【実施例2】
【0128】
6-[4-(5-クロロ-2-ピリジルオキシ)フェニルイミノ]-3-(4-ヒドロキシカルボニルシクロブチル)-1-(4-メチルベンジル)-1,3,5-トリアジナン-2,4-ジオン(I−178)の調製
【化99】
[この文献は図面を表示できません]
6-[4-(5-クロロ-2-ピリジルオキシ)フェニルイミノ]-3-(4-エトキシカルボニルシクロブチル)-1-(4-メチルベンジル)-1,3,5-トリアジナン-2,4-ジオン(135 mg, 0.24 mmol),メタノール(0.7 mL)およびTHF(0.7 mL)の混合液に4mol/L 水酸化リチウム(0.24 mL、0.96 mmol)を加え、50℃で3時間攪拌した。反応液に2mol/L塩酸 (0.43 mL)を加えて減圧濃縮し、残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール)で精製し、酢酸エチルとヘキサンで粉末化して6-[4-(5-クロロ-2-ピリジルオキシ)フェニルイミノ]-3-(4-ヒドロキシカルボニルシクロブチル)-1-(4-メチルベンジル)-1,3,5-トリアジナン-2,4-ジオン(I−178, 103 mg, 収率80%)を白色粉末として得た。
1H-NMR (CDCl3) δ: 2.35 (3H, s), 2.52-2.72 (2H, m), 3.08-3.42 (3H, m), 5.20 (2H, s), 5.37-5.61 (1H, m), 6.82-6.95 (3H, m), 7.01-7.20 (4H, m), 7.48 (2H, d, J = 7.3 Hz), 7.61-7.81 (2H, m), 8.11 (1H, s).
参考例1
【0129】
(1)1-(4-クロロベンジル)-6-(エチルチオ)-1,3,5-トリアジン-2,4(1H,3H)-ジオンの調製
【化100】
[この文献は図面を表示できません]
S-エチルチオウレア臭化水素酸塩(1.85 g, 10 mmol) とDMF(9.3 mL) の混合液に、t-ブチルイソシアネート (1.2 mL, 10.5 mmol) とDBU (1.9 mL, 12.8 mmol) を氷冷下で加え、6時間攪拌した。反応液に、1,1'-カルボニルジイミダゾール(1.95 g, 12 mmol)とDBU(1.9 mL, 12.8 mmol)を氷冷下で加え、2時間攪拌した。2mol/L 塩酸(80 mL) を氷冷下で50分間かけて加え、生じた粉末をろ取した。粉末を酢酸エチルに溶解し、無水硫酸マグネシウムで乾燥した。減圧濃縮し、6-(エチルチオ)-3-t-ブチル-1,3,5-トリアジン-2,4(1H,3H)-ジオン (1.15g, 収率: 50%)を淡褐色粉末として得た。
1H-NMR (δ ppm TMS / DMSO-d6): 1.27 (3H, t, J=7.3 Hz), 1.55 (9H, s), 3.03 (2H, q, J=7.3), 12.30 (1H, brs)
6-(エチルチオ)-3-t-ブチル-1,3,5-トリアジン-2,4(1H,3H)-ジオン (22.93 g, 100 mmol)、4-クロロベンジルブロミド (22.60 g, 110 mmol)およびアセトニトリル (200 mL) の混合液に、炭酸カリウム(17.97 g, 130 mmol)を加え,加熱還流下で3時間攪拌した。反応液をろ過し、ろ液を減圧濃縮して、3-t-ブチル-1-(4-クロロベンジル)-6-(エチルチオ)-1,3,5-トリアジン-2,4(1H,3H)-ジオンの粗製物 39.9gを微褐色油状物として得た。
得られた粗製物にトリフルオロ酢酸 (100 mL) を氷冷下で加え、室温で17時間攪拌した。反応液を減圧濃縮し、1-(4-クロロベンジル)-6-(エチルチオ)-1,3,5-トリアジン-2,4(1H,3H)-ジオン (29.03 g, 収率: 97%)を微褐色粉末として得た。
1H-NMR (δ ppm TMS / d6-DMSO): 1.25 (3H, t, J=7.3 Hz), 3.08 (2H, q, J=7.3 Hz), 5.02 (2H, s), 7.30-7.33 (2H, m), 7.39-7.42 (2H, m), 11.61 (1H, s).
【0130】
(2)1-(4-クロロベンジル)-3-(メトキシカルボニルメチル)-6-[4-(2-ピリジルオキシ)フェニルイミノ]-1,3,5-トリアジナン-2,4-ジオン(R−238)の調製
【化101】
[この文献は図面を表示できません]
1-(4-クロロベンジル)-6-(エチルチオ)-1,3,5-トリアジン-2,4(1H,3H)-ジオン(2.98 g, 10 mmol)、ブロモ酢酸メチル(1.04 mL, 11 mmol)とDMF (30 mL) の混合液に、炭酸カリウム(1.80 g, 13 mmol)を加え、室温で4時間攪拌した。反応液に水 (250 mL)を加え、酢酸エチル (200 mL) で抽出した。有機層を飽和食塩水 (250 mL)で洗浄し、無水硫酸マグネシウムで乾燥した。減圧濃縮し、残渣に酢酸エチルとヘキサンを加えた。生じた粉末をろ取し、1-(4-クロロベンジル)-3-(メトキシカルボニルメチル)-6-(エチルチオ)-1,3,5-トリアジン-2,4(1H,3H)-ジオン (3.26 g, 収率: 88%)を無色粉末として得た。
1H-NMR (δ ppm TMS / CDCl
3): 1.37 (3H, t, J=7.2 Hz), 3.23 (2H, q, J=7.2 Hz), 3.78 (3H, s), 4.68 (2H, s), 5.11 (2H, s), 7.27-7.35 (4H, m).
1-(4-クロロベンジル)-3-(メトキシカルボニルメチル)-6-(エチルチオ)-1,3,5-トリアジン-2,4(1H,3H)-ジオン(1.0 g, 2.70 mmol)、4-(2-ピリジルオキシ)アニリン(1.0 g, 5.4 mmol)、t-ブタノール (10.0 mL)と酢酸(2.3 mL)の混合液を加熱還流下で8時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液(30 mL)を加え、酢酸エチル(20 mL×3)で抽出した。有機層を水(20 mL)および飽和食塩水(20 mL)で洗浄し、無水硫酸マグネシウムで乾燥した。減圧濃縮し、残渣をシリカゲルクロマトグラフィー(酢酸エチル/ヘキサン)で精製し、1-(4-クロロベンジル)-3-(メトキシカルボニルメチル)-6-[4-(2-ピリジルオキシ)フェニルイミノ]-1,3,5-トリアジナン-2,4-ジオン(R−238,1.24 g, 収率93%)を淡黄色アモルファスとして得た。
1H-NMR (CDCl3) δ: 3.78 (3H, s), 4.59 (2H, s), 5.23 (2H, s), 6.86 (2H, d, J=7.8 Hz), 6.96 (1H, d, J=8.1 Hz), 7.00 (1H, t, J=6.0 Hz), 7.15 (2H, d, J=8.1 Hz), 7.31 (2H, d, J=7.8 Hz), 7.49 (2H, d, J=7.8 Hz), 7.71 (1H, t, J=7.8 Hz), 7.86 (1H, s), 8.15 (1H, s).
(3)1-(4-クロロベンジル)-3-(ヒドロキシルカルボニルメチル)-6-[4-(2-ピリジルオキシ)フェニルイミノ]-1,3,5-トリアジナン-2,4-ジオン(R−239)の調製
【化102】
[この文献は図面を表示できません]
1-(4-クロロベンジル)-3-(メトキシカルボニルメチル)-6-[4-(2-ピリジルオキシ)フェニルイミノ]-1,3,5-トリアジナン-2,4-ジオン(1.2 g, 2.43 mmol),メタノール(12 mL),THF(12 mL)および水(12 mL)の混合液に4mol/L 水酸化リチウム(2.43 mL、9.7 mmol)を氷冷下で加え、1時間攪拌した。反応液を氷水に注ぎ、1mol/L塩酸で酸性に調製し、酢酸エチル(100 mL)で抽出した。有機層を水(50 mL)および飽和食塩水(50 mL)で洗浄し、無水硫酸マグネシウムで乾燥した。減圧濃縮し、残渣に酢酸エチルとジエチルエーテルを加え、生じた粉末をろ取し、1-(4-クロロベンジル)-3-(ヒドロキシルカルボニルメチル)-6-[4-(2-ピリジルオキシ)フェニルイミノ]-1,3,5-トリアジナン-2,4-ジオン(R−239,2.23 mg, 収率: 92%)を淡褐色粉末として得た。
1H-NMR (δ ppm TMS / d6-DMSO): 4.40 (2H, s), 5.30 (2H, s), 7.03 (2H, d, J=7.8 Hz), 7.12(2H, s), 7.13(1H, s), 7.37 (4H, d, J=7.5 Hz), 7.45 (4H, d, J=7.5 Hz), 7.84 (1H, t, J=7.8 Hz), 8.16 (1H, s), 9.48 (1H, brs).
【0131】
(4)1-(4-クロロベンジル)-3-(カルバモイルメチル)-6-[4-(2-ピリジルオキシ)フェニルイミノ]-1,3,5-トリアジナン-2,4-ジオン(R−240)の調製
【化103】
[この文献は図面を表示できません]
1-(4-クロロベンジル)-3-(メトキシカルボニルメチル)-6-[4-(2-ピリジルオキシ)フェニルイミノ]-1,3,5-トリアジナン-2,4-ジオン (150 mg, 0.31 mmol)をDMF(2 mL)に溶解した。反応液に塩化アンモニウム(16.7 mg, 0.31 mmol)、1-ヒドロキシベンゾトリアゾール水和物(57.4 mg, 0.38 mmol)、4-ジメチルアミノピリジン(3.8 mg, 0.03 mmol)、塩酸1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(71.9 mg, 0.38 mmol)およびトリエチルアミン(0.05 mL, 0.38 mmol)を加えて、室温で16時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液 (20 mL) を加え、酢酸エチル (30 mL) で抽出した。有機層を水 (10 mL)および飽和食塩水 (10 mL)で洗浄し、無水硫酸マグネシウムで乾燥した。減圧濃縮し、残渣に酢酸エチルを加え、生じた粉末をろ取して、1-(4-クロロベンジル)-3-(カルバモイルメチル)-6-[4-(2-ピリジルオキシ)フェニルイミノ]-1,3,5-トリアジナン-2,4-ジオン (R−240, 79 mg, 収率: 53%)を淡黄色粉末として得た。
1H-NMR (δ ppm TMS / DMSO-d6): 4.28 (2H, s), 5.29 (2H, s), 7.03 (2H, d, J=7.2 Hz), 7.12(4H, s), 7.35 (1H, s), 7.38 (1H, d, J=7.2 Hz), 7.42 (4H, d, J=9.3 Hz), 7.54 (1H, s), 7.85 (1H, t, J=7.2 Hz), 8.16 (1H, s), 9.37 (1H,s).
参考例2
【0132】
(1)3-エチル-6-(1-ピラゾリル)-1,3,5-トリアジン-2,4(1H,3H)-ジオンの調製
【化104】
[この文献は図面を表示できません]
1-アミジノピラゾール塩酸塩 (58.6 g, 400 mmol)、エチルイソシアネート(33.2 mL, 420 mmol)とDMA(240 mL) の混合液にDBU(63.3 mL, 420 mmol)を−10℃で15分間かけて滴下し、氷冷下で30分間攪拌した。反応液に、1,1'-カルボニルジイミダゾール(97.2 g, 600 mmol)を氷冷下で加えた後、DBU(93 mL, 620 mmol)を−5℃で30分間かけて加えた。反応液を氷冷下で1時間攪拌し、さらに室温で1時間攪拌した。反応液に、2 mol/L 塩酸 (1.16 L)を20℃で1時間かけて加えた。生じた粉末をろ取し、3-エチル-6-(1-ピラゾリル)-1,3,5-トリアジン-2,4(1H,3H)-ジオン (73.0 g, 収率: 88%)を微褐色粉末として得た。
1H-NMR (δ ppm TMS / CDCl3): 1.30 (6H, t, J=7.0 Hz), 4.02 (2H, q, J=7.0 Hz), 6.59 (1H, m), 7.34 (1H, m), 8.48 (1H, m), 9.79 (1H, brs).
【0133】
(2)1-(4-クロロベンジル)-3-エチル-6-(1-ピラゾリル)-1,3,5-トリアジン-2,4(1H,3H)-ジオンの調製
【化105】
[この文献は図面を表示できません]
3-エチル-6-(1-ピラゾリル)-1,3,5-トリアジン-2,4(1H,3H)-ジオン (89 g, 480 mmol) 、4-クロロベンジルブロミド (108 g, 528 mmol)とDMA (400 mL)の混合液に、ジイソプロピルエチルアミン (92 mL, 528 mmol)を室温で10分間かけて滴下し、60℃で2時間攪拌した。反応液に氷冷下で水 (800 mL)を40分間かけて滴下した後、ヘキサン (200 mL)を加えた。生じた粉末をろ取し、1-(4-クロロベンジル)-3-エチル-6-(1-ピラゾリル)-1,3,5-トリアジン-2,4(1H,3H)-ジオン (156 g, 収率: 97.6%)を微褐色粉末として得た。
1H-NMR (δ ppm TMS / CDCl
3): 1.30 (3H, t, J=7.1 Hz), 4.04 (2H, q, J=7.1 Hz), 5.86 (2H, s), 6.48 (1H, m), 7.02 (2H, d, J=8.6 Hz), 7.20-7.25 (2H, m), 7.84 (1H, m), 8.33 (1H, m).
【0134】
(3)1-(4-クロロベンジル)-6-[4-(3-クロロ-5-エトキシカルボニル-2-ピリジルオキシ)フェニルイミノ]-3-エチル-1,3,5-トリアジナン-2,4-ジオン(R−015)の調製
【化106】
[この文献は図面を表示できません]
1-(4-クロロベンジル)-2-エチル-6-(1-ピラゾリル)-1,3,5-トリアジン-2,4(1H,3H)-ジオン(200 mg, 0.6 mmol)、4-(3-クロロ-5-エトキシカルボニル-2-ピリジルオキシ)アニリン(176 mg, 0.6 mmol)とt-ブタノール (4 mL)の混合液を80℃で1時間攪拌した。反応液を減圧濃縮し、残渣をシリカゲルクロマトグラフィー(酢酸エチル/ヘキサン)で精製し、1-(4-クロロベンジル)-6-[4-(3-クロロ-5-エトキシカルボニル-2-ピリジルオキシ)フェニルイミノ]-3-エチル-1,3,5-トリアジナン-2,4-ジオン(R−015,321 mg, 収率96%)を白色粉末として得た。
1H-NMR (CDCl3) δ: 1.24 (3H, t, J = 7.2 Hz), 1.39 (3H, t, J = 7.2 Hz), 3.90 (2H, q, J = 7.1 Hz), 4.39 (2H, q, J = 7.1 Hz), 5.21 (2H, s), 6.88 (2H, dd, J = 6.5, 2.0 Hz), 7.16 (2H, dd, J = 6.7, 2.1 Hz), 7.30-7.33 (2H, m), 7.52 (2H, t, J = 4.1 Hz), 7.89 (1H, s), 8.35 (1H, d, J = 2.0 Hz), 8.63 (1H, d, J = 2.0 Hz).
【0135】
(4)1-(4-クロロベンジル)-6-[4-(3-クロロ-5-ヒドロキシカルボニル-2-ピリジルオキシ)フェニルイミノ]-3-エチル-1,3,5-トリアジナン-2,4-ジオン(R−016)の調製
【化107】
[この文献は図面を表示できません]
1-(4-クロロベンジル)-6-[4-(3-クロロ-5-エトキシカルボニル-2-ピリジルオキシ)フェニルイミノ]-3-エチル-1,3,5-トリアジナン-2,4-ジオン (209 mg, 0.38 mmol)、THF (0.75 mL)とメタノール(0.75 mL)の混合液に1mol/L 水酸化ナトリウム(0.75 mL)を加え、室温で一夜攪拌した。反応液を水に注ぎ、5%クエン酸水溶液で酸性に調製した後、酢酸エチルで抽出した。有機層を無水硫酸ナトリウムで乾燥した。減圧濃縮し、残渣にジエチルエーテルを加え、生じた粉末をろ取し、1-(4-クロロベンジル)-6-[4-(3-クロロ-5-ヒドロキシカルボニル-2-ピリジルオキシ)フェニルイミノ]-3-エチル-1,3,5-トリアジナン-2,4-ジオン (R−016, 125 mg, 収率: 63%)を白色粉末として得た。
1H-NMR (CDCl
3) δ: 1.24 (3H, q, J = 8.3 Hz), 3.93 (2H, q, J = 7.0 Hz), 5.23 (2H, s), 6.91 (2H, d, J = 8.5 Hz), 7.14 (2H, dd, J = 6.8, 2.0 Hz), 7.32 (2H, d, J = 8.3 Hz), 7.53 (2H, d, J = 8.3 Hz), 8.36 (1H, d, J = 2.0 Hz), 8.74 (1H, d, J = 1.8 Hz), 9.78 (1H, s).
参考例3
【0136】
(1)(S)-1-(4-クロロベンジル)-6-(4-ヒドロキシフェニルイミノ)-3-(2-ヒドロキシカルボニルプロピル)-1,3,5-トリアジナン-2,4-ジオンの調製
【化108】
[この文献は図面を表示できません]
1-(4-クロロベンジル)-6-(エチルチオ)-1,3,5-トリアジン-2,4(1H,3H)-ジオン (59.6 g, 200 mmol),(S)-(+)-3-ヒドロキシイソ酪酸メチル (28.4 g, 240 mmol),トリフェニルホスフィン (62.9 g, 240 mmol)とジオキサン (400 mL) の混合液にジ-2-メトキシエチルアゾジカルボキシレート (56.2g, 240 mmol),をゆっくり加え,室温で3時間攪拌した.反応液を氷水 (1000 mL) に加え,トルエン (500 mL) で抽出した.有機層を飽和食塩水 (700 mL)で水洗し,無水硫酸マグネシウムで乾燥した。減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン)で精製して(S)-1-(4-クロロベンジル)-6-(エチルチオ)-3-(2-メトキシカルボニルプロピル)-1,3,5-トリアジン-2,4(1H,3H)-ジオン (64.44 g, 収率: 81%)を白色固体として得た.
1H-NMR (δ ppm TMS / CDCl
3): 1.19 (3H, d, J=5.7 Hz), 1.37 (3H, t, J=7.1 Hz), 2.96 (1H, m), 3.12 (2H, q, J=7.1 Hz), 3.60 (3H, s), 3,98 (1H, m), 4.21 (1H, m), 5.08 (2H, s), 7.29-7.34 (4H, m).
(S)-1-(4-クロロベンジル)-6-(エチルチオ)-3-(2-メトキシカルボニルプロピル)-1,3,5-トリアジン-2,4(1H,3H)-ジオン (5.0 g, 12.6 mmol),4-アミノフェノール (2.06 g, 18.9 mmol),酢酸 (11.32g, 189 mmol )とt-ブタノール (100 mL) の混合液を加熱還流下で3時間攪拌した.反応後,反応液を飽和炭酸水素ナトリウム水溶液 (500 mL) に加え,酢酸エチル (500 mL) で抽出した.抽出液を1mol/L 塩酸水 (500 mL)で水洗し,無水硫酸ナトリウムで乾燥した。減圧濃縮し、残渣にトルエンと酢酸エチルを加えて加熱し,生じた粉末をろ取して(S)-1-(4-クロロベンジル)-6-(4-ヒドロキシフェニルイミノ)-3-(2-メトキシカルボニルプロピル)-1,3,5-トリアジナン-2,4-ジオン (5.17 g, 収率: 92%)を白色粉末として得た.
(S)-1-(4-クロロベンジル)-6-(4-ヒドロキシフェニルイミノ)-3-(2-メトキシカルボニルプロピル)-1,3,5-トリアジナン-2,4-ジオン (5.13 g, 11.5 mmol)とDMSO (50 mL)の混合液に2mol/L 水酸化ナトリウム(25 mL)を加え、室温で1時間攪拌した。反応液に2mol/L 塩酸(25 mL)を加え,水に注ぎ、酢酸エチルで抽出した。有機層を飽和食塩水 (700 mL)で水洗し,無水硫酸ナトリウムで乾燥した。減圧濃縮し、残渣に酢酸エチルを加え、生じた粉末をろ取し、(S)-1-(4-クロロベンジル)-6-(4-ヒドロキシフェニルイミノ)-3-(2-ヒドロキシカルボニルプロピル)-1,3,5-トリアジナン-2,4-ジオン (I−***, 3.92 g, 収率: 79%)を白色粉末として得た。
1H-NMR (δ ppm TMS / d6 DMSO): 0.99 (3H, d, J = 7.0 Hz), 2.50 (1H, t, J = 1.8 Hz), 2.74 (1H, td, J = 14.5, 7.2 Hz), 3.89-3.95 (1H, m), 5.21 (2H, s), 6.70-6.75 (2H, m), 7.01 (2H, d, J = 7.8 Hz), 7.29 (2H, d, J = 8.5 Hz), 7.41 (2H, d, J = 8.5 Hz), 9.16 (1H, br s), 9.66 (1H, br s).
【0137】
(2)(S)-1-(4-クロロベンジル)-6-[4-(2-ベンゾオキサゾリルオキシ)フェニルイミノ]-3-(2-メトキシカルボニルプロピル)-1,3,5-トリアジナン-2,4-ジオン(R−144)の調製
【化109】
[この文献は図面を表示できません]
(S)-1-(4-クロロベンジル)-6-(4-ヒドロキシフェニルイミノ)-3-(2-ヒドロキシカルボニルプロピル)-1,3,5-トリアジナン-2,4-ジオン (200 mg, 0.46 mmol),2-クロロベンゾオキサゾール (78 mg, 0.51 mmol)とDMSO (1 mL)の混合液に炭酸セシウム (454 mg, 1.39 mmol)を加え、室温で一夜攪拌した。反応液を水に注ぎ、5%クエン酸水溶液で酸性に調製した後、酢酸エチルで抽出した。有機層を飽和食塩水で水洗し,無水硫酸ナトリウムで乾燥した。減圧濃縮し、残渣を高速液体クロマトグラフィー(0.3%ギ酸含有アセトニトリル/水)で精製し、(S)-1-(4-クロロベンジル)-6-[4-(2-ベンゾオキサゾリルオキシ)フェニルイミノ]-3-(2-メトキシカルボニルプロピル)-1,3,5-トリアジナン-2,4-ジオン (R−144, 55.3 mg, 収率: 22%)を白色粉末として得た。
1H-NMR (CDCl
3) δ: 1.13 (3H, d, J = 6.8 Hz), 2.74-2.79 (1H, m), 3.82 (1H, dd, J = 13.3, 5.4 Hz), 4.04 (1H, dd, J = 12.8, 9.2 Hz), 5.13 (1H, d, J = 14.4 Hz), 5.22 (1H, d, J = 14.3 Hz), 6.88 (2H, d, J = 7.5 Hz), 7.23-7.49 (10H, m), 8.96 (1H, s).
参考例4
【0138】
(1)1-(4-クロロベンジル)-3-(2-ヒドロキシメチル-2-プロペニル)-6-[4-(2-ピリジルオキシ)フェニルイミノ]-1,3,5-トリアジナン-2,4-ジオン(R−254)の調製
【化110】
[この文献は図面を表示できません]
1-(4-クロロベンジル)-6-(エチルチオ)-1,3,5-トリアジン-2,4(1H,3H)-ジオン(1090 mg, 3.65 mmol)、2-(テトラヒドロピラン-2-イルオキシ)メチル-2-プロペノール(628 mg, 3.65 mmol)とトリフェニルホスフィン(956 mg, 3.65 mmol)を1,4-ジオキサン(5.0 mL)に溶解した。反応液にジメトキシエチルアザジカルボキシレート(854 mg, 3.65 mmol)を室温で加え、3時間攪拌した。さらに、トリフェニルホスフィン(478 mg, 1.82 mmol)、ジメトキシエチルアザジカルボキシレート(478 mg, 1.82 mmol)を加え、室温で4時間攪拌した。反応液を減圧濃縮し、得られた残渣にジエチルエーテルを加えた。生じた粉末をろ過により除去した。ろ液を水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルクロマトグラフィー(酢酸エチル/ヘキサン)で精製し、1-(4-クロロベンジル)-6-(エチルチオ)-3-(2-テトラヒドロピラン-2-イルオキシメチル-2-プロペニル)-1,3,5-トリアジン-2,4(1H,3H)-ジオン(1589 mg, 収率96%)を無色油状物として得た。
1-(4-クロロベンジル)-6-(エチルチオ)-3-(2-テトラヒドロピラン-2-イルオキシメチル-2-プロペニル)-1,3,5-トリアジン-2,4(1H,3H)-ジオン(300 mg, 0.66 mmol)にt-ブタノール (2.4 mL)、4-(2-ピリジルオキシ)アニリン(148 mg, 0.8 mmol)と酢酸(0.58 mL, 10 mmol)を加え、15時間加熱還流した。反応液に2mol/L 塩酸(0.33 mL)を加え,室温で8時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。有機層を飽和食塩水(30 mL)で洗浄し、無水硫酸ナトリウムで乾燥した。減圧濃縮し、残渣をシリカゲルクロマトグラフィー(酢酸エチル/ヘキサン)で精製し、1-(4-クロロベンジル)-3-(2-ヒドロキシメチル-2-プロペニル)-6-[4-(2-ピリジルオキシ)フェニルイミノ]-1,3,5-トリアジナン-2,4-ジオン(R−254,206 mg, 収率63%)を白色アモルファスとして得た。
1H-NMR (CDCl3) δ: .52-2.66 (1H, m), 4.08 (2H, d, J = 5.0 Hz), 4.50 (2H, s), 5.16 (2H, d, J = 21.1 Hz), 5.21 (2H, s), 6.86 (2H, d, J = 8.5 Hz), 6.96-7.01 (2H, m), 7.13 (2H, d, J = 8.8 Hz), 7.31 (2H, d, J = 8.3 Hz), 7.51 (2H, d, J = 8.5 Hz), 7.69-7.73 (1H, m), 8.10 (1H, d, J = 3.5 Hz), 8.14-8.40 (1H, m).
【0139】
(2)1-(4-クロロベンジル)-3-(2-ヒドロキシメチル-2,3-ジヒドロキシプロピル)-6-[4-(2-ピリジルオキシ)フェニルイミノ]-1,3,5-トリアジナン-2,4-ジオン(R−255)の調製
【化111】
[この文献は図面を表示できません]
1-(4-クロロベンジル)-3-(2-ヒドロキシメチル-2-プロペニル)-6-[4-(2-ピリジルオキシ)フェニルイミノ]-1,3,5-トリアジナン-2,4-ジオン(192 mg, 0.39 mmol)を95% THF水溶液(2.2 mL)に溶解した。反応液にオスミウム(VI)酸カリウム二水和物(14.4 mg, 0.04 mmol)とN-メチルモルフォリン(92 mg, 0.78 mmol)を加え、室温で2時間攪拌した。反応液に5% 亜硫酸ナトリウム水溶液(1.0 mL)と水(50 mL)を加え、酢酸エチル(50 mL)で抽出した。有機層を飽和食塩水(50 mL)で洗浄し、無水硫酸ナトリウムで乾燥した。減圧濃縮し、残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール)で精製し、酢酸エチルとヘキサンで粉末化して1-(4-クロロベンジル)-3-(2-ヒドロキシメチル-2,3-ジヒドロキシプロピル)-6-[4-(2-ピリジルオキシ)フェニルイミノ]-1,3,5-トリアジナン-2,4-ジオン(R−255, 155 mg, 収率75%)を白色粉末として得た。
1H-NMR (DMSO-d
6) δ: 3.26-3.31 (4H, m), 3.94 (2H, s), 4.31 (1H, s), 4.42 (2H, t, J = 6.0 Hz), 5.29 (2H, s), 6.97-7.18 (4H, m), 7.30-7.52 (6H, m), 7.85 (1H, t, J = 7.3 Hz), 8.16 (1H, d, J = 3.3 Hz), 9.39 (1H, s).
参考例5
1-(4-クロロベンジル)-3-(2-ヒドロキシエチル)-6-[4-(2-ピリジルオキシ)フェニルイミノ]-1,3,5-トリアジナン-2,4-ジオン(R−257)の調製
【化112】
[この文献は図面を表示できません]
1-(4-クロロベンジル)-3-(メトキシカルボニルメチル)-6-[4-(2-ピリジルオキシ)フェニルイミノ]-1,3,5-トリアジナン-2,4-ジオン(248 mg, 0.5 mmol) のTHF (6 mL)の溶液に水素化アルミニウムリチウム (38 mg, 1 mmol) を氷冷下で加え、室温で1.5時間攪拌した。反応液に水 (0.04 ml)、 10% 水酸化ナトリウム水溶液 (0.04 ml)、室温で1時間攪拌した。反応液をセライトでろ過し、酢酸エチル で洗浄後、無水硫酸マグネシウムで乾燥した。減圧濃縮し、残渣をシリカゲルクロマトグラフィー(酢酸エチル/ヘキサン)で精製し、1-(4-クロロベンジル)-3-(2-ヒドロキシエチル)-6-[4-(2-ピリジルオキシ)フェニルイミノ]-1,3,5-トリアジナン-2,4-ジオン(R−257,65.4 mg, 収率28%)を白色固体として得た。
1H-NMR (CDCl3) δ: 2.25 (1H, t, J=5.7 Hz), 3.80 (2H, q, J=5.4 Hz), 4.05 (2H, t, J=5.1 Hz), 5.20 (2H, s), 6.85 (2H, d, J=8.5 Hz), 6.97 (1H, d, J=8.3 Hz), 7.00 (1H, dd, J=6.8, 5.3 Hz), 7.13 (2H, d, J=8.5 Hz), 7.30 (2H, d, J=8.3 Hz), 7.51 (2H, d, J=8.3 Hz), 7.71 (1H, t, J=8.0 Hz), 8.07 (1H, brs), 8.16 (1H, dd, J=4.8, 1.2 Hz).
参考例6
【0140】
(1)1-(4-クロロベンジル)-3-(3-テトラヒドロピラン-2-イルオキシプロピル)-6-[4-(2-ピリジルオキシ)フェニルイミノ]-1,3,5-トリアジナン-2,4-ジオンの調製
【化113】
[この文献は図面を表示できません]
1-(4-クロロベンジル)-6-(エチルチオ)-3-(3-テトラヒドロピラン-2-イルオキシプロピル)-1,3,5-トリアジン-2,4(1H,3H)-ジオン(230 mg, 0.52 mol)、4-(2-ピリジルオキシ)アニリン (146 mg, 0.78 mmol)、酢酸 (0.45 mL)とt-ブタノール (4 ml) の混合液を、加熱還流下で終夜攪拌した。反応液に飽和炭酸水素ナトリウム水溶液(50 mL)に加え、酢酸エチル(50 mL)で抽出した。有機層を飽和食塩水で水洗し,無水硫酸ナトリウムで乾燥した。減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製して、1-(4-クロロベンジル)-3-(3-テトラヒドロピラン-2-イルオキシプロピル)-6-[4-(2-ピリジルオキシ)フェニルイミノ]-1,3,5-トリアジナン-2,4-ジオン(188 mg, 収率: 64%)を無色アモルファスとして得た。
1H-NMR (CDCl
3) δ: 1.47-1.66 (6H, m), 1.95 (2H, td, J = 12.3, 6.6 Hz), 3.42-3.49 (2H, m), 3.80-3.84 (2H, m), 3.96-4.00 (2H, m), 4.52 (1H, br s), 5.20 (2H, s), 6.84 (2H, d, J = 8.6 Hz), 6.95-7.01 (2H, m), 7.13 (2H, d, J = 8.6 Hz), 7.30 (2H, d, J = 8.3 Hz), 7.52 (2H, d, J = 8.3 Hz), 7.68-7.73 (1H, m), 7.95 (1H, s), 8.13 (1H, t, J = 2.5 Hz).
【0141】
(2)1-(4-クロロベンジル)-3-(3-ヒドロキシプロピル)-6-[4-(2-ピリジルオキシ)フェニルイミノ]-1,3,5-トリアジナン-2,4-ジオン(R−251)の調製
【化114】
[この文献は図面を表示できません]
1-(4-クロロベンジル)-3-(3-テトラヒドロピラン-2-イルオキシプロピル)-6-[4-(2-ピリジルオキシ)フェニルイミノ]-1,3,5-トリアジナン-2,4-ジオン(180 mg, 0.32 mol)、のメタノール(2 ml)溶液に、P-トルエンスルホン酸水和物 (12 mg, 0.064 mmol) を加え、50℃で2時間攪拌した。反応液にトリエチルアミンを加え、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製して、1-(4-クロロベンジル)-3-(3-ヒドロキシプロピル)-6-[4-(2-ピリジルオキシ)フェニルイミノ]-1,3,5-トリアジナン-2,4-ジオン(R−251,150 mg, 収率: 99%)を無色アモルファスとして得た。
1H-NMR (CDCl
3) δ: 1.83-1.89 (2H, m), 2.63 (1H, t, J = 6.5 Hz), 3.59 (2H, q, J = 5.9 Hz), 4.00 (2H, t, J = 6.1 Hz), 5.22 (2H, s), 6.86 (2H, d, J = 8.8 Hz), 6.97-7.01 (2H, m), 7.13 (2H, d, J = 8.5 Hz), 7.31 (2H, d, J = 8.5 Hz), 7.52 (2H, d, J = 8.3 Hz), 7.69-7.74 (1H, m), 8.10 (1H, dd, J = 4.9, 1.4 Hz).
【0142】
上記の一般的製造法および実施例に記載の方法に準じ、必要に応じて、WO2010/092966およびWO2012/020749に記載されている内容を参考にして、以下の本発明化合物を得た。構造および物性を以下に示す。
(化合物の同定方法)
本発明の化合物のLC/MSデータは、以下の2つの条件(メソッド1〜2)のいずれかで測定し、保持時間(単位:分)および[M+H]
+を示した。
(メソッド1)
カラム:Shim−pack XR−ODS (2.2μm、i.d.50x3.0mm) (Shimadzu)
流速:1.6 mL/分
UV検出波長:254nm
移動相:[A]は0.1%ギ酸含有水溶液、[B]は0.1%ギ酸含有アセトニトリル溶液
グラジェント:3分間で10%−100%溶媒[B]のリニアグラジエントを行い、1分間、100%溶媒[B]を維持した。
(メソッド2)
カラム:ACQUITY UPLC(登録商標)BEH C18 (1.7μm i.d.2.1x50mm)(Waters)"
流速:0.8 mL/分
UV検出波長:254nm
移動相:[A]は10mM炭酸アンモニウム含有水溶液、[B]はアセトニトリル
グラジェント:3.5分間で5%−100%溶媒[B]のリニアグラジエントを行った後、0.5分間、100%溶媒[B]を維持した。
【0143】
【表1】
[この文献は図面を表示できません]
【表2】
[この文献は図面を表示できません]
【表3】
[この文献は図面を表示できません]
【表4】
[この文献は図面を表示できません]
【表5】
[この文献は図面を表示できません]
【表6】
[この文献は図面を表示できません]
【表7】
[この文献は図面を表示できません]
【表8】
[この文献は図面を表示できません]
【表9】
[この文献は図面を表示できません]
【表10】
[この文献は図面を表示できません]
【0144】
【表11】
[この文献は図面を表示できません]
【表12】
[この文献は図面を表示できません]
【表13】
[この文献は図面を表示できません]
【表14】
[この文献は図面を表示できません]
【表15】
[この文献は図面を表示できません]
【表16】
[この文献は図面を表示できません]
【表17】
[この文献は図面を表示できません]
【表18】
[この文献は図面を表示できません]
【表19】
[この文献は図面を表示できません]
【表20】
[この文献は図面を表示できません]
【0145】
【表21】
[この文献は図面を表示できません]
【表22】
[この文献は図面を表示できません]
【表23】
[この文献は図面を表示できません]
【表24】
[この文献は図面を表示できません]
【表25】
[この文献は図面を表示できません]
【表26】
[この文献は図面を表示できません]
【表27】
[この文献は図面を表示できません]
【表28】
[この文献は図面を表示できません]
【表29】
[この文献は図面を表示できません]
【表30】
[この文献は図面を表示できません]
【0146】
【表31】
[この文献は図面を表示できません]
【表32】
[この文献は図面を表示できません]
【0147】
【表33】
[この文献は図面を表示できません]
【表34】
[この文献は図面を表示できません]
【表35】
[この文献は図面を表示できません]
【表36】
[この文献は図面を表示できません]
【表37】
[この文献は図面を表示できません]
【表38】
[この文献は図面を表示できません]
【表39】
[この文献は図面を表示できません]
【表40】
[この文献は図面を表示できません]
【0148】
【表41】
[この文献は図面を表示できません]
【表42】
[この文献は図面を表示できません]
【表43】
[この文献は図面を表示できません]
【表44】
[この文献は図面を表示できません]
【表45】
[この文献は図面を表示できません]
【表46】
[この文献は図面を表示できません]
【表47】
[この文献は図面を表示できません]
【表48】
[この文献は図面を表示できません]
【表49】
[この文献は図面を表示できません]
【0149】
【表50】
[この文献は図面を表示できません]
【表51】
[この文献は図面を表示できません]
【表52】
[この文献は図面を表示できません]
【表53】
[この文献は図面を表示できません]
【表54】
[この文献は図面を表示できません]
【表55】
[この文献は図面を表示できません]
【表56】
[この文献は図面を表示できません]
【0150】
上記の一般的製造法および参考例に記載の方法に準じ、必要に応じて、WO2010/092966およびWO2012/020749に記載されている内容を参考にして、以下の参考例化合物を得た。
【0151】
参考例
【表57】
[この文献は図面を表示できません]
【表58】
[この文献は図面を表示できません]
【表59】
[この文献は図面を表示できません]
【表60】
[この文献は図面を表示できません]
【表61】
[この文献は図面を表示できません]
【表62】
[この文献は図面を表示できません]
【表63】
[この文献は図面を表示できません]
【表64】
[この文献は図面を表示できません]
【表65】
[この文献は図面を表示できません]
【表66】
[この文献は図面を表示できません]
【0152】
【表67】
[この文献は図面を表示できません]
【表68】
[この文献は図面を表示できません]
【表69】
[この文献は図面を表示できません]
【表70】
[この文献は図面を表示できません]
【表71】
[この文献は図面を表示できません]
【表72】
[この文献は図面を表示できません]
【表73】
[この文献は図面を表示できません]
【表74】
[この文献は図面を表示できません]
【表75】
[この文献は図面を表示できません]
【表76】
[この文献は図面を表示できません]
【0153】
【表77】
[この文献は図面を表示できません]
【表78】
[この文献は図面を表示できません]
【表79】
[この文献は図面を表示できません]
【表80】
[この文献は図面を表示できません]
【表81】
[この文献は図面を表示できません]
【表82】
[この文献は図面を表示できません]
【表83】
[この文献は図面を表示できません]
【表84】
[この文献は図面を表示できません]
【表85】
[この文献は図面を表示できません]
【表86】
[この文献は図面を表示できません]
【0154】
【表87】
[この文献は図面を表示できません]
【表88】
[この文献は図面を表示できません]
【表89】
[この文献は図面を表示できません]
【表90】
[この文献は図面を表示できません]
【表91】
[この文献は図面を表示できません]
【表92】
[この文献は図面を表示できません]
【表93】
[この文献は図面を表示できません]
【表94】
[この文献は図面を表示できません]
【表95】
[この文献は図面を表示できません]
【表96】
[この文献は図面を表示できません]
【0155】
【表97】
[この文献は図面を表示できません]
【表98】
[この文献は図面を表示できません]
【表99】
[この文献は図面を表示できません]
【表100】
[この文献は図面を表示できません]
【表101】
[この文献は図面を表示できません]
【表102】
[この文献は図面を表示できません]
【表103】
[この文献は図面を表示できません]
【表104】
[この文献は図面を表示できません]
【表105】
[この文献は図面を表示できません]
【表106】
[この文献は図面を表示できません]
【0156】
【表107】
[この文献は図面を表示できません]
【表108】
[この文献は図面を表示できません]
【表109】
[この文献は図面を表示できません]
【表110】
[この文献は図面を表示できません]
【表111】
[この文献は図面を表示できません]
【0157】
【表112】
[この文献は図面を表示できません]
【表113】
[この文献は図面を表示できません]
【表114】
[この文献は図面を表示できません]
【表115】
[この文献は図面を表示できません]
【表116】
[この文献は図面を表示できません]
【表117】
[この文献は図面を表示できません]
【表118】
[この文献は図面を表示できません]
【表119】
[この文献は図面を表示できません]
【0158】
上記の一般的製造法、実施例および参考例に記載の方法に準じ、必要に応じて、WO2010/092966およびWO2012/020749に記載されている内容を参考にして、以下の化合物を得ることができる。
【化115】
[この文献は図面を表示できません]
【表120】
[この文献は図面を表示できません]
【表121】
[この文献は図面を表示できません]
【表122】
[この文献は図面を表示できません]
【0159】
【化116】
[この文献は図面を表示できません]
【表123】
[この文献は図面を表示できません]
【0160】
以下に、本発明化合物の生物試験例を記載する。
【0161】
試験例
試験例1 ヒトP2X
3受容体阻害活性の評価
ヒトP2X
3受容体遺伝子(GenBank登録配列Y07683)をC6BU−1細胞に導入した安定発現細胞株をPDLコート384穴マイクロプレートに1穴当たり3000個になるように播種し、培地(8.3%ウシ胎児血清、8.3%ウマ血清、1%抗生物質抗真菌剤混合溶液を含むDMEM)中で、37℃、5%二酸化炭素下で2日間培養した。培地をFluo−3−AM 4μMを含む添加液(20mM HEPES、137mM NaCl、2.7mM KCl、0.9mM MgCl
2、5.0mMCaCl
2、5.6mM D−グルコース、2.5mM プロベネシド、0.5%BSA、0.04%プルロニックF−127、pH7.5)に置換し、37℃、5%二酸化炭素下で1時間インキュベーションした。洗浄用緩衝液(20mM HEPES、137mM NaCl、2.7mMKCl、0.9mM MgCl
2、5.0mM CaCl
2、5.6mM D−グルコース、2.5mM プロベネシド、pH7.5)により洗浄し、1穴当たり20μLの洗浄用緩衝液で満たした。マイクロプレートをハイスループットスクリーニングシステムFLIPR 384(Molecular Devices社)に設置した。FLIPR 384による蛍光強度の測定を開始し、希釈用緩衝液(20mM HEPES、137mM NaCl、2.7mM KCl、0.9mM MgCl
2、5.0mM CaCl
2、5.6mM D−グルコース、2.5mM プロベネシド、0.1%プルロニックF−127、pH7.5)により異なる濃度になるように希釈した本発明化合物DMSO溶液を1穴当たり20μLずつFLIPR 384に内蔵された自動分注装置で分注した。5分後、希釈用緩衝液で希釈した150nM ATP溶液25μLをFLIPR 384に内蔵された自動分注装置で分注し、その後4分間蛍光強度の測定を継続した。測定した蛍光強度の値から、ATP溶液添加後の蛍光強度の最大値を測定開始時の蛍光強度に対する比で表した比最大蛍光強度をマイクロプレートの穴毎に算出した。本発明化合物を含まない場合の比最大蛍光強度の値を阻害0%、ATPの代わりに希釈用緩衝液を添加した場合の比最大蛍光強度の値を阻害100%とし、阻害50%となる濃度(IC
50)を算出して本発明化合物の阻害活性を評価した。比最大蛍光強度およびIC
50の算出はSpotfire(サイエンス・テクノロジー・システムズ社)のソフトウェアを用いて行った。
本発明化合物の試験結果を以下の表に示す。
【0162】
【表124】
[この文献は図面を表示できません]
【表125】
[この文献は図面を表示できません]
【表126】
[この文献は図面を表示できません]
【表127】
[この文献は図面を表示できません]
【0163】
試験例2 ヒト血清アルブミン(HSA)存在下でのヒトP2X
3受容体阻害活性の評価
ヒトP2X
3受容体遺伝子(GenBank登録配列Y07683)をC6BU−1細胞に導入した安定発現細胞株をPDLコート96穴マイクロプレートに1穴当たり8000個になるように播種し、培地(7.0%ウシ胎児血清、7.0%ウマ血清、1%抗生物質抗真菌剤混合溶液、2.0%グルタミンを含むDMEM)中で、37℃、5%二酸化炭素下で1日間培養した。培地をFluo−3−AM 4μMを含む添加液(20mM HEPES、137mM NaCl、5.37mM KCl、0.9mM MgCl
2、1.26mM CaCl
2、5.6mM D−グルコース、2.5mM プロベネシド、0.5%BSA、0.04%プルロニックF−127、pH7.5)に置換し、37℃、5%二酸化炭素下で1時間インキュベーションした。洗浄用緩衝液(20mM HEPES、137mM NaCl、5.27mM KCl、0.9mM MgCl
2、1.26mM CaCl
2、5.6mM D−グルコース、2.5mM プロベネシド、pH7.5)により洗浄し、1穴当たり40μLの洗浄用緩衝液で満たした。マイクロプレートをハイスループットスクリーニングシステムFDSS 3000(浜松ホトニクス社)に設置した。FDSS 3000による蛍光強度の測定を開始し、希釈用緩衝液(20mM HEPES、137mM NaCl、5.27mM KCl、0.9mM MgCl
2、1.26mM CaCl
2、5.6mM D−グルコース、2.5mM プロベネシド、0.1%プルロニックF−127、pH7.5)に終濃度1%になるようにヒト血清アルブミンを添加した溶液を用いて異なる濃度になるように希釈した本発明化合物DMSO溶液を1穴当たり40μLずつFDSS 3000に内蔵された自動分注装置で分注した。5分後、希釈用緩衝液で希釈したATP溶液50μL(終濃度50nM)をFDSS 3000に内蔵された自動分注装置で分注し、その後4分間蛍光強度の測定を継続した。測定した蛍光強度の値から、ATP溶液添加後の蛍光強度の最大値を測定開始時の蛍光強度に対する比で表した比最大蛍光強度をマイクロプレートの穴毎に算出した。本発明化合物を含まない場合の比最大蛍光強度の値を阻害0%、ATPの代わりに希釈用緩衝液を添加した場合の比最大蛍光強度の値を阻害100%とし、阻害50%となる濃度(IC
50)を算出して本発明化合物の阻害活性を評価した。比最大蛍光強度の算出はFDSS ソフトウェア(浜松ホトニクス社)を用いて行った。IC
50の算出はマイクロソフト・エクセル(Microsoft社)およびXLfit(idbs社)のソフトウェアを用いて行った。
本発明化合物の試験結果を以下の表に示す。
【0164】
【表128】
[この文献は図面を表示できません]
【0165】
試験例3 ラットP2X
3受容体阻害活性の評価
ラットP2X
3受容体遺伝子(GenBank登録配列NM_031075)をC6BU−1細胞に導入して発現させた。C6BU−1細胞を1穴当り2500個になるように播種し、培地(7.0%ウシ胎児血清、7.0%ウマ血清、1%抗生物質抗真菌剤混合溶液を含むDMEM)中で37℃、5%二酸化炭素下で1日間培養した。遺伝子導入試薬FuGENE6(Promega社製)を用いて発現プラスミドを導入し、さらに37℃、5%二酸化炭素下で1日間培養した。培地をFluo−3−AM 4μMを含む添加液(20mM HEPES、137mM NaCl、5.27mM KCl、0.9mM MgCl
2、1.26mM CaCl
2、5.6mM D−グルコース、2.5mM プロベネシド、1%BSA、0.08%プルロニックF−127、pH7.5)に置換し、37℃、5%二酸化炭素下で1時間インキュベーションした。洗浄用緩衝液(20mM HEPES、137mM NaCl、5.27mM KCl、0.9mM MgCl
2、1.26mM CaCl
2、5.6mM D−グルコース、2.5mM プロベネシド、pH7.5)により洗浄し、1穴当たり40μLの洗浄用緩衝液で満たした。マイクロプレートをハイスループットスクリーニングシステムFDSS 3000(浜松ホトニクス社)に設置する。FDSS 3000による蛍光強度の測定を開始し、希釈用緩衝液(20mM HEPES、137mM NaCl、5.27mM KCl、0.9mM MgCl
2、1.26mM CaCl
2、5.6mM D−グルコース、2.5mM プロベネシド、0.1%プルロニックF−127、pH7.5)を用いて異なる濃度になるように希釈した本発明化合物のDMSO溶液を1穴当り40μLずつFDSS 3000に内蔵された自動分注装置で分注した。5分後、希釈用緩衝液で希釈した50nM ATP溶液50μLをFDSS 3000に内蔵された自動分注装置で分注し、その後4分間蛍光強度の測定を継続した。測定した蛍光強度の値から、ATP溶液添加後の蛍光強度の最大値を測定開始時の蛍光強度に対する比で表した比最大蛍光強度をマイクロプレートの穴毎に算出した。本発明化合物を含まない場合の比最大蛍光強度の値を阻害0%、ATPの代わりに希釈用緩衝液を添加した場合の比最大蛍光強度の値を阻害100%とし、阻害50%となる濃度(IC
50)を算出して本発明化合物の阻害活性を評価した。比最大蛍光強度の算出はFDSS ソフトウェア(浜松ホトニクス社)を用いて行った。IC
50の算出はマイクロソフト・エクセル(Microsoft社)およびXLfit(idbs社)のソフトウェアを用いて行った。
本発明化合物の試験結果を以下の表に示す。
【表129】
[この文献は図面を表示できません]
【0166】
試験例4 ラット血清アルブミン(RSA)存在下でのラットP2X
3受容体阻害活性の評価
ラットP2X
3受容体遺伝子(GenBank登録配列NM_031075)をC6BU−1細胞に導入して発現させた。C6BU−1細胞を1穴当り2500個になるように播種し、培地(7.0%ウシ胎児血清、7.0%ウマ血清、1%抗生物質抗真菌剤混合溶液を含むDMEM)中で37℃、5%二酸化炭素下で1日間培養した。遺伝子導入試薬FuGENE6(Promega社製)を用いて発現プラスミドを導入し、さらに37℃、5%二酸化炭素下で1日間培養した。培地をFluo−4−AM 4μMを含む添加液(20mM HEPES、137mM NaCl、5.27mM KCl、0.9mM MgCl
2、1.26mM CaCl
2、5.6mM D−グルコース、2.5mM プロベネシド、10%BSA、0.08%プルロニックF−127、pH7.5)に置換し、37℃、5%二酸化炭素下で1時間インキュベーションする。洗浄用緩衝液(20mM HEPES、137mM NaCl、5.27mM KCl、0.9mM MgCl
2、1.26mM CaCl
2、5.6mM D−グルコース、2.5mM プロベネシド、pH7.5)により洗浄し、1穴当たり40μLの洗浄用緩衝液で満たした。マイクロプレートをハイスループットスクリーニングシステムFDSS 3000(浜松ホトニクス社)に設置した。FDSS 3000による蛍光強度の測定を開始し、希釈用緩衝液(20mM HEPES、137mM NaCl、5.27mM KCl、0.9mM MgCl
2、1.26mM CaCl
2、5.6mM D−グルコース、2.5mM プロベネシド、0.1%プルロニックF−127、pH7.5)に終濃度1%になるようにラット血清アルブミンを添加した溶液を用いて異なる濃度になるように希釈した本発明化合物のDMSO溶液を1穴当り40μLずつFDSS 3000に内蔵された自動分注装置で分注した。5分後、希釈用緩衝液で希釈した50nM ATP溶液50μLをFDSS 3000に内蔵された自動分注装置で分注し、その後4分間蛍光強度の測定を継続する。測定した蛍光強度の値から、ATP溶液添加後の蛍光強度の最大値を測定開始時の蛍光強度に対する比で表した比最大蛍光強度をマイクロプレートの穴毎に算出した。本発明化合物を含まない場合の比最大蛍光強度の値を阻害0%、ATPの代わりに希釈用緩衝液を添加した場合の比最大蛍光強度の値を阻害100%とし、阻害50%となる濃度(IC
50)を算出して本発明化合物の阻害活性を評価した。比最大蛍光強度の算出はFDSS ソフトウェア(浜松ホトニクス社)を用いて行う。IC
50の算出はマイクロソフト・エクセル(Microsoft社)およびXLfit(idbs社)のソフトウェアを用いて行った。
本発明化合物の試験結果を以下の表に示す。
【表130】
[この文献は図面を表示できません]
本明細書に記載された化合物は、P2X
3受容体に対する阻害活性を示した。また、本発明の化合物は、P2X
3サブタイプに作用するため、同じくP2X
2サブタイプを含んで構成されるP2X
2/3受容体に対しても阻害活性を示すと考えられる。
【0167】
試験例5 ラット膀胱炎モデルの排尿機能の評価
シストメトリー手術
ラットを2%イソフルラン(麻酔背景;笑気:酸素 = 7:3)吸入にて麻酔後、仰臥位に固定する。腹部を正中切開し、膀胱を露出させる。膀胱頂部を小切開しカニューレ(ポリエチレンチューブ(PE-50:Becton Dickinson)を加工して作製)を挿入固定し、膀胱瘻を作製する。カニューレの他端は皮下を通して背部に導き、筋層および皮膚を縫合する。背部に導いたカニューレは途中をステンレス製スプリングで保護し、シーベルに接続する。
酢酸注入
手術2日後、膀胱に留置したカニューレを介して0.3%酢酸を4 mL/hrの速度で30分間膀胱内に注入して、膀胱炎を惹起する。また酢酸注入を行わない動物を正常動物とする。
シストメトリー測定
酢酸注入2〜3日後、膀胱内に挿入したカニューレの他端を三方活栓に接続して、一方から加温した生理食塩液を3.0 mL/hrの速度で注入しながら、もう一方は圧トランスデューサーを介して、圧力アンプにより膀胱内圧を連続記録する。膀胱内圧は安定期間(約20分間)測定後、投与前値(約40分間)を測定し、被験物質を投与した後、投与後値を120分間測定する。本発明化合物は乳鉢と乳棒を用いて破砕し、0.5%メチルセルロース液を用いて0.1〜2 mg/mL/kgになるように懸濁液、または溶液を調製し、経口ゾンデを持ち用いて動物に経口投与する。膀胱内圧測定と同時に排泄尿はケージ下の天秤上で受け、その重量変化を同時に測定する。
データ採用の基準
排尿間隔を基準として、正常動物では排尿間隔が10分以上のものを採用し、それ以下のものは除外する。酢酸注入を行った動物では、排尿間隔が正常動物の平均値の半分未満のものを膀胱炎動物として採用し、それ以上のものは除外する。
残尿の採取
測定終了後、排尿直後に生理食塩液の注入を止め、ペントバルビタールナトリウム麻酔下で残尿を採取する。採取した残尿は排泄尿受けに移し、チャート上に記録する。
解析項目
測定開始1時間後から2時間後の膀胱内圧(静止時圧および排尿時圧)、排尿間隔、および1回排尿量を解析する。また測定終了後の残尿量を解析する。
排尿間隔への作用の指標として、以下の値を用いる。
排尿機能感覚改善率
=(膀胱炎動物の薬物処理後排尿間隔−膀胱炎動物の薬物処理前排尿間隔)/(正常動物の薬物処理前排尿間隔の平均値−膀胱炎動物の薬物処理前排尿間隔)×100
1回排尿量への作用の指標として、以下の値を用いる。
1回排尿量改善率
=(膀胱炎ラットの薬物処理後1回排尿量−膀胱炎動物の薬物処理前1回排尿量)/(正常動物の薬物処理前1回排尿量の平均値−膀胱炎動物の薬物処理前1回排尿量)×100
【0168】
試験例6 Seltzerモデルによる薬効評価
ラットPartial sciatic nerve ligationモデル(ラット坐骨神経部分結紮モデル)
モデルの作製
ラットをイソフルランにより麻酔し、左足の毛を剃った。大腿上部の皮膚を切開し、筋を割いて坐骨神経を露出させた。坐骨神経の1/3〜1/2を糸で強く結紮し、筋、及び皮膚を縫合した。これを手術側とした。右足については坐骨神経結紮以外の同様の処置を行い、偽手術側とした。
評価(1)
手術の2週間後、von Freyフィラメントにより触知性アロディニアに対する作用を評価した。手術2週間後、金網上に載せたプラスチック製ケージにラットを入れ、馴化させた。金網側からラット脚裏をvon Freyフィラメント(0.4〜26 g)を押し当て、ラットが逃避行動を示し始めるvon Frey線維の圧値を疼痛閾値とした。左右の後肢について痛覚閾値を評価し、処置前疼痛閾値とした。手術側の疼痛閾値が0.6〜2g、かつ偽手術側の疼痛閾値が8〜15gの動物を採用した。なお、動物の訓練のため、処置前疼痛閾値測定前に同様の操作を実施した。採用した動物に本発明化合物を投与した。本発明化合物は乳鉢と乳棒を用いて破砕し、0.5%メチルセルロース液を用いて0.1〜2 mg/mL/kgになるように懸濁液、または溶液を調製し、経口ゾンデを持ち用いて動物に経口投与した。投与1〜5時間後、左右後肢の疼痛閾値を評価し、処置後疼痛閾値とした。下記の方法により%reversal値を計算し、化合物の鎮痛作用を比較した。
%reversal値 =(手術側処置後疼痛閾値の対数―手術側処置前疼痛閾値の対数)/( 偽手術側処置前疼痛閾値の対数−手術側処置前疼痛閾値の対数)
本発明化合物の、1mg/kgの経口投与3時間後における鎮痛作用を%reversalとして以下の表に示す。
【表131】
[この文献は図面を表示できません]
評価(2)
analgesiometerにより機械痛覚過敏に対する作用を評価する。手術2週間後、analgesiometerにより1秒当り16 gずつ刺激圧が増加するようにラット後肢を圧迫し、ラットが逃避行動を示した際の圧を疼痛閾値とする。左右の後肢について疼痛閾値を評価し、処置前疼痛閾値とする。手術側の疼痛閾値が60〜90g、かつ偽手術側の疼痛閾値が100〜175gの動物を採用する。なお、動物の訓練のため、処置前疼痛閾値測定前に同様の操作を実施する。採用した動物に本発明化合物を投与する。本発明化合物は乳鉢と乳棒を用いて破砕し、0.5%メチルセルロース液を用いて0.03〜100 mg/2 mL/kgになるように懸濁液、または溶液を調製し、経口ゾンデを持ち用いて動物に経口投与する。投与1〜5時間後、左右後肢の疼痛閾値を評価し、処置後疼痛閾値とする。下記の方法により%reversal値を計算し、化合物の鎮痛作用を比較する。
%reversal =(手術側処置後疼痛閾値―手術側処置前疼痛閾値)/( 偽手術側処置前疼痛閾値−手術側処置前疼痛閾値)
【0169】
試験例7 CYP3A4蛍光MBI試験
CYP3A4蛍光MBI試験は、代謝反応による化合物のCYP3A4阻害の増強を調べる試験であり、酵素に大腸菌発現CYP3A4を用いて、7-ベンジルオキシトリフルオロメチルクマリン(7-BFC)がCYP3A4酵素により脱ベンジル化し、蛍光を発する代謝物7-ハイドロキシトリフルオロメチルクマリン(7-HFC)を生成する反応を指標として行った。
【0170】
反応条件は以下のとおり:基質、5.6 μmol/L 7-BFC;プレ反応時間、0または30分; 反応時間、15分; 反応温度、25℃(室温); CYP3A4含量(大腸菌発現酵素)、プレ反応時62.5 pmol/mL、反応時6.25 pmol/mL(10倍希釈時);本発明薬物濃度、1.56、3.125、6.25、12.5、25、50 μmol/L(6点)。
【0171】
96穴プレートにプレ反応液としてK-Pi緩衝液(pH 7.4)中に酵素、本発明薬物溶液を上記のプレ反応の組成で加え、別の96穴プレートに基質とK-Pi緩衝液で1/10希釈されるようにその一部を移行し、補酵素であるNADPHを添加して指標とする反応を開始し(プレ反応無)、所定の時間反応後、アセトニトリル:0.5 mol/L Tris(トリスヒドロキシアミノメタン)=4:1を加えることによって反応を停止した。また残りのプレ反応液にもNADPHを添加しプレ反応を開始し(プレ反応有)、所定時間プレ反応後、別のプレートに基質とK-Pi緩衝液で1/10希釈されるように一部を移行し指標とする反応を開始した。所定の時間反応後、アセトニトリル:0.5 mol/L Tris(トリスヒドロキシアミノメタン)=4:1を加えることによって反応を停止した。それぞれの指標反応を行ったプレートを蛍光プレートリーダーで代謝物である7-HFCの蛍光値を測定した(Ex=420nm、Em=535nm)。
【0172】
薬物を溶解した溶媒であるDMSOのみを反応系に添加したものをコントロール(100%)とし、本発明薬物溶液を加えたそれぞれの濃度での残存活性(%)を算出し、濃度と抑制率を用いて、ロジスティックモデルによる逆推定によりIC
50を算出した。IC
50値の差が5μmol/L以上の場合を(+)とし、3μmol/L以下の場合を(-)とした。
本発明化合物の試験結果を以下の表に示す。
【表132】
[この文献は図面を表示できません]
【0173】
試験例8 CYP阻害試験
市販のプールドヒト肝ミクロソームを用いて、ヒト主要CYP5分子種(CYP1A2、2C9、2C19、2D6、3A4)の典型的基質代謝反応として7-エトキシレゾルフィンのO-脱エチル化(CYP1A2)、トルブタミドのメチル−水酸化(CYP2C9)、メフェニトインの4’‐水酸化(CYP2C19)、デキストロメトルファンのO脱メチル化(CYP2D6)、テルフェナジンの水酸化(CYP3A4)を指標とし、それぞれの代謝物生成量が本発明化合物によって阻害される程度を評価した。
【0174】
反応条件は以下のとおり:基質、0.5 μmol/L エトキシレゾルフィン(CYP1A2)、100 μmol/L トルブタミド(CYP2C9)、50 μmol/L S-メフェニトイン(CYP2C19)、5 μmol/L デキストロメトルファン(CYP2D6)、1 μmol/L テルフェナジン(CYP3A4); 反応時間、15分; 反応温度、37℃; 酵素、プールドヒト肝ミクロソーム 0.2 mg タンパク質/mL; 本発明薬物濃度、1.0、5.0、10、20 μmol/L(4点)。
【0175】
96穴プレートに反応溶液として、50 mmol/L Hepes 緩衝液中に各5種の基質、ヒト肝ミクロソーム、本発明薬物を上記組成で加え、補酵素であるNADPHを添加して、指標とする代謝反応を開始し、37℃、15分間反応した後、メタノール/アセトニトリル=1/1 (v/v)溶液を添加することで反応を停止した。3000 rpm、15分間の遠心操作後、遠心上清中のレゾルフィン(CYP1A2代謝物)を蛍光マルチラベルカウンタで、トルブタミド水酸化体 (CYP2C9代謝物)、メフェニトイン4’水酸化体(CYP2C19代謝物)、デキストロルファン(CYP2D6代謝物)、テルフェナジンアルコール体(CYP3A4代謝物)をLC/MS/MSで定量した。
【0176】
薬物を溶解した溶媒であるDMSOのみを反応系に添加したものをコントロール(100%)とし、本発明薬物溶液を加えたそれぞれの濃度での残存活性(%)を算出し、濃度と抑制率を用いて、ロジスティックモデルによる逆推定によりIC
50を算出した。
本発明化合物の試験結果を以下の表に示す。
【表133】
[この文献は図面を表示できません]
【0177】
試験例9 Fluctuation Ames Test
本発明化合物の変異原性を評価した。
凍結保存しているネズミチフス菌(Salmonella typhimurium TA98株、TA100株)20μLを10mL液体栄養培地(2.5% Oxoid nutrient broth No.2)に接種し37℃にて10時間、振盪前培養した。TA98株は7.70mLの菌液を遠心(2000×g、10分間)して培養液を除去した。7.70mLのMicro F緩衝液(K
2HPO
4:3.5g/L、KH
2PO
4:1g/L、(NH
4)
2SO
4:1g/L、クエン酸三ナトリウム二水和物:0.25g/L、MgSO
4・7H
20:0.1g/L)に菌を懸濁し、110mLのExposure培地(ビオチン:8μg/mL、ヒスチジン:0.2μg/mL、グルコース:8mg/mLを含むMicroF緩衝液)に添加した。TA100株は3.42mL菌液に対しExposure培地120mLに添加し試験菌液を調製した。本発明化合物DMSO溶液(最高用量50mg/mLから2〜3倍公比で数段階希釈)、陰性対照としてDMSO、陽性対照として非代謝活性化条件ではTA98株に対しては50μg/mLの4−ニトロキノリン−1−オキシドDMSO溶液、TA100株に対しては0.25μg/mLの2−(2−フリル)−3−(5−ニトロ−2−フリル)アクリルアミドDMSO溶液、代謝活性化条件ではTA98株に対して40μg/mLの2−アミノアントラセンDMSO溶液、TA100株に対しては20μg/mLの2−アミノアントラセンDMSO溶液それぞれ12μLと試験菌液588μL(代謝活性化条件では試験菌液498μLとS9 mix 90μLの混合液)を混和し、37℃にて90分間、振盪培養した。本発明化合物を曝露した菌液460μLを、Indicator培地(ビオチン:8μg/mL、ヒスチジン:0.2μg/mL、グルコース:8mg/mL、ブロモクレゾールパープル:37.5μg/mLを含むMicroF緩衝液)2300μLに混和し、50μLずつマイクロプレート48ウェル/用量に分注し、37℃にて3日間、静置培養した。アミノ酸(ヒスチジン)合成酵素遺伝子の突然変異によって増殖能を獲得した菌を含むウェルは、pH変化により紫色から黄色に変色するため、1用量あたり48ウェル中の黄色に変色した菌増殖ウェルを計数し、陰性対照群と比較して評価する。変異原性が陰性のものを(−)、陽性のものを(+)として示した。
本発明化合物の試験結果を以下の表に示す。
【表134】
[この文献は図面を表示できません]
【0178】
試験例10 溶解性試験
化合物の溶解度は、1%DMSO添加条件下で決定した。DMSOにて10 mmol/L化合物溶液を調製し、化合物溶液2 μLをpH 6.8 人工腸液(0.2 mol/L リン酸二水素カリウム試液 250 mL に0.2 mol/L NaOH 試液 118 mL、水を加えて1000 mLとした)198 μLに添加した。25℃で16時間静置させた後、混液を吸引濾過した。濾液をメタノール/水=1/1にて2倍希釈し、絶対検量線法によりHPLCまたはLC/MS/MSを用いてろ液中濃度を測定した。
本発明化合物の試験結果を以下の表に示す。
【表135】
[この文献は図面を表示できません]
【0179】
試験例11 代謝安定性試験
市販のプールドヒト肝ミクロソームを用いて、対象化合物を一定時間反応させ、反応サンプルと未反応サンプルの比較により残存率を算出し、肝で代謝される程度を評価する。
【0180】
ヒト肝ミクロソーム0.5 mgタンパク質/mLを含む0.2 mLの緩衝液(50 mmol/L tris-HCl pH7.4、 150 mmol/L 塩化カリウム、 10 mmol/L 塩化マグネシウム)中で、1 mmol/L NADPH存在下で37℃、0分あるいは30分間反応させた(酸化的反応)。反応後、メタノール/アセトニトリル=1/1(v/v)溶液の100 μLに反応液50 μLを添加、混合し、3000 rpmで15分間遠心した。その遠心上清中の試験化合物をLC/MS/MSにて定量し、反応後の試験化合物の残存量を0分反応時の化合物量を100%として計算した。
本発明化合物の試験結果を以下の表に示す。化合物濃度0.5μmol/Lでの残存率を%として示す。
【表136】
[この文献は図面を表示できません]
【0181】
試験例12 代謝安定性試験
調製したラット凍結保存肝細胞を用いて、対象化合物を一定時間反応させ、反応サンプルと未反応サンプルの比較により残存率を算出し、肝で代謝される程度を評価する。
【0182】
ラット凍結肝細胞1.0x10
6cells/mLを含むウイリアムE培地中で37℃、0、1あるいは2時間反応させる。反応後、反応液30 μLにメタノール/アセトニトリル=1/1(v/v)溶液120 μLを添加、混合し、3000rpmで15分間遠心する。その遠心上清中の試験化合物をLC/MS/MSにて定量し、反応後の試験化合物の残存量を0分反応時の化合物量を100%として計算する。
【0183】
試験例13 hERG試験
本発明化合物の心電
図QT間隔延長リスク評価を目的として、human ether−a−go−go related gene (hERG)チャネルを発現させたCHO細胞を用いて、心室再分極過程に重要な役割を果たす遅延整流K
+電流(I
Kr)への本発明化合物の作用を検討した。
全自動パッチクランプシステム(QPatch;Sophion Bioscience A/S)を用い、ホールセルパッチクランプ法により、細胞を−80mVの膜電位に保持し、−50mVのリーク電位を与えた後、+20mVの脱分極刺激を2秒間、さらに−50mVの再分極刺激を2秒間与えた際に誘発されるI
Krを記録する。発生する電流が安定した後、本発明化合物を目的の濃度で溶解させた細胞外液(NaCl:145 mmol/L、KCl:4 mmol/L、CaCl
2:2 mmol/L、MgCl
2:1 mmol/L、グルコース:10 mmol/L、HEPES(4−(2−hydroxyethyl)−1−piperazineethanesulfonic acid、4−(2−ヒドロキシエチル)−1−ピペラジンエタンスルホン酸):10 mmol/L、pH=7.4)を室温条件下で、10分間細胞に適用させる。得られたI
Krから、解析ソフト(Falster Patch;Sophion Bioscience A/S)を使用して、保持膜電位における電流値を基準に最大テール電流の絶対値を計測する。さらに、本発明化合物適用前の最大テール電流に対する阻害率を算出し、媒体適用群(0.1%ジメチルスルホキシド溶液)と比較して、本発明化合物のI
Krへの影響を評価した。
本発明化合物の試験結果を以下の表に示す。
【表137】
[この文献は図面を表示できません]
【0184】
試験例14 蛋白結合試験
各種血清を用いて、発明化合物の血清蛋白非結合率を測定した。
【0185】
反応条件は以下のとおり:評価法、平衡透析法;反応時間、24時間;反応温度、37℃;発明化合物濃度、2 μg/mL。
【0186】
各種血清に検液を添加、攪拌し、上記化合物濃度の血清試料を調製した。平衡透析セルの一方に血清試料を、もう一方にリン酸緩衝生理食塩水 (PBS)を加え、37℃で24時間平衡透析した。各セルから採取した試料中化合物量をLC/MS/MSで測定した。
本発明化合物の試験結果を以下の表に示す。血清中化合物量に対するPBS中化合物量の比を蛋白非結合率(%)として示す。
【表138】
[この文献は図面を表示できません]
【0187】
試験例15 薬物動態試験
実験材料と方法
(1)使用動物:SDラットを使用した。
(2)飼育条件:SDラットは、固形飼料および滅菌水道水を自由摂取させた。
(3)投与量、群分けの設定:所定の投与量で経口及び静脈内投与した。以下のように群を設定した。(化合物ごとで投与量は変更有)
経口投与 1mg/kg(n=2)
静脈内投与 0.5mg/kg(n=2)
(4)投与液の調製:経口投与は懸濁液として投与した。静脈内投与は可溶化して投与した。
(5)投与方法:経口投与は、経口ゾンデにより胃内に投与した。静脈内投与は、注射針を付けたシリンジにより尾静脈から投与した。
(6)評価項目:経時的に採血し、血漿中本発明化合物濃度をLC/MS/MSを用いて測定した。
(7)統計解析:血漿中本発明化合物濃度推移について、非線形最小二乗法プログラムWinNonlin(登録商標)を用いて血漿中濃度‐時間曲線下面積(AUC)を算出し、経口投与群と静脈内投与群の投与量比およびAUC比から本発明化合物のバイオアベイラビリティ(BA)を算出した。また、静脈内投与量を静脈内投与後のAUCで割ることにより、全身クリアランス (CLtot)を算出した。
本発明化合物の試験結果を以下の表に示す。
【表139】
[この文献は図面を表示できません]
【0188】
試験例16 粉末溶解度試験
適当な容器に本発明化合物を適量入れ、各容器にJP−1液(塩化ナトリウム2.0g、塩酸7.0mLに水を加えて1000mLとする)、JP−2液(pH6.8のリン酸塩緩衝液500mLに水500mLを加える)、20mmol/L タウロコール酸ナトリウム(TCA)/JP−2液(TCA1.08gにJP−2液を加え100mLとする)を200μLずつ添加する。試験液添加後に全量溶解した場合には、適宜、本発明化合物を追加する。密閉して37℃で1時間振とう後に濾過し、各濾液100μLにメタノール100μLを添加して2倍希釈を行う。希釈倍率は、必要に応じて変更した。気泡および析出物がないかを確認し、密閉して振とうする。絶対検量線法によりHPLCを用いて本発明化合物を定量する。
【0189】
製剤例
以下に示す製剤例は例示にすぎないものであり、発明の範囲を何ら限定することを意図するものではない。
製剤例1 錠剤
本発明化合物 15mg
乳糖 15mg
ステアリン酸カルシウム 3mg
ステアリン酸カルシウム以外の成分を均一に混合し、破砕造粒して乾燥し、適当な大きさの顆粒剤とする。次にステアリン酸カルシウムを添加して圧縮成形して錠剤とする。
【0190】
製剤例2 カプセル剤
本発明化合物 10mg
ステアリン酸マグネシウム 10mg
乳糖 80mg
を均一に混合して粉末又は細粒状として散剤をつくる。それをカプセル容器に充填してカプセル剤とする。
【0191】
製剤例3 顆粒剤
本発明化合物 30g
乳糖 265g
ステアリン酸マグネシウム 5g
よく混合し、圧縮成型した後、粉砕、整粒し、篩別して適当な大きさの顆粒剤とする。
【0192】
製剤例4 口腔内崩壊錠
本発明化合物および結晶セルロースを混合し、造粒後打錠して口腔内崩壊錠とする。
【0193】
製剤例5 ドライシロップ
本発明化合物および乳糖を混合し、粉砕、整粒、篩別して適当な大きさのドライシロップとする。
【0194】
製剤例6 注射剤
本発明化合物およびリン酸緩衝液を混合し、注射剤とする。
【0195】
製剤例7 点滴剤
本発明化合物およびリン酸緩衝液を混合し、点滴剤とする。
【0196】
製剤例8 吸入剤
本発明化合物および乳糖を混合し細かく粉砕することにより、吸入剤とする。
【0197】
製剤例9 軟膏剤
本発明化合物およびワセリンを混合し、軟膏剤とする。
【0198】
製剤例10 貼付剤
本発明化合物および粘着プラスターなどの基剤を混合し、貼付剤とする。