(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6131326
(24)【登録日】2017年4月21日
(45)【発行日】2017年5月17日
(54)【発明の名称】レーザークラッディングシステムのフィラー材料分配装置
(51)【国際特許分類】
B23K 26/342 20140101AFI20170508BHJP
B23K 26/70 20140101ALI20170508BHJP
【FI】
B23K26/342
B23K26/70
【請求項の数】10
【全頁数】16
(21)【出願番号】特願2015-531931(P2015-531931)
(86)(22)【出願日】2013年8月12日
(65)【公表番号】特表2015-528393(P2015-528393A)
(43)【公表日】2015年9月28日
(86)【国際出願番号】US2013054453
(87)【国際公開番号】WO2014074188
(87)【国際公開日】20140515
【審査請求日】2015年6月12日
(31)【優先権主張番号】13/611,144
(32)【優先日】2012年9月12日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】599078705
【氏名又は名称】シーメンス エナジー インコーポレイテッド
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【弁理士】
【氏名又は名称】実広 信哉
(72)【発明者】
【氏名】ジェラルド・ジェイ・ブルック
【審査官】
青木 正博
(56)【参考文献】
【文献】
特開2007−051635(JP,A)
【文献】
米国特許出願公開第2012/0199564(US,A1)
【文献】
特開2001−068764(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B23K 26/00−26/70
(57)【特許請求の範囲】
【請求項1】
レーザークラッド用フィラー材料の分配のための装置であって、
分配開口を画定する外面と、フィラー材料をその中に保持するための、前記分配開口と連通する内部チャンバと、を有するモジュール式ハウジングであって、該モジュール式ハウジングが、分配開口の配列を変化させる選択式アセンブリのために、他のモジュール式ハウジングと選択的に組み合わせるように設けられている、モジュール式ハウジングと、
前記内部チャンバから、前記分配開口を通じてフィラー材料を供給するように設けられている機械的供給機構と、
前記機械的供給機構に結合した、フィラー材料の供給量を選択的に変化させるように設けられた駆動システムと、
を備え、
複数のモジュール式ハウジングが分配開口の配列に方向を合わせられ、取り付け構造が前記モジュール式ハウジングを前記分配開口の配列の中に結合させ、
前記機械的供給機構がオーガを有するリニアアクチュエータを備え、該機械的供給機構が前記内部チャンバ中のフィラー材料源から、前記分配開口を選択的に分離し、
前記駆動システムが、前記分配開口の配列中の分配開口それぞれを通じたフィラー材料の供給量を選択的に変化させる、装置。
【請求項2】
分配開口の寸法を選択的に変化させるための開口調整機構を備えることを特徴とする請求項1に記載の装置。
【請求項3】
前記分配開口を通じたフィラー材料の供給量を制御するための、前記駆動システムに結合した制御システムを備えることを特徴とする請求項1に記載の装置。
【請求項4】
レーザークラッド用フィラー材料の分配のための装置であって、
クラッディング表面上へのフィラー材料の制御された分配のための、少なくとも2つの分配開口からなる配列を画定する外面と、フィラー材料をその中に保持するための、前記分配開口と連通する内部チャンバと、を有するハウジングと、
前記内部チャンバから、前記分配開口の配列中の前記分配開口を通じてフィラー材料を供給するように設けられた機械的供給機構と、
前記機械的供給機構に結合した、フィラー材料の供給量を選択的に変化させるように設けられた駆動システムと、
を備え、
前記機械的供給機構はオーガを有するリニアアクチュエータを備え、前記機械的供給機構は前記内部チャンバ中のフィラー材料源から前記分配開口を選択的に分離する、装置。
【請求項5】
分配開口の寸法を選択的に変化させるための開口調整機構を備えることを特徴とする請求項4に記載の装置。
【請求項6】
前記分配開口の配列は、少なくとも3つの分配開口からなる直線状配列を備えることを特徴とする請求項4に記載の装置。
【請求項7】
前記分配開口の配列は、少なくとも3つの分配開口からなる多角形状の配列を備えることを特徴とする請求項4に記載の装置。
【請求項8】
請求項1〜7のいずれか一項に記載のレーザークラッド用フィラー材料の分配のための装置;
前記フィラー材料をフィラー層として基材に融合させる光エネルギーを、前記基材及び前記基材上のフィラー材料に移送するためのレーザービームを生成するレーザー;
前記レーザービームを前記基材上に方向づけるための、前記レーザービームを遮断する可動ミラー;及び
前記可動ミラーのそれぞれ及び前記レーザーに結合され、前記レーザービームと前記基材との間の相対的な動きを生じさせるためのレーザー駆動システム;
を備えるレーザークラッディングシステム。
【請求項9】
前記レーザー駆動システムは前記ミラーを前記基材の全体に亘る多次元の経路内で動かし、前記フィラー材料の分配のための装置の前記分配開口の配列は、前記レーザービームが光エネルギーを前記基材に移送するのに先立って、前記多次元の経路に沿って前記基材上に均一なフィラー材料の分配パターンを導入することを特徴とする請求項8に記載のシステム。
【請求項10】
前記分配開口の配列は、直線状の分配開口の配列及び多角形状の分配開口の配列からなる群から選択されることを特徴とする請求項9に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
[関連出願への参照]
この出願は、本願と同日に出願された、共通に所有され、同時継続中の「表面トポロジーのエネルギー移送による補償を有する超合金のレーザークラッディング」との名称の米国特許出願第13/611,034を参照によって組み込んでいる。
【0002】
本発明は、経年劣化したタービンブレード及びベーンのような超合金製部品のレーザークラッディング(laser cladding)に関する。より具体的には、本発明の方法は、1つ以上のフィラー材料の層を、連続した溶接並進経路に沿って基材に溶接することに関する。金属粉のようなフィラー材料は、レーザービームが光エネルギーを、連続的な溶接並進経路に沿って基材に移送する前、又は移送中の均一な分配のための、直線状又は多角形状の配列の分配開口を有するフィラー分配装置によって、基材上にパターンの形で導入される。
【背景技術】
【0003】
ガスタービン又は他の超合金性部品の「構造的な」修復は、損傷を受けた材料を同じ合金材料に置き換え、元の製造用部品仕様に近い(例えば、元の仕様の最大引張強度の少なくとも70%)強度のような特性を達成することとして一般的に認識されている。例えば、表面割れを生じたタービンブレードへの構造的修復を行い、それによってさらなる割れの危険性を減少させ、ブレードが元の材料構造及び寸法の仕様に戻ることが好ましい。
【0004】
タービンブレードのようなタービンの部品を製造するのに使用されるニッケル及びコバルト基超合金材料の修復は、完成したブレードの材料の金属学的特性の故に困難である。完成したタービンブレードの合金は、通常は鋳造後熱処理の間に強くされており、このことは、その合金に引き続く構造的な溶接を行うことを困難にする。例えば、CM247合金のような6%以上の総(aggregate)濃度のアルミニウム又はチタンを有する超合金は、高温の溶接にかけられた場合に、低濃度のアルミニウム‐チタンを有するX−750超合金よりも、ひずみ時効割れを起こしやすい。
【0005】
超合金の加工又は修復のための、現在使用されている溶接プロセスは通常、溶け込み部に隣接している基材の実質的な溶融及び溶接棒又は他の添加されるフィラー材料の完全な溶融を含んでいる。そのような材料から構成されるブレードが、同一の若しくは同様の合金から成るフィラー金属で溶接される場合、ブレードは溶接部内及びその近傍の凝固割れ、及び/又は引き続いて行われる、超合金を元の強度及び新しい部品に匹敵する他の材料特性に回復することを意図された熱処理工程中のひずみ時効割れを受けやすい。
【0006】
下層の超合金基材を熱的に劣化させることなく、超合金フィラー材料を溶融させようとする超合金の接合及び修復の1つの既知の方法は、レーザービームマイクロクラッディングとしても知られるレーザービーム溶接である。超合金基材に適合するか、又は同一の(紛体フィラーであることが多い)超合金フィラー材料は基材表面に、溶接に先立って配置されるか又はクラッディングプロセス中にチャネルを通じて加圧ガスによって表面上にスプレーされる。固定式光学レーザー(すなわち、相対的な並進とは異なり、レーザーと基板とがレーザービームの適用中、固定された相対配向を有する)によって生成された集束レーザー光エネルギーの「スポット」領域は、フィラー材料を液化するとともに、基材の表面を十分に加熱してフィラーと基材材料との良好な合体を容易化し、次いで基材の表面上にクラッド堆積層として凝固する。既知の従来の溶接工程と比較して、レーザービームマイクロクラッディングは入熱の少ない工程であり、上述した凝固割れを引き起こす傾向を減少させる、基材の溶融及び急速な凝固に亘る比較的良好な制御を有する。また、レーザー溶接/クラッディング中の超合金基材への少ない入熱は、別様に上述した溶接後熱処理のひずみ時効割れに影響する残留応力を最小化する。レーザークラッディングの溶接部は従来形成されていた溶接部を超える構造的利点を有するが、実際の製造及び修復の現実は、単一のパスでクラッディングの体積を適用することによって満たすことができるよりも大きなクラッディング表面積及び/又は体積の範囲を必要とする。
【0007】
超合金部品への体積付加に対する需要に合わせるために、基材上へのレーザークラッドされた堆積物を、隣接する凝固したクラッドパスの一次元又は二次元の配列から形成することができる。複数のレーザー溶接されたクラッディングのパス及び層を適用して表面の寸法体積を構築することができる。レーザークラッドした堆積物の配列を生成することは、堆積した材料及び下層の基材における熱の影響を受けた領域の材料中にマイクロクラック及び欠陥を生じさせることが多い。いくつかの欠陥は、不十分な局所的なレーザーの光エネルギーによる入熱がある場合に共通する融合不良(LoF:lack of fusion)に関連する。タービンブレードのような基材が、ブレードの基材の材料の失われた体積を、それに相当する体積の超合金フィラーによって充填してブレードの元の構造的な寸法に戻す、構造的な修復を必要とすることは多い。既知のレーザークラッディング技術では、失われたブレード基材の体積は、別々に適用されたレーザークラッドの堆積物又はパスからなる二次元のフィラー溶融物の配列によって充填される。レーザービームの焦点位置と基材表面とが、単一の堆積物形成の後に互いに対して移動して、隣接して重なり合う一連の隆起(bumps)又は点(dots)に類似する次の堆積物を溶接する。既知の多次元フィラー材料堆積装置によって、(粉状形態にある場合が多い)フィラー粒子の層が基材表面の層に前以て配置されるか、又は加圧されたガス供給ノズルを通じてレーザー「スポット」が突出した領域上に導かれる。特許文献1は機械的なオーガ供給式紛体供給シリンダを開示しており、このシリンダはクラッディング用フィラー紛体を単一のノズルを通じて分配しており、単一ポイントの分配は、多次元でのフィラー材料の分配の用途に対しては最適ではない。
【0008】
既知の単一堆積「スポット」のレーザークラッディング法によれば、堆積物の溶接配列は、すべての溶接パスのコーナーにおいて融合不良(LoF)を示すことが多い。LoFは、ブレードの基材の表面トポロジーにおける1つ以上の局所的な変化の組み合わせによって引き起こされ、この表面トポロジーの変化は、非対称の放熱板特性、低下した出力密度、及び光エネルギー及び出力の両方の反射率を含む望ましい融合を維持するために、レーザーの光エネルギーの移送における対応する変化を必要とする。例えば、前に堆積された固化したレーザークラッドの堆積物は、基材表面に接触する端部と境界を接した湾曲面を有する。その、前に堆積した堆積物は追加的な放熱板材料としての役割を果たし、次のレーザークラッドの堆積物が当接関係で形成されて連続的な溶接線を生成する際には、下層の基材とともに加熱されなければならない。さらに、前の堆積物の湾曲部は、次の隣接した堆積物のレーザービームのエネルギー移送を拡げ、単位領域あたりの局所的な出力密度(例えばワット)を低減させる。潜在的に、湾曲面はまた、局所的なレーザーの光反射率を変化させ、この光反射率の変化は不均一なフィラー紛体の分配、例えば湾曲面から離れた散布によって悪化させられ、さらなる反射率の変化を付け加える。
【0009】
次のレーザークラッディングの堆積物が、既存の堆積物に隣接して重なり合うように堆積されるときには、新しいレーザーの集束ゾーン全体に亘って共通の均一に適用される出力及び/又はフィラー紛体の分配は、十分な局所的な融合エネルギーを供給せず、前の堆積物と形成されている堆積物との間の重なり領域において望ましい溶接よりも劣る溶接を生じさせる。前の堆積物と新しい堆積物との重なり領域における“最悪のケース”の融合不良を補償するための、堆積物を形成する際のレーザーによって供給される熱エネルギーの全体的に均一な増加は、溶接線に沿った前の堆積物の端部に当接する裸の基材の良好な融合に必要とされる以上である。このことは結果的に、割れに対して敏感な基材材料の過剰溶融、過剰加熱、及び過剰応力を生じさせ、これらは引き続く高温割れ及び/又はひずみ時効割れをいたずらに引き起こす。
【0010】
新しく加工された、又は修復されたタービンブレード又はベーンのような経年劣化した超合金製部品に超合金材料の寸法的な体積を肉盛する(build)ことが望ましい場合が多い。既知のレーザークラッド法が採用される場合、複数のパス層が既に堆積された複数のパス層上に堆積されて、必要な肉盛体積を作る。固定光学系を有するレーザーマイクロクラッディングは、修復される全体面積が集束したビーム径に対して大きいので、典型的な修復肉盛を達成するためには複数のパスを必要とする。パスの重なりそれぞれは、完全な融合が肉盛層それぞれ内で達成されること及び完全な融合が既に堆積されている下層と達成されることを確実とするという課題を含んでいる。通常、既知の固定式光レーザークラッディングプロセスにおいては、溶接された凝固結晶の配向(alignment)は、最初に堆積した数層においては基板に対して直角からシフトする傾向を有し、次いで続いて堆積されたクラッド層においてはますます傾斜した角度にシフトする傾向がある。マイクロクラックは、層間の結晶学的配向のこのようなシフトに起因して生じることが多い。
【0011】
上述に参照された、関連する米国特許出願第13/611,034号は、タービンブレード又はベーンのような超合金製基材の溶接用の既知の連続的堆積物のレーザークラッドプロセスの欠点を解決するレーザー溶接/クラッディングを記載しており、このレーザー溶接/クラッディングは、表面領域及び/又は超合金フィラー材料を有する体積を構造的に構築するために前記基材に1つ以上の層をクラッドする。参照されている米国特許出願の新しい発明では、十分なレーザーの光エネルギーが溶接フィラー材料と下層の基材とに移送されて、良好な融合のためのフィラーの溶融及び十分な基材表面の濡れを確実にする。しかし、エネルギー移送は、基材を熱劣化の危険にさらすレベルより弱く維持される。フィラー及び基材への光エネルギーの移送は、レーザービームと基材とが並進経路に沿って互いに対して相対的に移動するので、エネルギー移送速度を変化させて局所的な基材のトポロジーの変化を補償することによって均一に維持される。このように、連続的な溶接クラッド層が、一連の整合した重なり合う個々のクラッディング堆積物を形成する以前の既知の技術よりはむしろ均一性の一貫性を以て形成される。例えば、光エネルギーの移送量は、比較的反射性を有さないか又は平坦な領域ほどには効率的にレーザーの光エネルギーを吸収しない、相対的により反射性の、又は湾曲した領域に対して増加される。エネルギー移送量は、例えばレーザービームを並進移動経路に対して横断方向にオシレートすること、その移動及び/又はオシレーションの速度を変化させること、レーザービームの集束をより狭く又はより広く変化させること、又はレーザービームの出力を変えることによって変化させることができる。レーザービームは、連続的なクラッド層を構築するように、一次元で、二次元で、又は三次元でラスタすることができる。複数のクラッド層が重なるように堆積される場合には、参照されている米国特許出願の新しい発明による方法を使用することによって、基材に対して略直角な単軸の結晶学的な配向が、クラッドの肉盛に維持される。単軸の配向は、既知の固定式光レーザー溶接技術を使用して複数のマルチパスによる層をクラッドする場合に生じることが多いマイクロクラックの生成の危険を減少させる。
【0012】
参照されている米国特許出願の新しい進歩的な多次元の連続レーザークラッド法を実施する場合には、多次元の表面領域の全体に亘る連続的なレーザービームの経路に先立って、若しくはそれと同時に、どのようにしてフィラー材料を予め堆積する、若しくは供給するか、という課題が依然として残る。既に記載したように、既知の多次元の、クラッディング用フィラー材料の堆積方法は、溶接/クラッディング用レーザーに暴露する前に基材表面全体に亘って、レーザーの暴露の前及び/又はレーザーの暴露中にガスの圧力のもとでチャネルを通じて、フィラーの層を予備配置することを含む。既知の多次元のフィラー材料分配方法の双方において、不活性ガスが別々に基材表面に供給されてクラッディングプロセス中のフィラー材料の及び/又は基材の酸化を防止している。また、チャネルで供給する材料分配装置において、不活性ガスはフィラー材料を、チャネルを通じて搬送する。不活性ガスの流れは、基材上の既に堆積した厚みの(紛体であることが多い)フィラー材料をバラバラにしてしまう傾向がある。加圧された不活性ガスを適用されたフィラー材料は、基材の表面上に均一に分配せず、効率は制限され、紛体の40%以上が無駄になる。既知の連続する個々の堆積物のクラッディング法を実施する場合には、フィラー材料の層厚における変化は、レーザービームを適用して次のクラッディングの堆積物を生成する前に是正することができる場合がある。
【0013】
これら既知の堆積法のいずれもが、以前から既知の連続した堆積物のクラッディングには十分であるが、そのいずれもが、参照されている米国特許出願の新しい多次元の連続的レーザークラッディング法に対しては最適ではない。既知のフィラー材料の堆積法の両方は、連続的に移動するレーザービームが溶接経路に沿って動く時までに、基材表面上のクラッディング材料層の均一な分配の、不均一な適用及び場合によってはバラバラになる危険にさらす。前以て堆積させたフィラー粉末の場合には、不活性ガス流及び気流がフィラー層の厚みをバラバラにする場合がある。フィラーへの加圧ガスチャネルの適用は、広い領域に亘る均一なフィラーの厚みをもたらすことはない。クラッディング材料の層厚における逸脱は、レーザービームの出力の適用に対する局所的なトポロジーの変化を生じさせる。レーザー出力の変化のフィードバック機構をクラッディング装置に採用する場合はあるけれども、レーザー溶接作業中変化しない状態を保つ比較的均一なフィラー材料の適用層を有して開始することが好ましい。
【0014】
既知の加圧ガス供給式フィラー材料分配法及び装置のフィラー材料の均一な層を提供する最適値未満の能力は、それらの一軸供給の制限に寄与することが多い。最も良く知られている加圧ガス式供給システムは、一軸であり、すなわち、材料を点供給源のスプレーパターンとして供給し、このスプレーパターンは、通例レーザービームと同軸に方向づけられているか、又はビームに対して材料を横から供給する軸上に方向づけられている。一軸の供給は、広い領域に亘って均一に(紛体であることが多い)フィラー材料を拡散することはない。ガスによる供給は、フィラー紛体を意図した溶接領域の外側に無差別にまき散らす場合が多い。まき散らされた高価な超合金製フィラー材料は廃棄され、未来の溶接のために効果的に回収されることはない。
【0015】
いくつかの既知の加圧式フィラー材料の紛体の供給システムは、フィラーの直線的なパターンの供給ができる。典型的な既知の従来技術の加圧式直線パターン供給システム20を
図1〜3に示す。供給システム20は、加圧ガス流れPに同伴されたフィラー材料を、直線状配列のチャネル22を介して供給する。チャネル22の配列の幅は固定されており、したがってフィラー材料の分配幅もまた固定されている。個別のチャネル22それぞれは、a×bの寸法を有する固定された断面積を有し、システム20の最大供給量を制限する。供給Pの供給量は、チャネル22の断面積と供給ガスの圧力との関数である。通常は、ガスの供給圧力は固定されている。ガスの圧力が調整可能な範囲で、圧力を増して供給量を増加させることは、紛体の分配をバラバラにする乱流ガスを生じさせ、最悪の場合には供給中の紛体の凝集をもたらす。
【0016】
したがって、既知のレーザークラッド技術を使用した一連の個別の堆積物であるか、参照された米国特許出願の新しい進歩的なレーザークラッド法の溶接経路全体に亘る連続的な多次元の溶接堆積物であるかにかかわらず、堆積物をクラッドする前又は堆積物のクラッド中に、基材の多次元の表面領域の全体に亘って相対的に均一なフィラー材料の厚みを適用することができる、レーザークラッディング用フィラー材料の分配装置に対する当業における必要がある。
【0017】
選択的に変更可能な供給量で、堆積物をクラッドする前又は堆積物のクラッド中に、基材の多次元の表面領域の全体に亘って、選択的に変更される、相対的に均一なフィラー材料の厚みを適応することができ、それによって分配装置は異なる溶接経路の寸法に適合することができ、変更される用途に対して作動的な柔軟性を有する、レーザークラッディング用フィラー材料分配装置に対する当業におけるまた別の必要がある。
【0018】
レーザークラッディング装置と一体とすることができるか、又はそのフィラー材料分配パターンをレーザークラッディング装置に合わせることができ、それによってフィラー材料の均一な層を、連続した堆積物又は連続的な溶接経路に沿ったクラッディング用レーザービームが到着する前に又は到着している間に、基材の望ましい表面領域に適用することができる、レーザークラッディング用フィラー材料分配装置に対する更なる必要が当業にはある。
【先行技術文献】
【特許文献】
【0019】
【特許文献1】米国特許出願公開第2010/0078411号明細書
【発明の概要】
【発明が解決しようとする課題】
【0020】
したがって、本発明の目的は、クラッディング堆積物の適用の前又は適用中に、基材の多次元の表面領域の全体に亘って相対的に均一なフィラー材料の厚みを適用することができる、レーザークラッディング用フィラー材料分配装置を創造することである。
【0021】
本発明の別の目的は、変更される用途に対して作動的な柔軟性を有する、レーザークラッディング用フィラー材料分配装置を創造することであり、より具体的には、選択的に変更可能な供給量で、クラッディング堆積物の適用前又は適用中に堆積物のクラッド中に、基材の選択的に変更される多次元の表面領域の全体に亘って、選択的に変更される相対的に均一なフィラー材料の厚みを適応することができ、それによって分配装置が異なる溶接経路の寸法に適合することができるレーザークラッディング用フィラー材料分配装置を創造することである。
【0022】
本発明のさらなる目的は、レーザークラッディング装置と一体とすることができるか、又はそのフィラー材料分配パターンをレーザークラッディング装置に合わせることができ、それによってフィラー材料の均一な層を、連続した堆積物又は連続的な溶接経路に沿ったクラッディング用レーザービームが到着する前に又は到着している間に、基材の望ましい多次元表面領域に適用することができる、レーザークラッディング用フィラー材料分配装置想像することである。
【課題を解決するための手段】
【0023】
これら及び他の目的は、本発明の一実施形態による、レーザークラッディング用フィラー材料分配システムによって達成される。金属粉のようなフィラー材料は、フィラー分配装置によって基材上に所定のパターンで導入され、フィラー分配装置は、レーザービームが光エネルギーを基材に移送する前又は移送している間の均一な分配のための計量分配開口の直線状又は多角形状の配列を有している。分配装置は、分配開口の配列を画定するハウジング(又は結合したハウジングから成るアセンブリ)と、フィラー材料の保持のために設けられた、分配開口に連通する内部チャンバと、を有する。オーガのような機械的な供給機構が、内部チャンバからの分配開口を通じた、フィラーの凝集及び他の不均一な材料の分配を引き起こす場合のある加圧ガス無し(又は、制限された量の加圧ガス)でのフィラー材料の供給のために設けられる。供給機構駆動システムは、好ましくは制御システムによる指示の下で機械的供給機構に結合され、選択的にフィラー材料の供給量を変更するために設けられている。分配開口の配列は、フィラー材料の多次元分配パターンを選択的に変更するように、選択的に再構成することができる。
【0024】
本発明の実施形態は、分配開口を画定する外面を有するモジュール式のハウジングと、チャンバ中にフィラー材料を保持するために設けられた、分配開口に連通する内部チャンバと、を含む、レーザークラッディング用フィラー材料の分配のための装置を特徴とする。モジュール式ハウジングは、分配開口の配列を変更する選択的なアセンフリのための他のモジュール式ハウジングとの選択的組み合わせのために設けられている。機械的な供給機構がフィラー材料を、内部チャンバから分配開口を通じて、加圧ガス無しで(又は限定された量で)供給する。駆動システムが機械的供給機構に結合され、フィラー材料の供給量を選択的に変更するように設けられている。複数のモジュール式ハウジングは、モジュール式ハウジングを分配開口の配列に結合して異なるフィラー分配パターン(例えば、基材上の直線状又は多角形状の分配パターン)の需要に合わせる取付け構造を有して、分配開口に方向づけられている。内部チャンバ中のフィラー材料源から、1つ以上の分配開口を選択的に分離するために、開口の分離機構を設けることができる。選択的に分配開口の寸法を変化させてフィラー材料の分配を変化させるために、開口調整機構を設けることができる。機械的供給機構は、電動式駆動システムによって駆動されるオーガとすることができる。この駆動システムは、1つ以上の分配開口を通じたフィラー材料の供給量を制御するためのコントローラに結合することができる。
【0025】
本発明の他の実施形態は、クラッディング基材上へのフィラー材料の制御された分配のための、少なくとも2つの分配開口の配列を画定する外面を有するハウジングと、分配開口と連通する内部チャンバであって、チャンバ内にフィラー材料の保持のために設けられた内部チャンバと、を備えるレーザークラッディング用フィラー材料の分配のための装置を特徴とする。機械的な供給機構は、内部チャンバから分配開口の配列中の開口を通じて、加圧ガス無し(又は限定された量)で、フィラー材料を供給する。供給機構はオーガとすることができる。例えば電気モータ駆動装置のような供給機構駆動システムが、フィラー材料の供給量を選択的に変化させるために、機械的供給機構に結合される。
【0026】
本発明のさらなる実施形態は、クラッディング基材上へのフィラー材料の制御された分配のための、少なくとも2つの分配開口の配列を画定する外面を有するハウジング、及びその中にフィラー材料を保持するための、分配開口と連通する内部チャンバを有するレーザークラッディング用フィラー材料の分配のための装置と、内部チャンバから分配開口の配列中の開口を通じて、加圧ガス無し(又は限定された量)で、フィラー材料を供給するために設けられた機械的供給機構と、フィラー材料の供給量を選択的に変化させるための、機械的供給機構に結合された供給機構駆動システムと、を備えるレーザークラッディングシステムを特徴とする。また、このレーザークラッディングシステムは、フィラー材料をフィラー層として基材に融合させる光エネルギーを、基材及び基材上のフィラー材料に移送するためのレーザービームを生成するレーザーと;レーザービームを基材上に方向づけるための、レーザービームを遮断する少なくとも1つの可動ミラーと;レーザービームと基材との間の相対的な動きを生じさせるために、可動ミラーとレーザーのそれぞれとに、それぞれ結合したレーザー駆動システムと、を有する。
【0027】
本発明の目的及び特徴は、当業者によって、いずれかの組み合わせ又は下位の組み合わせ(sub−combination)で一緒に又は別々に適用され得る。
【0028】
本発明の教示は、添付の図面に関連する以下の詳細な説明を考慮することによって容易に理解することができる。
【図面の簡単な説明】
【0029】
【
図1】既知のガスアシストフィラー材料紛体分配システムの前面図である。
【
図3】
図2の既知の分配システムの、3−3に沿って取られた断面図である。
【
図4】レーザービーム溶接システムに組み込まれた本発明のフィラー材料分配装置の例示の実施形態の図である。
【
図5】
図4のレーザービーム溶接システムの例示的な多層レーザー溶接のラスタパターンを示す図である。
【
図6】レーザービームのラスタパターンの溶接経路に先立って、フィラー材料を基材上に分配する、
図4のフィラー材料分配装置の端面図である。
【
図7】レーザービームのラスタパターンの溶接経路に先立って、フィラー材料を基材上に分配する、
図4のフィラー材料分配装置の平面図である。
【
図8】レーザービームのラスタパターンの溶接経路の第1の幅に先立って、基材の表面領域に亘ってフィラー材料を分配する、
図4のフィラー材料分配装置の軸方向断面図である。
【
図9】レーザービームのラスタパターンの溶接経路の、
図8に示す幅より狭い第2の幅に先立って、基材の表面領域に亘ってフィラー材料を分配する、
図4のフィラー材料分配装置の軸方向断面図である。
【
図10】選択的にサイズ可変の分配開口を有する、本発明のフィラー材料分配装置の別の例示的な実施形態の部分断面図である。
【
図11】分配開口の配列を選択的に変化させるための再構成可能なモジュールを有する、本発明のフィラー材料分配装置の別の例示的実施形態の部分断面前面図である。
【
図12】
図11のフィラー材料分配装置の部分断面側面図である。
【発明を実施するための形態】
【0030】
理解を容易にするために、同一の参照符号が、可能な範囲で、図面に共通な同一の要素を示すために使用された。
【0031】
以下の説明を考慮した後には、当業者は、本発明の教示が、選択的に多次元の分配パターンを変化させて多次元のレーザー溶接経路に合わせることができるレーザークラッディング用フィラー材料分配システムに、容易に使用できることを容易に理解するだろう。本発明の分配システムは、既知のクラッディングシステム及び方法によって生成された一連の連続して堆積された溶接物であろうと、米国特許出願第13/611034号に記載されている新しい進歩性を有する溶接システム及び方法によって実施される多次元のラスタされた連続的な溶接パターンであろうと、溶接パターンの経路の全体に亘るフィラー材料の均一な分配を容易にする。本発明の例示の実施形態において、(紛体状であることが多い)フィラー材料は、レーザービームが基材に光エネルギーを移送するのに先立つ、若しくはそれと同時の均一な分配のために、分配開口の直線状の又は多角形状の配列を有するフィラー分配装置によって基材上の所定のパターンに導入される。分配装置は、分配開口の配列を画定するハウジング(若しくは結合したハウジングのアセンブリ)と、開口に連通する、フィラー材料の保持のために設けられた内部チャンバと、を含む。オーガのような機械的供給機構が、内部チャンバから分配開口を通じたフィラー材料の、別様にフィラーの凝集及び他の不均一な材料の分配を生じさせる加圧ガス無し(又は限られた量の加圧ガス)での供給のために設けられている。フィラー材料の供給量を選択的に変化させるために設けられた供給機構駆動システムが、機械的供給機構に結合されている。開口の配列は、選択的に再構成することができ、それによって選択的にフィラー材料の分配パターンを変えることができる。
【0032】
図4は、米国特許出願第13/611,034号に開示されているタイプの連続経路溶接レーザークラッディングシステムに組み込まれている本発明のフィラー材料分配装置の例示の実施形態の用途を図示している。クラッディングシステム100は、超合金材料製タービンブレード又はベーンのような加工対象物の基材200が固定される作業台120を含む。任意の作業台の動作制御システム125が、示されたX、Y、Z座標又はいずれかの他の単軸座標系若しくは多軸座標系において作業台120を移動させるのに使用される。本発明のフィラー材料分配システム300は、基材200の表面200Aを多次元の(ここでは二次元)パターンで溶接して溶接装置100のラスタパターンに合わせるのに好適な、粉体状フィラー材料を導入する。例えば、基材が超合金である場合には、フィラー材料は、同じ又は適合性を有する合金であることが多い。分配システム300のフィラー材料の供給量は、電気モータ駆動とすることができるフィラー駆動システム135によって制御される。分配システム300は、供給されたフィラー材料粉の適用領域を基材200に対して動かすための、それ自身の独立した動作制御システム136を有することができる。フィラー材料分配システムの装置300の構成は、以下のレーザークラッディングシステム100のシステム概要に、より詳細に記載される。
【0033】
システム100は、基材200の表面200A及びフィラー材料Fを加熱するためのレーザービームの光エネルギー源を提供する、任意の可変焦点dF又は出力dPを有するレーザー140を有する。また、システム100は、駆動部162、164、及び166それぞれの制御の下で、傾斜T、パン(pan)P、回転Rとして示された単軸動作又は複数軸動作が可能なミラー160を有する可動ミラーシステム150を有する。駆動部162、164、及び166は、既知の電動の動作制御システムの構成の一部とするか、又は制御装置170の制御の下にある既知のガルバノメータに組み込むことができる。代替的に、ビームは一軸動作を有する複数のミラーによって遮断することができ、それによって上述の軸動作のそれぞれを達成することができる。
【0034】
制御装置170は、スタンドアローンの制御装置、プログラマブルロジックコントローラ、又はパーソナルコンピュータとすることができる。また、制御装置170は、作業台動作制御システム125、紛体状フィラー材料分配システム駆動装置135、及び/又は任意の紛体状フィラー材料分配システム駆動動作制御システム136、及び/又はレーザー140の可変焦点dF及び/又は出力dPのうちの1つ以上を制御することができる。制御装置170を有する既知の開及び/又は閉フィードバックループを、駆動装置125、135、136、162〜166、dF、dPの1つ以上に関連させることができる。また、基材及びフィラーへのレーザービームの光エネルギー移送を閉フィードバックループ中でモニターし、それによって制御装置がモニターされたエネルギー移送量に基づいてエネルギー移送量を変化させることもできる。ヒューマン・マシン・インターフェース(HMI)を、溶接作業の監視及び/又は溶接作業を実施するための指示の提供のために制御装置170に結合することができる。
【0035】
溶接システム100を作動するときに、レーザー140の出力ビーム180は、ミラー160(又は複数のミラー)に反射し、次いでタービンブレードの加工対象物上に達し、光エネルギーを基材200とフィラー材料とに移送する。基材200とフィラー材料との両方は移送された光エネルギーを吸収し、フィラー材料を溶融させ、基材表面200Aを濡らし、溶融したフィラーと基材表面とを互いに融合する。
図4及び
図5を参照すると、基材200とレーザービーム180とは、作業台の駆動システム125、及び/又は可動ミラーシステム150の駆動部162、164、166に関与するコントロールシステムによって、互いに対して並進経路に沿って移動して、連続する溶接されたクラッド層200’を形成する。可動なミラーシステム150が商業的に入手可能なレーザーガルバノメータシステムに組み込まれる場合には、基材200とレーザービーム180との間の相対的動作及びレーザーの光エネルギーの移送量を、ガルバノメータのミラー160(又は複数のミラー)を相対的な並進及びオシレーションの両方に動かすことによって変えることができる。レーザービーム180と基材200/フィラー材料との間の相対的な動きは、既知のオシレーションしないレーザークラッディングシステムでは不可能な、融合の均一性のための連続的に溶融した溶接線を並進動作の前縁に維持する(例えば、
図4及び
図5における溶接線210の右側前縁)。
【0036】
既に述べたように、ビームの焦点領域で吸収されるレーザーの光エネルギーは、集束維持時間に比例して変化する。限定されない例によって、レーザービーム180の集束維持時間及び比例する吸収されるエネルギーは、以下のように変化させることができる。(i)レーザービーム180を、溶接並進経路210に対して平行に、又は側部から側部へ横断的にオシレーションさせる(例えば211)ことができる;(ii)オシレーション速度又は並進速度を変えることができる;及び(iii)レーザー出力強度dP又は焦点dFを、連続的に又はパルス変調によって変化させることができる。このように、レーザービームの集束維持時間の比率を動的に変えることによって、基材及びフィラーへのエネルギー移送量は、溶接線の並進経路に沿って変化し、それによって一様なエネルギーの移送が、局所的なトポグラフィーの変化にかかわらず、溶接部全体内で維持される。
【0037】
図4及び
図5に示すように、クラッド層は単一のラスタされた直線の溶接部210又は複数の隣接する直線の溶接部210〜230の二次元の溶接部の配列を備えることができる。パスそれぞれに対する並進方向は、図示のように連続して反転される。パスそれぞれに対するオシレーション方向は、パス210、220、及び230それぞれに対して211、221、及び231のように、並進方向に対して完全に横断方向とすることができる。前のパスの側部に対するオシレーションの持続時間は、融合を確実とするように増加させることができる。複数のクラッド層200’、500、600を、
図5の面中への方向及び面から出る方向における連続的に交互にされた層によって互いの上に適用するか、又は、並進の方向を、左から右への並進から、左から右に対して90℃に変えることによって適用することができる。これら多次元のラスタパターンのすべては、レーザービームの焦点をフィラー材料及び基材上に合わせるのに先立つ、又はそれと同時の基材表面上へのフィラー材料の均一な分配を必要とする。本発明の分配システム300は、特定のクラッディング作業に対して要求される様々なサイズの、多次元の溶接パターンの「フットプリント」上へのフィラー材料の均一な分配を容易にする。
【0038】
図6及び
図7では、フィラー材料分配システム300が,紛体状フィラー材料Fを、レーザービーム180が並進経路210の方向及び
図5のオシレーション経路211の矢印の方向にパターンをラスタするのに先立って分配している。この実施形態では、フィラー分配システム300は、レーザービーム180と歩調を合わせて方向Wに動いている。代替的に、レーザービーム180とフィラー材料分配システム300とは、互いに対して固定された位置に保持されて、一方で基材200が矢印Wとは反対方向に動かされてもよい。
【0039】
フィラー材料分配システム300の例示の実施形態が
図8〜12に示されている。システム300は、内部空洞320及び、それらを通じてフィラー材料が排出される複数のフィラー材料分配開口331〜336(以下、「開口」と称する)を画定する(ここでは筒状の)ハウジング310を有する。この例示の実施形態においては6つの開口が示されているが、
開口の数は、2、又は3以上とすることができ、それらの配列パターン及びサイズは、望ましいフィラー材料分配パターンを提供するために選択的に変えることができる。開口の配列パターンは、例えば
図8〜12に示すように直線パターンとすることができ、又はいずれかの望ましい多角形状パターン、例えば長方形状、台形状等とすることができる。回転するオーガ340の機械的供給機構は、ハウジング310に取り付けられているとともに、フィラー材料の軸方向流れに対する限界を設定する前部シール部342及び後部シール部344を有する。このように、フィラー分配流の幅は、開口331及び336の最大散布によって限界を決められている。オーガ340は、制御装置170の制御の下で、分配駆動システム135によって回転させられ、フィラー材料を供給ホッパ350から開口の配列331〜336へ、加圧ガスの支援無しに、又は代替的に望ましい若しくは許容できる、フィラー材料の分配パターンを乱さない限られた量の加圧ガスの支援によって移送される。不活性ガスが依然として溶接工程における酸化からの絶縁のために必要とされる場合があるが、そのガスは独立して、例えば溶接用隔離チャンバ内で供給することができる。加圧ガスの支援無しのフィラーの供給は、ガスの渦流がフィラー材料の分配の均一性を損なわせるか、又はフィラーの凝集を生じさせる可能性を排除する。フィラー材料の供給量は、オーガ340の回転速度を変化させることによって、変えることができる。総供給量は、分配開口331〜336の寸法(後述される)又はオーガのスレッド(thread)パターンの寸法を変化させることによって、変えることができる。
【0040】
フィラー分配の供給幅は、オーガ340のハウジング310内の軸位置を変化させることによって選択的に変えることができる。
図8と
図9を比較すると、供給幅は、1つ以上の開口331、332をオーガ340から分離することによって狭くされている。また、フィラー材料の分配量は、
図10に示すように、分配開口のサイズを変化させることによって変えることもできる。ここでは、開口361、362等を有するオリフィス板360が、ハウジング310の対応する大きな開口331、332等を覆っている。他の開口のサイズを変える、限定されない例による個々のスレッドオリフィス及び調整可能なシャッタを含む既知の機構でオリフィス板360を置き換えることもできる。
【0041】
図11及び12は、代替的な実施形態のフィラー材料分配システム300’を示し、このフィラー材料分配システム300’は、複数のハウジングモジュールを互いに結合することによって、変化する分配開口配列の選択式アセンブリを容易化するモジュール式ハウジング310’を有する。この例示の実施形態において、モジュール310’それぞれは、それ自身の専用のオーガ340’を有し、オーガ340’は個別の駆動部135によって駆動されてもよく、又は複数のモジュール式オーガが単一の駆動システム135によって駆動されてもよい。個別のオーガ340’の駆動部の利点は、例えば異なるフィラー紛体の厚みを、開口331’〜 334’の分配幅に亘って適用することが望ましい場合に、個々のオーガの駆動速度を変化させることによって分配幅に亘ってフィラーの分配を変化させる能力である。共通のフィラー用ホッパ350’を、すべてのオーガ340’に供給するために使用することができ、又は代替的に複数のホッパを使用することができる。フィラー材料の供給用の他の導管の形態を、ホッパのために置き換えることができる。
【0042】
モジュール式ハウジング310’は、例示のクランプ412及び細長いネジ部品414のようないずれかの既知の取り付け構造400によって互いに選択的に結合することができる。代替的に、取り付け構造をハウジング310’内に形成することができる。
【0043】
ここに、本発明の教示を組み込んだ様々な実施形態が図示され、詳細に記載されてきたが、当業者は、これらの教示を依然として組み込んでいる多くの他の変形した実施形態を容易に作ることができる。本発明はその用途において、詳細な説明又は図面に説明された部品の構成及び配置の例示の実施形態の詳細に限られない。本発明は、他の実施形態にも適応でき、様々な方法で実施できるか、実行できる。また、ここに使用されている表現及び用語は、説明の目的のためであり、限定として捉えてはならない。「含む」、「備える」、又は「有する」の仕様及びそれらの変形体は、その後に挙げられた事項及びその同等物、さらには追加的な事項を包含することを意味している。特に特定されるか限定されない限り、用語「取り付けられる」「接続される」、「支持される」、及び「結合する」、並びにそれらの変形体は、広く使用され、直接的な及び間接的な取り付け、接続、支持、及び結合を包含する。さらに、「接続された」及び「結合した」は、物理的または機械的な接続または結合に限定されない。
【符号の説明】
【0044】
100 クラッディングシステム
120 作業台
125 作業台の動作制御システム
136 動作制御システム
140 レーザー
180 レーザービーム
200 基材
200A 表面
210 並進経路
211 オシレーション経路
300 フィラー材料分配システム
310 ハウジング
320 内部空洞
331〜336 フィラー材料分配開口
340 オーガ
F 紛体状フィラー材料