平型の電極体には非水電解液が含浸されている。上記正極1と負極2は、それぞれ、正極集電タブ4と負極集電タブ5とが接続され、二次電池としての充放電が可能な構造となっている。なお、電極体は、周縁同士がヒートシールされた閉口部7を備えるアルミラミネート外装体6の収納空間内に配置されている。
【0043】
(実施例2)
非水電解液の添加剤として、ヘキサメチレンジイソシアナート(HMDI)に代えて、1,3−ビス(イソシアナートメチル)シクロヘキサンを用いたこと以外は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、電池A2と称する。
【0044】
(実施例3)
正極活物質として、コバルト酸リチウムの表面の一部に、エルビウム化合物に代えてランタン化合物を固着させたものを用いたこと以外は、上記実施例2と同様にして、電池を作製した。
なお、硝酸エルビウム5水和物に代えて、硝酸ランタン6水和物を用いたこと以外は、上記エルビウム化合物で表面改質した正極活物質を作製する方法と同様の方法で、ランタン化合物で表面改質した正極活物質を作製した。
このようにして作製した電池を、以下、電池A3と称する。
【0045】
なお、ランタン化合物は、ICPによる分析の結果、ランタン元素換算で、コバルト酸リチウムに対して、0.057質量%であった(この質量割合であれば、コバルト酸リチウムに対するランタンのモル量は、上記電池A1のコバルト酸リチウムに対するエルビウムのモル量と同一となる)。また、SEMによる観察の結果、100nm以下のランタン化合物の粒子が、コバルト酸リチウムの表面に均一に分散して固着していた。
【0046】
(実施例4)
非水電解液の添加剤として、ヘキサメチレンジイソシアナート(HMDI)に代えて、ドデカメチレンジイソシアナートを用いたこと以外は、上記実施例3と同様にして電池を作製した。
このようにして作製した電池を、以下、電池A4と称する。
【0047】
(比較例1)
非水電解液の調製時に、ヘキサメチレンジイソシアナート(HMDI)を添加しなかったこと以外は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、電池Z1と称する。
【0048】
(比較例2)
正極活物質として、コバルト酸リチウムの表面の一部をジルコニウムの化合物で固着したものを用いた以外は、上記実施例1と同様にして電池を作製した。
なお、硝酸エルビウム5水和物に代えて、オキシ硝酸ジルコニウム2水和物を用いたこと以外は、上記エルビウム化合物で表面改質した正極活物質を作製する方法と同様の方法で、ジルコニウム化合物で表面改質した正極活物質を作製した。
このようにして作製した電池を、以下、電池Z2と称する。
【0049】
なお、ジルコニウム化合物は、ジルコニウム元素換算でコバルト酸リチウムに対して0.037質量%であった。(この質量割合であれば、コバルト酸リチウムに対するジルコニウムのモル量は、上記電池A1のコバルト酸リチウムに対するエルビウムのモル量と同一となる)。また、SEM観察の結果、ジルコニウム化合物は、均一に分散してコバルト酸リチウムの表面に固着していた。
【0050】
(比較例3)
非水電解液の調製時に、ヘキサメチレンジイソシアナート(HMDI)を添加しなかったこと以外は、上記比較例2と同様にして電池を作製した。
このようにして作製した電池を、以下、電池Z3と称する。
【0051】
(比較例4)
非水電解液の調製時に、1,3−ビス(イソシアナートメチル)シクロヘキサンを添加しなかったこと以外は、上記実施例3と同様にして電池を作製した。
このようにして作製した電池を、以下、電池Z4と称する。
【0052】
(比較例5)
非水電解液の調製時に、ヘキサメチレンジイソシアナート(HMDI)に代えて、ヘキシルイソシアナート(イソシアナート基が1つしかない含まれない化合物)を添加した以外は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、電池Z5と称する。
【0053】
(比較例6)
LiCO(リチウム塩)とCo(四酸化三コバルト)とZrO(酸化ジルコニウム)を、Li:Co:Zrのモル比が1:0.995:0.005となるようにして石川式らいかい乳鉢にて混合した後、空気雰囲気中にて850℃で20時間熱処理後に粉砕することにより、正極活物質を作製したこと以外は、上記実施例1と同様にして電池を作製した。尚、該正極活物質をTEM観察したところ、コバルト酸リチウムの粒子同士の界面にジルコニウムが存在することを確認した。
このようにして作製した電池を、以下、電池Z6と称する。
【0054】
(比較例7)
非水電解液の調製時に、ヘキサメチレンジイソシアナート(HMDI)を添加しなかったこと以外は、上記比較例6と同様にして電池を作製した。
このようにして作製した電池を、以下、電池Z7と称する。
【0055】
[実験]
上記の電池A1〜A4、Z1〜Z7について下記手順で充放電等を行い、電圧低下量ΔVmaxと残存容量率とを求めたので、それらの結果を表1に示す。
【0056】
(1)下記充放電条件で充放電サイクル試験を1回行い、初期放電容量(Q)を測定した。なお、充放電時の温度は室温とした。
・充電条件
1.0It(750mA)の電流で電池電圧が4.40Vとなるまで定電流充電を行い、その後、4.40Vの定電圧で電流値が[1/20]It(37.5mA)となるまで定電圧充電を行った。
・放電条件
1.0It(750mA)の定電流で電池電圧が2.75Vとなるまで定電流放電を行った。
・休止
上記充電と放電との間の休止間隔は10分間とした。
【0057】
(2)初期放電容量(Q)を測定後、60℃の恒温槽に入れて1時間放置した。その後、60℃の環境のまま、750mAの定電流で4.40Vまで充電し、さらに4.40Vの定電圧で、充電のトータル時間が80時間となるまで充電した。
しかる後、恒温槽から電池を取り出して室温まで冷却し、室温にて、連続充電試験後の放電容量(Q)測定し、以下の式から、残存容量率を求めた。
【0058】
残存容量率(%)=[連続充電試験後の放電容量(Q)/連続充電試験前の放電容量(Q)]×100
【0059】
また、図5に示すように、放電開始後100mAh放電時までで、高温連続充電後の放電容量測定時の電圧と、高温連続充電前の放電容量測定時の電圧との差の最大値を電圧低下量ΔVmaxと定義し、これを求めた。
【0060】
なお、この電圧低下量ΔVmaxが大きい場合、電解液の量が少ないような電池の設計では、放電電圧低下がより顕著となって、放電初期に放電終止電圧としている電圧に達する結果、電池容量が著しく低下することがある。したがって、電池の充放電特性を向上するには、放電電圧量ΔVmaxを小さくする必要がある。
【0061】
【表1】
【0062】
上記表1の結果より明らかなように、コバルト酸リチウムの表面の一部にエルビウム化合物、又はランタン化合物が固着された正極活物質を用い、且つ、非水電解液中に2つ以上のイソシアナート基を含む化合物が含有された電池A1〜A4は、コバルト酸リチウムの表面の一部に希土類化合物を固着していない正極活物質を用い、及び/又は、非水電解液中に2つ以上のイソシアナート基を含む化合物が含有されていない比較電池Z1〜Z7よりも、60℃という高温下で連続充電した際の電池特性に優れることがわかる。以下、具体的に考察する。
【0063】
コバルト酸リチウムの表面の一部にエルビウム化合物が固着された正極活物質を用いた電池A1と電池Z1とを比較した場合、2つ以上のイソシアナート基を含む化合物(ヘキサメチレンジイソシアナート)が非水電解液に含有された電池A1は、非水電解液中に2つ以上のイソシアナート基を含む化合物が含有されていない電池Z1に比べて、残存容量率が顕著に向上すると共に、高温連続充電後における放電時の電圧低下量ΔVmaxも顕著に抑制されていることがわかる。これは、電池A1では、2つ以上のイソシアナート基を含む化合物が効果的に分解し、正極活物質の表面上に良好な被膜が形成されたのに対して、電池Z1では、2つ以上のイソシアナート基を含む化合物が添加されていないので、正極活物質の表面上に良好な被膜が形成されないからであると考えられる。
【0064】
また、2つ以上のイソシアナート基を含む化合物として、イソシアナート基の間の部分が鎖状のヘキサメチレンジイソシアナートに代えて、イソシアナート基の間の部分が環状になった1,3−ビス(イソシアナートメチル)シクロヘキサンを用いた電池A2も、電池A1と同様の効果が得られることがわかる。したがって、イソシアナート基の間の部分は、環状でも、鎖状でも、環状にさらに側鎖がついた構造であっても本発明の効果が得られる。
【0065】
但し、電池A1と電池A2とを比較した場合、イソシアナート基の間の部分が環状になった1,3−ビス(イソシアナートメチル)シクロヘキサンを添加した電池A2の方が、イソシアナート基の間の部分が鎖状であるヘキサメチレンジイソシアナアート(HMDI)を添加した電池A1よりも、放電時の電圧低下量ΔVmaxが更に抑制されていることがわかる。これは、イソシアナート基の間の部分が鎖状よりも環状である方が、化合物の構造がより立体的であるため、正極活物質の表面に立体的で良好な被膜を形成することができ、これによって、電解液との反応をより抑えるためと考えられる。以上のことから、イソシアナート基の間の部分は、鎖状よりも環状である方が好ましいことがわかる。
【0066】
また、コバルト酸リチウムの表面の一部にエルビウム化合物が固着された正極活物質を用いた電池Z1と電池Z5とを比較した場合、イソシアナート基が1つしかない化合物(ヘキシルイソシアナート)が非水電解液に含有された電池Z5は、イソシアナート基を含む化合物が全く非水電解液に含有されていない電池Z1に比べて、放電時の電圧低下量ΔVmaxが大きく、残存容量率も低下していることがわかる。この結果より、本発明の効果は、表面の少なくとも一部に希土類元素を含有する化合物が固着している正極活物質を用いた場合に、2つ以上のイソシアナート基を含む化合物が非水電解液に含有されていることが必要となることがわかる。即ち、表面の少なくとも一部に希土類元素を含有する化合物が固着している正極活物質を用いたとしても、非水電解液に含有された化合物がイソシアナート基を1つしか含まなければ、本発明の効果は発揮されないことがわかる。
【0067】
これは、イソシアナート基が1つしかない化合物(ヘキシルイソシアナート)は、希土類元素を含有する化合物との反応性が良くないので、正極活物質の表面上に良好な被膜が形成されないからと考えられる。
【0068】
更に、コバルト酸リチウムの表面の一部にエルビウム化合物以外の希土類元素であるランタン化合物が固着された正極活物質を用いた電池A3と電池A4と電池Z4とを比較した場合、2つ以上のイソシアナート基を含む化合物が非水電解液に含有された電池A3及び電池A4は、2つ以上のイソシアナート基を含む化合物が非水電解液に含有されていない電池Z4に比べて、残存容量率が顕著に向上すると共に、高温連続充電後における放電時の電圧低下量ΔVmaxも顕著に抑制されていることがわかる。
【0069】
但し、コバルト酸リチウムの表面の一部にエルビウム化合物が固着された正極活物質を用いた電池A2と電池Z1とを比較した場合、1,3−ビス(イソシアナートメチル)シクロヘキサンが非水電解液に含有された電池A2は、1,3−ビス(イソシアナートメチル)シクロヘキサンが非水電解液に含有されていない電池Z1に比べて、電圧低下量ΔVmaxが80mV(130mV−50mV)改善している。これに対して、コバルト酸リチウムの表面の一部にランタン化合物が固着された正極活物質を用いた電池A3と電池Z4とを比較した場合、1,3−ビス(イソシアナートメチル)シクロヘキサンが非水電解液に含有された電池A3は、1,3−ビス(イソシアナートメチル)シクロヘキサンが非水電解液に含有されていない電池Z4に比べて、電圧低下量ΔVmaxが25mV(190mV−165mV)しか改善していない。
【0070】
このように、同じ、1,3−ビス(イソシアナートメチル)シクロヘキサンを非水電解液に含有させた場合でも、エルビウム化合物を固着させた方が、ランタン化合物を固着させるより電圧低下量ΔVmaxの改善幅が大きくなる。したがって、コバルト酸リチウムの表面の少なくとも一部に固着させる化合物としては、ランタン化合物よりもエルビウム化合物であることが好ましい。
【0071】
次に、コバルト酸リチウムの表面の一部にジルコニウム化合物が固着された正極活物質を用いた電池Z2と電池Z3とを比較した場合、ヘキサメチレンジイソシアナアート(HMDI)が非水電解液に含有された電池Z2は、ヘキサメチレンジイソシアナアート(HMDI)が非水電解液に含有されていない電池Z3に比べて、残存容量率は改善するものの、電圧低下量ΔVmaxが大きくなっていることがわかる。このことから、正極活物質の表面上に良好な被膜を形成するには、コバルト酸リチウムの表面の少なくとも一部に希土類元素を含有する化合物が固着している正極活物質を用いる必要があることがわかる。詳細は不明であるが、コバルト酸リチウムの表面の一部にジルコニウム化合物が固着されている場合には、ヘキサメチレンジイソシアナアート(HMDI)が効果的に分解せず、正極活物質の表面上に良好な被膜が形成されないためと考えられる。
【0072】
また、正極活物質の粒子同士の界面にジルコニウムが存在する電池Z6と電池Z7とを比較した場合も、ヘキサメチレンジイソシアナアート(HMDI)が非水電解液に含有された電池Z6は、ヘキサメチレンジイソシアナアート(HMDI)が非水電解液に含有されていない電池Z7に比べて、残存容量率は改善するものの、電圧低下量ΔVmaxが大きくなっていることがわかる。
【0073】
以上のことから、本発明の効果は、コバルト酸リチウム等のリチウム遷移金属複合酸化物の表面の少なくとも一部に希土類元素を含有する化合物が固着している正極活物質を用い、且つ、非水電解液に2つ以上のイソシアナート基を含む化合物を含有させた場合に特異的に得られる。
【産業上の利用可能性】
【0074】
本発明は、例えば携帯電話、ノートパソコン、PDA等の移動情報端末の駆動電源や、HEVや電動工具といった高出力向けの駆動電源、さらには、太陽電池や電力系統と組み合わせた蓄電池装置にも展開が期待できる。
【符号の説明】
【0075】
1:正極
2:負極
3:セパレータ
4:正極集電タブ
5:負極集電タブ
6:アルミラミネート外装体
21:リチウム遷移金属複合酸化物の粒子
22:希土類元素を含有する化合物の粒子
図1
図2
図3
図4
図5