【実施例1】
【0033】
図面を参照して、本発明の試料ホルダーの一実施態様を説明すれば以下の通りである。
【0034】
図1は、本発明の一実施態様における試料ホルダーの断面図を示す図である。
図1(a)は、試料設置部は外筒部から取っ手部により押し出されている状態を示し(試料を観察する場合)、
図1(b)は、試料設置部は外筒部に格納されている状態を示し、
図1(c)は、段差部の拡大図を示し、
図1(d)は、別の態様による段差部の拡大図を示す。
図1において、1は取っ手部、2は試料ホルダーの外筒部、3は段差部、4は第一のシール部、5は試料ホルダー軸、6は第二のシール部、7は試料設置部、8は弾性部材、9は熱絶縁部、10はシール部のずれ防止用ストッパ―部、11は第二の段差部、をそれぞれ示す。
【0035】
図1(a)は、試料設置部は外筒部から取っ手部により押し出されている状態を示し(試料を観察する場合)、第二のシール部6が図示されているが、なくてもよい。第二のシール部6は、従来のOリングであるが、第一のシール部4のように、外筒部の内壁及び試料ホルダー軸の外壁を押圧可能なシール材でもよい。図では先端部にO-ringを配しているが、試料ホルダー外筒部前方内側にO-ringを埋め込む(配しても)良い。第二のシール部6が図示されているが、例えば、トランスファーを用いない試料ホルダーなどであれば第二のシールはなくてもよい。また、図では、コの字型として、外筒部の内壁および試料ホルダー軸の外壁を押圧して、シールしている。溝には、弾性部材を配置させて、よりシールを確実にしてもよい。要するに、シール部は、外筒部の内壁および試料ホルダー軸の外壁を押圧することが可能であれば、コの字型、V字型、L字型等いずれの形状も用いることができる。このような構造に、弾性部材を加えれば、シールがより確実となる。1(b)は、試料設置部は外筒部に格納されている状態を示す。この態様においては、試料設置部7を完全に大気から隔離できるので、トランスファーホルダーとしての機能を有することになる。
図1(a)及び
図1(b)ともに、試料設置部7の両端を完全にシールした構造においては、試料は大気から遮断された状態を維持することが可能となる。なお、図示しないが、試料ホルダー軸をスムーズに挿入できように、押圧の効果を妨げない範囲で部材を追加してもよい。例えば、図示しないが、TEMホルダーでは振動をもっとも嫌うため、観察状態(先端を押し出した状態)のとき、先端部の振動を抑制する部材、軸受けリング、3点支持部材など有してもよい。また、試料ホルダー軸部の出し入れの際、スムーズに挿入出来るように、摺動で接する軸受けスリーブやO-ring、スラスト用の硬球などを配してもよい。
【0036】
図1(c)は、段差部の拡大図を示し、外筒部の内壁および試料ホルダー軸の外壁を押圧することが可能であれば、コの字型、V字型、L字型等いずれかの形状を有するシール部を使用可能であるが、この図は当該シール部に、さらに、弾性部材として、板バネ8を配した場合の一例を示している。板バネ8のおかげで、より強く外筒部の内壁および試料ホルダー軸の外壁を押圧することができ、ひいては、より強い封止力を付与することができる。
図1(d)は、別の態様による段差部の拡大図を示し、熱絶縁部9や、ストッパー部10をさらに設けた態様である。熱絶縁部により、シール部から外筒部への熱の伝達を極力抑えることが可能となる。図では段差部のみに設けているが、外筒部側に設けてもよい。なお、外筒部側については、実際には、シール部と外筒部と接触している個所は、1点となるので、熱絶縁をそれほど気にする必要はない。ストッパー部10は、ネジを切って固定することができる。なと、ネジの閉め具合で、シールの保持程度を調整します。段差11を利用して、ネジを回しすぎてシールを潰さない様に配慮した構造とすることができる。ストッパー部10により、シール部の固定をより強固とすることができる。なお、図では分かりにくいが、シール部4は、リング状となっている。同様にシール部6もリング状となっている。
【0037】
図2は、本発明の一実施態様における試料ホルダーの断面図を示す図である。この態様は、試料を低温下でも観察可能にするために、冷却手段を用いた場合の一例である。
図2(a)は、試料設置部は外筒部から取っ手部により押し出されている状態を示し(試料を観察する場合)、
図2(b)は、試料設置部は外筒部に格納されている状態を示す。
図2において、1は取っ手部、2は試料ホルダーの外筒部、3は段差部、4は第一のシール部、5は試料ホルダー軸、6は第二のシール部、7は試料設置部、10はシール部のずれ防止用ストッパ―部、20は冷却手段、21はシール部、22は熱伝導コレット、をそれぞれ示す。この態様においては、外筒部の内壁および試料ホルダー軸の外壁を押圧することが可能なシール部材として、コの字形状のものを使用した。またストッパー部10も図示するが、なくてもよい。なお、図では分かりにくいが、シール部4は、リング状となっている。同様にシール部6、21もリング状となっている。
【0038】
冷却手段20で、冷却された冷媒を利用することができる。例えば、液体窒素を用いる場合には、通常のOリングを通常に方法で用いると、Oリングは液体窒素温度で固まってしまい、また、温度が下がれば金属は収縮してしまうため、液体窒素温度を用いる試料ホルダーでは、真空シール(外的シール)が不可能となる。
【0039】
しかし、ポリテトラフルオロエチレン製などの、耐冷却性を有する材料をシール材として用いると、ポリテトラフルオロエチレン製のシール材は、−200℃以下まで耐久性があるため、液体窒素下でもシール性能は優れることになる。また、内部に弾性部材、例えば板バネを配置すれば、シール軸が収縮しても常にスプリングで押圧するため、液体窒素温度でも真空シールが可能となり、ひいては、軸部の前後及び回転も首尾よく真空シール下で行うことが可能となる。板バネやスプリングを用いる場合、均一に試料ホルダー軸を押し当てることができるため、軸受けとしての機能も果たすことができる。また、軸の出し入れ時の微小リークを抑えることができるため、第一のシール部のみで、より精度が高い雰囲気遮断(トランファー)が可能となる。また、軸の出し入れ時の微小リークを抑えることができるため、第一のシール方法を用いればより精度が高い雰囲気遮断(トランファー)及び、β傾斜時の真空保持が可能となる。
【0040】
このような外筒部の内壁および試料ホルダー軸の外壁を押圧することが可能なシール部材の使用は、透過型等の電子顕微鏡ホルダーに適用することにより、冷却試料ホルダーで雰囲気遮断(トランスファー)を行うことや、次に述べるような2軸傾斜を行うには非常に有効に働くことができる。
【0041】
図3は、本発明の一実施態様における試料ホルダーの断面図を示す。この態様は、冷却手段を備えており、かつ、二軸傾斜可能な試料ホルダーの一例である。
図3において、1は取っ手部、2は試料ホルダーの外筒部、3は段差部、4は第一のシール部、5は試料ホルダー軸、6は第二のシール部、7は試料設置部、10はシール部のずれ防止用ストッパ―部、20は冷却手段、21はシール部、22は熱伝達コレット、23はY軸傾斜、24は冷却中の軸回転、をそれぞれ示す。この図において、図示しないが、試料ホルダー軸先端部において、シール部を設置してもよい。また、2軸傾斜の態様においても、外筒部へ試料設置部7を格納することが可能である。
【0042】
このように、電子顕微鏡用試料ホルダーに図のようなコの字型シールなど、外筒部の内壁および試料ホルダー軸の外壁を押圧することが可能なシール部材を用いることにより、ホルダー軸上からのリークを抑制することができる。さらに、シール部材に板バネなどの弾性部材を用いることによって、さらに軸上からのリークを抑制できる。これにより、常に、板ばねが配してあるため、捻じれや、加工精度が悪い場合での軸ずれによるリークも総て板ばねが常にシール面を押し付けるため、微小リークすることは無い。
【0043】
また、冷却試料ホルダーにおいては、本発明の構造を用いることで以下の効果を奏することが判明した。すなわち、従来においては、冷却によってホルダー軸の径および、O-ringが収縮することで、隙間が発生し、軸上からのリークが発生していたが、外筒部の内壁および試料ホルダー軸の外壁を押圧することが可能なシール部材の使用により、当該リークを防止することが可能となった。また、従来においては、冷却によって試料ホルダー軸の径および、O-ringが収縮することで、軸受けが利かなくなる問題を有していたが、本発明の構成により当該問題を解決することができることが判明した。また、前述の軸受けが冷却中に可能になることで、ホルダー先端部の振動を止めることができるという有利な効果を奏する。
【0044】
また、二軸ホルダーにおいては、この構造を用いることで以下の効果を奏することが判明した。すなわち、試料ホルダー軸上に設置されたO-ringのねじれの問題が生じないため、試料ホルダー軸上からのリークが抑制される効果を有する。また、冷却トランスファーについて、従来においては、必然的に、トランスファーホルダーと冷却ホルダーを組み合わせる需要も高まってきているが、冷却ホルダーにおいては極低温まで冷却されるため、試料ホルダー軸部が低温になることで、軸および、O-ringが収縮し、または弾性が失われ、軸部の真空シールを保持できないため、格納チャンバーが必要であったが、本発明の構造を用いれば、冷却中であっても、図のように、試料切片の格納のためのストロークを短くする効果がある。すなわち、コンパクトな格納構造とすることができるというかなり画期的な効果を得られることが判明した。したがって、本発明を用いることで、冷却機能を配したトランスホルダーが容易に実現可能となる。