【実施例】
【0043】
以下、複数の実施例を挙げて本発明のポリアミド酸樹脂及びその製造方法を説明するとともに、その特性を測定する。
【0044】
ポリアミド酸溶液(ポリイミド樹脂前駆体)の作製
【0045】
[実施例1]
24.20g(0.076モル)の2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)、1.85g(0.017モル)のp−フェニレンジアミン(PDA)、2.36g(0.008モル)の1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)及び244.37gのN−メチル−2−ピロリドン(NMP)を三ツ口フラスコ内に入れる。30℃下で完全に溶解するまで撹拌した後、41.75g(0.091モル)のP−フェニレンビス(トリメリテート無水物)(TAHQ)及び2.83g(0.005モル)の4,4’−(4,4’−イソプロピリデンジフェノキシ)ビス(フタル酸無水物)(PBADA)を加え、続いて撹拌を続け、25℃下で24時間反応させると、実施例1のポリアミド酸溶液が得られる。本実施例において、二無水物単量体及びジアミン単量体の重量は反応溶液総重量の約23wt%[(24.20+1.85+2.36+41.75+2.83)/(24.20+1.85+2.36+41.75+2.83+244.37)×100%=23%]を占める。
【0046】
[実施例2]
26.28g(0.082モル)の2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)、3.74g(0.009モル)の2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)及び215.78gのN−メチル−2−ピロリドン(NMP)を三ツ口フラスコ内に入れ、30℃下で完全に溶解するまで撹拌した後、39.88g(0.087モル)のP−フェニレンビス(トリメリテート無水物)(TAHQ)及び2.02g(0.005モル)の4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)を加え、続いて撹拌を続け、25℃下で24時間反応させると、実施例2のポリアミド酸溶液が得られる。本実施例において、二無水物単量体及びジアミン単量体の重量は反応溶液総重量の約25wt% [(26.28+3.74+39.88+2.02)/(26.28+3.74+39.88+2.02+215.78)×100%=25%]を占める。
【0047】
[実施例3]
29.13g(0.091モル)の2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)、1.84g(0.017モル)のp−フェニレンジアミン(PDA)、1.66g(0.006モル)の1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)及び271.31gのN−メチル−2−ピロリドン(NMP)を三ツ口フラスコ内に入れ、30℃下で完全に溶解するまで撹拌した後、47.12g(0.102モル)のP−フェニレンビス(トリメリテート無水物)(TAHQ)及び5.92g(0.011モル)の4,4’−(4,4’−イソプロピリデンジフェノキシ)ビス(フタル酸無水物)(PBADA)を加え、続いて撹拌を続け、25℃下で24時間反応させると、実施例3のポリアミド酸溶液が得られる。本実施例において、二無水物単量体及びジアミン単量体の重量は反応溶液総重量の約24wt% [(29.13+1.84+1.66+47.12+5.92)/(29.13+1.84+1.66+47.12+5.92+271.31)×100%=24%]を占める。
【0048】
[実施例4]
23.56g(0.074モル)の2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)、1.49g(0.014モル)のp−フェニレンジアミン(PDA)、1.89g(0.005モル)の2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)及び260.06gのN−メチル−2−ピロリドン(NMP)を三ツ口フラスコ内に入れ、30℃下で完全に溶解するまで撹拌した後、38.10g(0.083モル)のP−フェニレンビス(トリメリテート無水物)(TAHQ)及び4.09g(0.009モル)の4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)を加え、続いて撹拌を続け、25℃下で24時間反応させると、実施例4のポリアミド酸溶液が得られる。本実施例において、二無水物単量体及びジアミン単量体の重量は反応溶液総重量の約21wt%[(23.56+1.49+1.89+38.10+4.09)/(23.56+1.49+1.89+38.10+4.09+260.06)×100%=21%]を占める。
【0049】
[実施例5]
25.00g(0.078モル)の2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)、1.49g(0.014モル)のp−フェニレンジアミン(PDA)及び244.32gのN−メチル−2−ピロリドン(NMP)を三ツ口フラスコ内に入れ、30℃下で完全に溶解するまで撹拌した後、35.94g(0.078モル)のP−フェニレンビス(トリメリテート無水物)(TAHQ)、4.08g(0.009モル)の4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)及び2.39g(0.005モル)の4,4’−(4,4’−イソプロピリデンジフェノキシ)ビス(フタル酸無水物)(PBADA)を加え、続いて撹拌を続け、25℃下で24時間反応させると、実施例5のポリアミド酸溶液が得られる。本実施例において、二無水物単量体及びジアミン単量体の重量は反応溶液総重量の約22wt% [(25.00+1.49+35.94+4.08+2.39)/(25.00+1.49+35.94+4.08+2.39+244.32)×100%=22%]を占める。
【0050】
以下にさらに比較例1〜3を示す。比較例と実施例の違いは、比較例では1種類の二無水物単量体と1種類のジアミン単量体のみを使用して反応を行っている点である。上述の実施例1〜5はいずれも2種類以上の二無水物単量体と2種類以上の二無水物単量体を使用して反応を行っている。
【0051】
比較例1
31.25g(0.098モル)の2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)及び227.16gのN−メチル−2−ピロリドン(NMP)を三ツ口フラスコ内に入れ、30℃下で完全に溶解するまで撹拌した後、44.47g(0.097モル)のP−フェニレンビス(トリメリテート無水物)(TAHQ)を加え、続いて撹拌を続け、25℃下で24時間反応させると、比較例1のポリアミド酸溶液が得られる。この比較例において、二無水物単量体及びジアミン単量体の重量は反応溶液総重量の約25wt% [(31.25+44.47)/(31.25+44.47+227.16)×100%=25%]を占める。
【0052】
比較例2
13.78g(0.127モル)のp−フェニレンジアミン(PDA)及び250.58gのN−メチル−2−ピロリドン(NMP)を三ツ口フラスコ内に入れ、30℃下で完全に溶解するまで撹拌した後、56.90g(0.124モル)のP−フェニレンビス(トリメリテート無水物)(TAHQ)を加え、続いて撹拌を続け、25℃下で24時間反応させると、比較例2のポリアミド酸溶液が得られる。この比較例において、二無水物単量体及びジアミン単量体の重量は反応溶液総重量の約22wt% [(13.78+56.90)/(13.78+56.90+250.58)×100%=22%]を占める。
【0053】
比較例3
25.74g(0.088モル)の1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)及び260.28gのN−メチル−2−ピロリドン(NMP)を三ツ口フラスコ内に入れ、30℃下で完全に溶解するまで撹拌した後、39.33g(0.085モル)のP−フェニレンビス(トリメリテート無水物)(TAHQ)を加え、続いて撹拌を続け、25℃下で24時間反応させると、比較例3のポリアミド酸溶液が得られる。この比較例において、二無水物単量体及びジアミン単量体の重量は反応溶液総重量の約20wt%[(25.74+39.33)/(25.74+39.33+260.28)×100%=20%]を占める。
【0054】
ポリイミド樹脂特性測定
上述の実施例及び比較例のポリアミド酸溶液の組成成分と比割合を下の表1にまとめて示す。実施例及び比較例のポリアミド酸溶液(ポリイミド樹脂前駆体)をイミド化してポリイミド薄膜とした後、そのIRスペクトル図、比誘電率(Dk)、誘電正接(Df)、線熱膨張係数(CTE)、ガラス転移温度(Tg)、結晶温度(Tc)を測定した。
図1A、
図2A、
図3A、
図4A、
図5Aはそれぞれ実施例1〜5のポリイミド樹脂のIRスペクトル図である。
図1B、
図2B、
図3B、
図4B、
図5Bはそれぞれ実施例1〜5のポリイミド樹脂のDSC(Differential Scanning Calorimeter、示差走査熱量計)図である。またデータの測定結果を下の表2にまとめて示す。
【0055】
【表1】
【0056】
【表2】
【0057】
表2中の各特性は、ポリアミド酸溶液を薄膜とした後、次の方法で測定した。
【0058】
比誘電率(dielectric constant、Dk):
測定器(メーカー:Agilent;型番:HP4291)を使用し、10GHzの条件下で、IPC−TM−650−2.5.5.9標準方法を採用して測定を行った。
【0059】
誘電正接(dissipation factor、Df):
測定器(メーカー:Agilent;型番:HP4291)を使用し、10GHzの条件下で、IPC−TM−650−2.5.5.9標準方法を採用して測定を行った。
【0060】
線熱膨張係数(Coefficient of thermal expansion、CTE):
熱機械分析により、負荷3g/膜厚20μm、昇温速度10℃/分中で、試験片の延伸から、50〜200℃の範囲における平均値を計算し、線熱膨張係数とした。線熱膨張が比較的低い材料は、回路板製造の加熱ベーキングプロセスで過度の変形を回避し、生産ラインの高い歩留まりを維持することができる。
【0061】
ガラス転移温度(glass transition temperature、Tg)及び結晶温度(Tc):
SII Nano Technology製の示差走査熱量計(DSC−6220)を使用して測定した。窒素ガス環境下で、ポリイミド樹脂に次の条件の熱履歴を受けさせた。熱履歴の条件は、第1回昇温(昇温速度10℃/分)の後冷却(冷却速度30℃/分)、その後第2回昇温(昇温速度10℃/分)である。本発明のガラス転移温度は、第1回昇温、または第2回昇温で観測された値を読み取り、決定された。結晶化温度は第1回降温で観測された放熱ピークのピーク値を読み取り、決定された。
【0062】
高周波回路のニーズの意味は、信号伝送の速度と品質であり、これら2項目に影響を与える主要な要因は、伝送材料の電気特性、即ち、材料の比誘電率(Dk)と誘電正接(Df)であるが、以下の信号伝送の公式で説明される。
【0063】
【数1】
α
d:伝送損失(transmission loss)
ε
R:比誘電率(Dk)
F
GHz:周波数(frequency)
tanδ:誘電正接(Df)
【0064】
上述の公式から分かるように、Dfの影響はDkより大きいため、Df値が低いほど、その伝送損失が小さくなり、高周波材料により適している。
【0065】
表1、表2から分かるように、本発明の実施例1〜5は2種類以上の二無水物単量体及び2種類以上のジアミン単量体を使用して成るポリイミド樹脂であり、比較例の1種類の二無水物単量体及び1種類のジアミン単量体を使用して成るポリイミド樹脂と比較して、誘電正接(Df)と線熱膨張係数(CTE)がより低い。これは、単一の二無水物単量体(例えばTAHQ)の芳香族エステル官能基とイミド官能基が巨大な平面共振構造を形成し、この巨大な平面構造がポリアミド酸溶液(ポリイミド樹脂前駆体)の形成するポリイミド高分子の排列状況に影響して、排列がより不規則になり、結晶度がより低くなる。相対的に、本実施例はTAHQを主要な二無水物単量体として用いるほか、さらに分子量400〜600のその他二無水物単量体も導入し、一方で樹脂中のイミド基含有量を維持し、比誘電率が高くなることを防止するとともに、さらに芳香族ポリエステル官能基の排列を誘導し、形成されるポリイミド樹脂の結晶性を高め、誘電正接がより低いポリイミド樹脂が得られる。実験結果から見ると、比較例1〜3は6FDAとPBADAなどその他二無水物単量体を使用しない状況下で、その形成するポリイミド薄膜が非結晶性の透明膜である。但し、実施例1〜5に適量の6FDAとPBADAを加えた後、その高分子のTgとTcはより大きな変化を生じ、且つ製造されるポリイミド薄膜はいずれも結晶性半透明膜となる。
【0066】
また、比較例から異なるジアミン単量体のポリイミド樹脂特性に対する影響を分析することができる。比較例1と実施例を比較すると、そのCTEの差は大きくないが、実施例のDf値はより低い。比較例2はPDAジアミン単量体を使用しており、そのCTEは明らかにより小さいが、Df値はより高い。比較例3はTPE−Rジアミン単量体を使用しており、Dfはより低いが、実施例1〜5の結晶性高分子には及ばない。これは、TPE−R、BAPP等の非直線構造のジアミン単量体はその結合角の回転構造変化の障害が比較的小さく、より低いDf値を有するが、CTE値はより高い。PDA、TFMB等直線構造のジアミン単量体は、Dfがより高いが、CTE値がより低い。本発明の実施例は2種類以上のジアミン単量体を混合しており(例えば直線構造と非直線構造のジアミン単量体を混合できる)、低Df値と低CTE両者の間でバランスを見つけ、高周波プリント基板への応用に適したポリイミド樹脂を得ることができる。
【0067】
本発明について実施例を挙げて上で説明してきたが、これらの実施例は本発明を限定するために用いない。本発明の技術分野において通常の知識を有する者が、本発明の技術要旨と範囲内から逸脱せずに、これら実施例に対して同等効果を備えた実施または変更を加えることが可能であるため、本発明の保護範囲はその後附する特許請求の範囲に準じる。