【課題を解決するための手段】
【0006】
低石炭化度炭の原料炭を30℃〜40℃に加熱して乾燥させる乾燥工程と、前記乾燥工程で得られた乾燥炭を乾留工程の温度より低く前記乾燥工程よりも高い温度に加熱する乾留の前処理工程と、前記前処理工程で加熱された前記原料炭を乾留する前記乾留工程と、前記乾留工程で得られた固定炭素を冷却する冷却工程と、前記乾留工程で得られる炭化水素ガスを主燃料とする燃焼工程と、前記燃焼工程で発生する主蒸気によって蒸気タービンを動かす発電機と復水器を備える発電工程と、を備えたことを特徴とする発電システム。
この構成により、以下のような作用が得られる。
(1)高含水率の低石炭化度炭を乾燥する乾燥工程を備えた場合は、乾留するので投入熱量を少なくすることができ、エネルギー効率に優れる。
(2)乾燥された乾燥炭を乾留する場合は、乾燥することで比重が軽くなり、水分を蒸発する熱量も含め、乾留炉をコンパクトに設計できるため、省資源性に優れる。また、乾留炉の乾留ガス回収設備などをコンパクトにすることができるので省資源性に優れる。
(3)乾留工程を有し、乾留で生成される炭化水素ガスを燃焼工程の主燃料とすることで固定炭素を製造するので、発電システムと共に海外輸送可能な固体燃料として利用できる。
(4)乾留工程で得られた固定炭素を冷却する冷却工程を有しているので、乾留後の冷却により表面に浮き出ているタール成分を固定炭素内で定着させることでタール成分による障害問題を解決することができ、安定的な操業性に優れる。
(5)炭化水素ガスを主燃料とする燃焼工程と、燃焼工程で発生する主蒸気によって蒸気タービンを動かす発電機と復水器を備える発電工程とを有しているので、燃焼工程と復水器の間を移動する熱媒体によって排熱を有効利用することが出来る。また、乾留炉により、炭化水素ガス及び固定炭素を製造するので省資源性に優れ、油分等の副資材を加えない為、重量が軽く、運搬に掛る費用が安く、生産地以外で利用が困難な含水量が高い亜瀝青炭や褐炭などを産炭地以外で利用できる。
(6)乾留炉で発生する炭化水素ガスを主燃料として発電を行う複合システムなので、炭化水素ガス(揮発分)の燃焼熱を発電用の蒸気の加熱とともに低石炭化度炭の乾燥や乾留をすることで、固定炭素製造に利用することができる。
また、炭酸ガスを分離・回収する場合、窒素ガスが著しく少ないので炭酸ガス濃度が高く、炭酸ガスの分離エネルギーを小さくすることができ、省エネルギー性に優れる。
(7)高含水率の低石炭化度炭を乾燥する乾燥工程を備えているので、乾留工程の投入熱量を少なくすることができ、エネルギー効率に優れる。
(8)乾燥工程で乾燥された乾燥炭を乾留する乾留工程を有しているので、乾燥することで比重が軽くなり、水分を蒸発する熱量も含め、乾留炉をコンパクトに設計できるため、省資源性に優れる。また、乾留炉の乾留ガス回収設備などをコンパクトにすることができるので省資源性に優れる。
(9)前記乾燥工程の乾燥温度が30℃〜50℃である構成を有しているので、温度を上げる投入熱量に対する乾燥時間の減少割合が大きく、エネルギー効率に優れる。
(10)また、30℃〜50℃である構成を有し、エネルギー効率に優れるので設備容量をコンパクトにすることが可能でコスト面に優れる。
【0007】
ここで、(a)乾燥工程としては、直接的又は間接的な熱の適用により粒状物質の水分量を減少させるのに有用な任意の装置を意味し、制限するものではないが例えば、流動床ドライヤー、振動流動床ドライヤー、固定床ドライヤー、走行床ドライヤー、カスケード形旋回床ドライヤー、長尺スロットドライヤー、ホッパードライヤー、キルンなどが含まれる。これらドライヤーは、単一又は多重容器からなるもの、単一又は多重段階からなるもの、積重ねたもの若しくは積重ねられていないもの、内部又は外部熱交換器を有するものなどが含まれる。
(b)乾燥工程で乾燥する高含水率の低石炭化度炭としては、含水量が約20%を越えるものであれば亜瀝青炭、亜炭、褐炭などその名称、産地は特に問わない。また、燃料として使用する石炭が全て低石炭化度炭である必要はなく、含水量が約20質量%未満の高石炭化度炭を添加しても良い。(以後、乾燥工程を経て乾燥された低石炭化度炭を乾燥炭という)
(c)乾燥工程は、窒素ガス等の不活性ガス雰囲気で乾燥される。低石炭化度炭の目標水分は20質量%以下とすることができる。実験では16質量%まで下げることができた。これにより、低石炭化度炭の含水量を1/3以下にすることができ、輸送効率を大幅に改善できる。更に、乾留を行い固定炭素とすることにより自然発火を防ぎ安全性を向上できる。
(d)不活性ガスとしては、窒素ガスが好適に用いられる。窒素ガスは、酸素分離器で分離された窒素ガスが用いられる。窒素ガスは復水器の熱水で加熱された空気予熱器で加熱されるようにしてもよい。この場合、酸素濃度が低いので、自然酸化し昇温し易く発火し易い低石炭化度炭の発火を防ぎ、より高い温度で乾燥することができる。また、酸素分離器で分離された窒素ガスは相対湿度が低いので、乾燥効率を大きくすることができる。更に、廃熱を利用し、別途熱エネルギーを要しないので、環境に優しく省エネルギー性に優れる。また、乾燥部から排出される高湿度排ガスから清浄水を回収でき水の有効利用が図れる。
(e)低石炭化度炭としては、乾燥される前に前処理として粉砕することが好ましい。粉砕することにより、乾燥工程を簡略化し、乾燥時間を短縮化できる。低石炭化度炭の加熱は、乾燥工程の乾燥室を燃焼炉でスーパーヒートされた蒸気で発電する蒸気タービンの復水器の冷却排水配管を用いて加熱して行う。また、伝熱媒体として、酸素含有量の少ない空気、CO2あるいはN2ガスを該加熱された冷却排水で熱交換して加温して乾燥工程へ低石炭化度炭の流れと向流して流し乾燥させる。
(f)乾燥工程で乾燥する温度は、30℃〜40℃が好適に用いられる。特に40℃前後の温度範囲での乾燥は、30℃での乾燥に比べ、原料の石炭の水分を60%から50%に乾燥する時間が1/3程度と効果が高く、熱効率に優れる。高含水率の低石炭化度炭は、常温においても乾燥雰囲気では含水率は減少するが、非常に時間がかかる為、好ましくない。乾燥温度が30℃を下回るにつれて乾燥時間が長くなる傾向にあり好ましくなく、温度を50℃以上に上げるほど乾燥時間は短くなるが、その効果に対する投入熱量から得られる便益が小さくなり、好ましくない。また、復水器からの排熱を乾燥に用いる場合、50℃以下の乾燥であれば適用可能なため、排熱を効果的に利用することができ、好ましい。
(g)乾留工程の前に乾燥工程を設置しても良い。低石炭化度炭を乾燥して乾燥炭とすることで乾留炉での負荷が減り、乾留炉の大きさも小型にすることが出来るので、装置をコンパクトにすることができ、省資源性に優れる。
【0008】
乾留工程の乾留炉としては、移動層を用いた乾留炉が好適に用いられる。乾留は、乾燥炭を乾留炉の炉頂から装入され乾燥炭の粒子群が膨張した後収縮し重力によって順次流下する間に、粒子と向流あるいは並流する高温の水蒸気や窒素ガスあるいは炭酸ガスと連続的に接触し乾留が行われ固定炭素を得ることができる。また、乾留には必ずしもガスを導入する必要はなく、炉内に投入されるガスは広い範囲の流速が利用出来る。
乾留工程の乾留温度としては、300℃〜900℃、好ましくは350℃〜500℃が好適に用いられる。これにより炉材の材料が高温に耐える特殊材料の
使用を減らすことができる。
乾留炉の払い出し口としては、底部の角度が安息角以上であるものが好適に用いられる。安息角以下になるにつれて払い出し口に固定炭素のブリッジが発生し易く、スムーズに固定炭素が流下しなくなる傾向にあり好ましくない。
【0009】
冷却工程の冷却槽としては、乾留工程で乾留された固定炭素を冷却し捕集出来る構造であれば良く、底部の形状としては、底部の角度が安息角以上であるものが好適に用いられる。安息角以下になるにつれて冷却槽内に固定炭素のブリッジが発生し易く、下部の固定炭素取り出し口においてスムーズに固定炭素が取り出せなくなる傾向にあり好ましくない。また、冷却槽には冷却の為に配管を用いて冷却水等の熱媒体によって冷却することが好ましい。そうすることで冷却槽をコンパクトに作成できる。配管等によって間接的に冷却することで冷却槽は不活性ガスを充填する場合は、発火等の事故を防止することができる。
【0010】
固定炭素としては、褐炭等を乾留工程で乾留して得られる。また、炭化水素ガス(揮発分)が抜けることで高品位の石炭へ転化し略400℃において高品質なニューランズの燃料比2を越えることから現在市場に流通する高品位炭レベルの固定炭素を製造することが出来る。乾留温度は、最終品質を考慮して適宜選択できる。固定炭素とするこ
とで、低石炭化度炭
である生産地以外で利用が困難な含水量が高い亜瀝青炭や褐炭などを産炭地以外で利用できる。
【0011】
燃焼工程としては、流動層燃焼炉や炭化水素ガス・固定炭素燃焼ボイラーが好適に用いられる。
流動層燃焼炉としては、流動媒体として石灰石、ドロマイト等が用いられる。助燃剤としては、酸素と酸素濃度を調節(希釈)する炭酸ガスの混合ガスが好ましい。燃料は、乾留で得られ
た炭化水素ガスや乾燥部で乾燥された低石炭化度炭の乾燥炭や改質器で改質された低石炭化度炭の改質後石炭やチャーが用いられる。
炭化水素ガスや、乾燥部で乾燥された低石炭化度炭を主燃料とした場合、固定炭素を製造し、産炭地以外で固体燃料として使用することが出来る。また、固定炭素の一部を燃焼炉で用いた場合、炭化水素ガスの余剰分を回収し有用な化学原料として利用出来るのでケミカルコンプレックスを構築することが出来る。
また、流動層燃焼炉の燃焼温度は800〜900℃に調節される。これにより炉材の材料が高温に耐える特殊材料の使用を減らすことができ、さらに流動層内での灰熔解などの障害を防ぐことができる。
乾留炉の下流に触媒改質装置を設けてもよい。この場合、触媒改質装置により、低石炭化度炭から得られた揮発成分や炉ガス(燃焼排ガス)のCO
2やCO,H
2Oと触媒を接触させ改質を行うもので、FT合成ガスやメタノール合成ガス,アンモニア合成ガス,水素ガス,合成天然ガス等を得ることができる。
【0012】
発電工程としては、燃焼工程の燃焼炉を熱源として発生した主蒸気によってタービンを回し発電を行うものであれば特に、指定はしない。主蒸気によってタービンを回した後の排熱を利用しエネルギー効率に優れる発電システムを構築できるからである。
【0013】
乾燥工程と乾留工程の間には、乾燥工程で得られた乾燥した低石炭化度炭を加熱する前処理工程を設けても良い。前処理工程の温度としては、乾留工程と同様の温度より低く乾燥工程よりも高い温度が好適に用いられる。そうすることで、乾留工程において、より安定して高品位の固定炭素を収率良く得ることが出来る。また、乾留工程の乾留炉を小さくできるので省資源性に優れる。また、乾燥工程で得られた乾燥炭の一部を燃焼工程で用いても良い。使用する石炭の発熱量を改善することで発電システム全体の高効率化に貢献することが出来る。更に乾留工程後の固定炭素を一部使用することも出来る。乾燥炭や、固定炭素を用いることで、より乾燥した石炭は、発電プラントにおいて、石炭取扱いシステム、搬送に対する負荷を軽減させる。より乾燥した石炭は運搬性が高く、大掛かりな設備が不要になるのでメンテナンスコストを軽減させ、利用可能性を増大させる。
【0021】
請求項
2に記載の発明は、請求項
1に記載の発電システムであって、前記乾留工程の温度が350℃〜500℃である構成を有している。
この構成により、請求項
1で得られる作用に加え、以下のような作用が得られる。
(1)350℃〜500℃で乾留を行うので、炭化水素ガス(揮発分)が揮発し易く、高品位の石炭へ転換を進めることができ、燃料比2以上の高品位炭を得ることが出来る。
(2)350℃〜500℃の低温で、乾留を行うことが出来るので、装置自体のコスト及び、投入熱量において省コスト性に優れる。
(3)重質油を保持したまま乾留が出来るのでリアクターの閉塞等の問題が起こらない。
【0022】
ここで、乾留工程の温度としては、350℃〜500℃が好適に用いられる。好ましくは350℃〜450℃が好適に用いられる。温度が350℃を下回ると燃料比が2を下回り効率的な乾留処理を行うことができないので好ましくなく、450℃を超えると、投入熱量に対する便益が小さくなる傾向にあり500℃を超えると、その傾向が著しくなり好ましくない。また、温度が高くなるにつれ乾留により抜ける炭化水素ガス(揮発分)が多くなるが、それに伴い、重質油分が多くなる、これにより、リアクターの閉塞等の問題が多くなる傾向にあり同様に好ましくない。さらに、一般に低石炭化度炭は500℃を超えて加熱すると亀裂が増え微粉が発生し未燃炭が増加する。そして、熱分解ガスは、酸素濃度が高いと易燃焼成分の着火や、微粉炭の爆発の危険があるので、酸素濃度の制御やスチームの添加等装置の運転制御が困難で安全性や運転性に欠ける。加えて、処理温度の上昇につれて、乾留工程の乾留炉の材質は耐熱性向上、追加投入熱量の増加等、省資源性に欠ける。よって350℃〜500℃、より好ましくは350℃〜450℃の範囲で温度管理を行うことで、固定炭素内に重質油を保持したまま乾留を行うことが出来るのでリアクターの閉塞等の問題が起こらず、安定操業に大きく寄与する。
【0023】
また、炭化水素ガス(揮発分)が揮発分離することで高品位の石炭へ転化が進むが、100℃〜300℃の範囲でもガス成分が揮発す
ることが分かっており、略400℃において高品質なニューランズ炭の燃料比2を越えることから現在市場に流通する高品位炭レベルの固定炭素を製造することが出来ることがわかる。
更に、従来一般的な高温での乾留に比べ、350℃〜500℃という遥かに低温なので、省エネルギー性に優れる。
【0024】
請求項
3に記載の発明は、請求項
1又は2に記載の発電システムであって、前記乾留工程と前記冷却工程を含む固定炭素製造装置が前記冷却工程の冷却槽に立設された乾留工程の乾留炉と、前記乾留炉内の水平方向断面上を隔壁によって矩形又は多角形に鉛直方向に上部から下部まで区切られた乾留ユニットと、前記乾留ユニット内に水平方向断面上を仕切り板によって矩形又は多角形に鉛直方向に上部から下部まで区切られたミニ乾留炉と、前記乾留ユニットの隔壁と前記ミニ乾留炉のしきりに配設された加熱の為のパイプ状の加熱手段と、原料炭を上部から投入してそれぞれの前記ミニ乾留炉内で前記パイプ状の加熱手段によって乾留され冷却槽に製造された固定炭素を捕集する捕集路と、を備えた構成を有している。
この構成により、請求項
1又は2で得られる作用に加え、以下のような作用が得られる。
(1)ミニ乾留炉がパイプ状の加熱手段をそれぞれ備えているので、高温熱媒体による間接加熱が可能で、乾留炉内を均一の温度にすることが容易で、固定炭素の収率に優れる。
また、大量生産の為に、炉内の内容積を単純に大きくした場合、炉内の温度を均一にすることは困難で、部分的に乾留が進み易い場所が出来るなど、高品質な固定炭素の収率が悪いが、ミニ乾留炉を多列に備える乾留ユニット、乾留ユニットを多列に備える乾留炉を備えているので、大量生産性に優れる。
(2)ミニ乾留炉を多列に形成する乾留ユニットやそれを多列に形成する乾留炉を有しているので、剛性が高く、乾留炉内で揮発成分の発生や、乾留炉内での原料炭の膨張によって炉内に圧がかかる時でも変形することがなく、操業安定性に優れる。
(3)パイプ状の加熱手段を形成しているので、蒸気等の高温熱媒体によって安定的に加熱を行うことが出来る為、操業の安定性に優れる。
(4)固定炭素を捕集する冷却槽を乾留炉の下部に有しているので、製品固定炭素を捕集安定的に捕集することが出来る。
(5)パイプ状の加熱手段を有しているので、乾留炉の熱交換媒体として、燃焼炉の排ガスを供給する直接加熱とは異なり、間接加熱を用いることで発生する揮発分の単位体積当たりの熱量を最大限活用することができ、省エネルギー性に優れる。
【0025】
ここで、乾留炉の例としては、縦方向略4500mm×横方向略4500mmで高さが略5000mmのサイズのもの等が好適に用いられる。この中にひとつの乾留ユニットが縦方向略1500mm×横方向略1500mmで高さが略5000mmになる様に隔壁を設け、乾留炉内に乾留ユニットが3列×3列出来るようにし、更に、この乾留ユニット内に断面積が縦方向略500mm×横方向略500mmで高さが略5000mmになる様に仕切り板を設け、乾留ユニット内にミニ乾留炉が3列×3列出来るようにしたもの等が好適に用いられる。
この様に安定した高収率の乾留炉を組み合わせることで、大量の固定炭素を製造する場合にも構造上の強度と生産の安定性を図ることが出来る。断面形状は、矩形に限らず、三角形や、五角形、六角形等の多角形も適宜使用可能である。また、ミニ乾留炉を1つの乾留炉としてテストを行うことが可能で、実験設備から実施設備まで状況に応じて応用性と拡張性に優れる。
【0026】
パイプ状の加熱手段としては、水蒸気等の熱媒体を用いて間接加熱を行うが、隔壁や仕切りに対して平行になるように取り付けることも出来るし、仕切り板や隔壁を貫くように直交して取り付けることが出来る、直交して取り付けた場合はそれ自体が邪魔板の役目を果たし、乾燥炭を自然に流下するとともに乾留する際に適度にトラップすることができ、乾留の際の品質向上に繋がるため好ましい。
【0027】
固定炭素を捕集する冷却槽としては、常温以下の温度で冷却することが好ましい。これにより、固定炭素の酸化を防止することが出来る。また、冷却槽の構造としては、固定炭素を閉鎖状態で受け入れる構造が好ましい。この中に不活性ガスを充填することで、乾留炭の酸化を防止すると共に、容器内に設置された水冷伝熱管により間接的に乾留炭を常温まで冷却することで固定炭素を得る。閉鎖状態で受け入れる構造としては、乾留炉からの受け入れ側、固定炭素の取出し口側共にロータリーバルブのように乾留炉、冷却槽、共にシールするような構造の弁を設けることが好ましい。この様に、間接加熱で冷却槽を閉鎖状態にすることができ、不活性ガス雰囲気にすることができるので、発火等の事故を防止することができ好ましい。
【0028】
乾留炉に投入される
乾燥炭としては、褐炭を乾燥したものが好適に用いられる。褐炭の他には亜炭、亜瀝青炭当も同様にして用いることが出来る。また、褐炭には、ビクトリア炭、ノースダコタ炭、ベルガ炭等が存在するが同様にして用いることが出来る。これらの石炭は、低灰分、低硫黄という好ましい性質があるが、多孔質なので高含水率になる傾向があり、水分が多く含まれているので、カロリーが低くなり、低品位炭として取り扱われている。これら多孔質で高い含水量を有するものを同様にして用いることが出来る。
【0029】
隔壁、仕切り板としては、各乾留ユニット、各ミニ乾留炉を上部から下部まで仕切るようにして配設され、区切られた内部の温度を制御する為の加熱手段を備えた構造のものを好適に用いる。また、加熱手段は上部から順に複数段階に分けるように仕切り板に配設することもできる。乾留工程で乾留速度を急激にしたり、緩やかにする、などの加温パターンを制御し、高品位炭を高効率で得るため
の条件設定が容易になり、生産性に優れる。
【0030】
請求項
4に記載の発明は、請求項
1乃至3の内いずれか1項に記載の発電システムであって、前記乾留炉で用いる乾燥炭が前記乾燥工程で低石炭化度炭を含水率20質量%以下まで乾燥されている構成を有している。
この構成により、請求項1乃至
3の内いずれか1項で得られる作用に加え、以下のような作用が得られる。
(1)高含水率の低石炭化度炭を乾燥する乾燥工程を備えているので、安定した品質の乾燥炭が乾留路に投入されるので、乾留炉で、高品位の固定炭素(製品乾留チャー)が得られ、品質性能に優れる。
【0031】
ここで、乾燥工程で乾燥する高含水率の低石炭化度炭としては、含水量が約20%を越えるものであれば亜瀝青炭、亜炭、褐炭などその名称、産地は特に問わない。また、燃料として使用する石炭が全て低石炭化度炭である必要はなく、含水量が約20質量%未満の高石炭化度炭を添加しても良い。
【0032】
乾燥工程の乾燥器は、低温(30℃〜80℃)で低湿度(RH70〜0%)のN
2ガス等の不活性ガス雰囲気で乾燥される。乾燥部の内部は石炭を温める温水(60〜90℃程度)配管と不活性ガスの乾燥ガスを注入するガス配管で構成されている。また、低石炭化度炭の目標水分は20質量%以下とすることができる。実験では16質量%まで下げることができた。これにより、低石炭化度炭の含水量を1/3以下にすることができ、輸送効率を大幅に改善できる。更に、乾留を行い固定炭素とすることにより自然発火を防ぎ安全性を向上できる。
【0033】
N
2ガスは、O
2分離器で分離されたN
2ガスが用いられる。N
2ガスは復水器の熱水で加熱された空気予熱器で加熱されるようにしてもよい。この場合、O
2濃度が低いので、自然酸化し昇温し易く発火し易い低石炭化度炭の発火を防ぎ、より高い温度で乾燥することができる。また、O
2分離器で分離されたN
2ガスは相対湿度が低いので、乾燥効率を大きくすることができる。更に、廃熱を利用し、別途熱エネルギーを要しないので、環境に優しく省エネルギー性に優れる。また、乾燥部から排出される高湿度排ガスから清浄水を回収でき水の有効利用が図れる。
【0034】
請求項
5に記載の発明は、請求項
1,3,4の内いずれか1項に記載の発電システムであって、前記乾燥工程で用いる原料炭の粒子径が0.1μm〜5mmに調整されている構成を有している。
この構成により、請求項
1、3,4の内いずれか1で得られる作用に加え、以下のような作用が得られる。
(1)0.1μm〜5mmの粒径に調整されているので、乾燥工程を簡略化し、乾燥時間を短縮化でき、省エネルギー性に優れる。
【0035】
ここで、低石炭化度炭を0.1μm〜5mmの粒径に調整する方法としては、乾燥前に前処理として粗粉砕して粒径が0.1μm〜5mmに調整される。粉砕することにより、乾燥工程を簡略化し、乾燥時間を短縮化できる。低石炭化度炭の加熱は、乾燥工程の乾燥室を流動層燃焼炉でスーパーヒートされた蒸気で発電する蒸気タービンの復水器の冷却排水(60〜90℃程度)配管を用いて加熱して行う。また、伝熱媒体として、酸素含有量の少ない空気、CO
2あるいはN
2ガスを該加熱された冷却排水で熱交換して加温(温度:60〜90℃,RH:0〜70%)して乾燥工程へ低石炭化度炭の流れと向流して流し乾燥させる。
【0036】
請求項
6に記載の発明は、請求項
1に記載の発電システムであって、前記発電工程の復水器からの排熱を乾燥工程で乾燥に用いる不活性ガスの加熱に用いる熱供給部を備えた構成を有している。
この構成により、請求項
1で得られる作用に加え、以下のような作用が得られる。
(1)排熱を有効利用することで、省エネルギー性に優れる。
【0037】
請求項
7に記載の発明は、請求項
1に記載の発電システムであって、前記燃焼工程で発生する排熱を蒸気又は燃焼排ガス又は前記燃焼工程で加熱された熱媒体を利用して乾留工程へ供給する熱供給部を備えた構成を有している。
この構成により、請求項
1で得られる作用に加え、以下のような作用が得られる。
(1)排熱を有効利用することで、省エネルギー性に優れる。
(2)発電機における復水器排熱を利用した間接加熱を用いることで、乾留工程における潜熱損失を軽減することが可能で設備をよりコンパクトに製作できる。
(3)復水器排熱を利用した間接加熱を用いる構成を有しているので、圧力が高く、熱容量が高い熱媒体を用いることができ、装置がコンパクトに製作できコスト面に優れる。
【0038】
ここで、燃焼工程で発生する熱を、乾留工程に供給する熱供給方法としては、燃焼工程で発生する排ガスを乾留炉に直接供給してもよいし、燃焼工程が発電機のタービンを回す蒸気を発生している場合、タービンを回した後の蒸気を燃焼工程において再加熱したものを乾留炉熱交換部に供給し間接的に加熱することもできる。
また、産炭地以外では含水率が
大きくて用い
られていない低石炭化度炭を燃焼工程で燃料として用いることも出来るので産炭地においてこの発電システムを用いた場合、安価な低石炭化度炭を有効に活用し電力を発電しながら、固体燃料(固定炭素)を製造でき、発電の排熱を有効に利用したシステムなので省エネルギー
性に優れ、燃料比の高い固体燃料を効率的に生産出来る固体燃料製造設備を一体とした発電システムを構築できる。
【発明の効果】
【0039】
以上のように、本発明の発電システムによれば、以下の有利な効果が得られる。
請求項1に記載の発明によれば、
(1)温度を上げる投入熱量に対する乾燥時間の減少割合が大きく、エネルギー効率に優れた発電システムを提供することができる。
(2)エネルギー効率に優れるので設備容量をコンパクトにすることが可能でコスト面に優れた発電システムを提供することができる。
(3)投入熱量を少なくすることができるエネルギー効率に優れた発電システムを提供することができる。
(4)乾燥することで比重が軽くなり、水分を蒸発する熱量も含め、乾留炉をコンパクトに設計できる省資源性に優れた発電システムを提供することができる。
また、乾留炉の乾留ガス回収設備などをコンパクトにできる省資源性に優れた発電システムを提供することができる。
(5)乾留で生成される炭化水素ガスを燃焼工程の主燃料とすることで固定炭素を製造する優れた発電システムを提供することができる。
(6)乾留後の冷却により表面に浮き出ているタール成分を固定炭素内で定着させることでタール成分による障害問題を解決することができる安定的な操業性に優れた発電システムを提供することができる。
(7)炭化水素ガスを主燃料とする燃焼工程と、燃焼工程で発生する主蒸気によって蒸気タービンを動かす発電機と復水器を備える発電工程とを有しているので、燃焼工程と復水器の間を移動する熱媒体によって排熱を有効利用することが出来る。また、乾留炉により、炭化水素ガス及び固定炭素を製造するので省資源性に優れ、油分等の副資材を加えない為、重量が軽く、運搬に掛る費用が安く、生産地以外で利用が困難な含水量が高い亜瀝青炭や褐炭などを産炭地以外で利用できる運用面で優れた発電システムを提供することができる。
(8)炭化水素ガス(揮発分)の燃焼熱を発電用の蒸気の加熱とともに低石炭化度炭の乾燥、乾留する固定炭素製造に利用することができる省資源性に優れた発電システムを提供することができる。
また、炭酸ガスを分離・回収する場合、N
2ガスが著しく少ないので炭酸ガス濃度が高く、炭酸ガスの分離エネルギーを小さくすることができ、更に省資源性に優れた発電システムを提供することができる。
【0042】
請求項
2に記載の発明によれば、請求項
1に記載の効果に加えて以下のような有利な効果が得られる。
(1)炭化水素ガス(揮発分)が抜け、高品位の石炭へ転換を進めることができ、燃料比2以上の高品位炭を得ることが出来る品質に優れた発電システムを提供することができる。また、350℃〜500℃の低温で、乾留を行うことが出来るので、装置自体のコスト及び、投入熱量において省コスト性に優れた発電システムを提供することができる。更に、重質油を保持したまま乾留が出来るのでリアクターの閉塞等の問題が起こらない操業安定性の優れた発電システムを提供することができる。
【0043】
請求項
3に記載の発明によれば、請求項
1又は2に記載の効果に加えて以下のような有利な効果が得られる。
(1)高温熱媒体による間接加熱が可能で、乾留炉内を均一の温度にすることが容易で、固定炭素の収率に優れた発電システムを提供することができる。また、このミニ乾留炉を多列に備える乾留ユニット、乾留ユニットを多列に備える乾留炉を備えた大量生産性に優れた発電システムを提供することができる。
また、大量生産の為に、炉内の内容積を単純に大きくした場合、炉内の温度を均一にすることは困難で、部分的に乾留が進み易い場所が出来るなど、高品質な固定炭素の収率が悪い。
(2)剛性が高く、乾留炉内で揮発成分の発生や、乾留炉内での原料炭の膨張によって炉内に矩形に区切っていない場合、圧がかかる時でも変形することがない操業安定性に優れた発電システムを提供することができる。
(3)蒸気等の高温熱媒体によって安定的に加熱を行うことが出来る操業の安定性に優れた発電システムを提供することができる。
(4)製品固定炭素を捕集安定的に捕集することが出来る生産性に優れた発電システムを提供することができる。
(5)乾留炉の熱交換媒体として、燃焼炉の排ガスを供給する直接加熱とは異なり、間接加熱を用いることで発生する揮発分の単位体積当たりの熱量を最大限活用することができる省エネルギー性に優れた固定炭素製造装置を提供することができる。
【0044】
請求項
4に記載の発明によれば、請求項
1乃至3のうちいずれか1項に記載の効果に加えて以下のような有利な効果が得られる。
(1)安定した品質の乾燥炭が乾留路に投入されるので、乾留炉で、高品位の固定炭素(製品乾留チャー)が得られる品質性能に優れた発電システムを提供することができる。
【0045】
請求項
5に記載の発明によれば、請求項
1、3,4の内いずれか1項に記載の効果に加えて以下のような有利な効果が得られる。
(1)乾燥工程を簡略化し、乾燥時間を短縮化できる省エネルギー性に優れた発電システムを提供することができる。
【0046】
請求項
6に記載の発明によれば、請求項
1に記載の効果に加えて以下のような有利な効果が得られる。
(1)排熱を有効利用することで、省エネルギー性に優れた発電システムを提供することができる。
【0047】
請求項
7に記載の発明によれば、請求項
1に記載の効果に加えて以下のような有利な効果が得られる。
(1)排熱を有効利用する省エネルギー性に優れた発電システムを提供することができる。
(2)発電機における復水器排熱を利用した間接加熱を用いる乾留工程における潜熱損失を軽減することが可能で設備をよりコンパクトに製作できる省資源性に優れた発電システムを提供することができる。
(3)圧力が高く、熱容量が高い熱媒体を用いることができ、装置がコンパクトに製作できるコスト面に優れた発電システムを提供することができる。