(58)【調査した分野】(Int.Cl.,DB名)
サファイア単結晶の育成時の加熱により前記めっき層と前記母材の間で相互拡散が生じて前記めっき層中のタングステン量が減少した場合に、再度めっき処理を施すことによって剥離性を回復させる、請求項15に記載のサファイア単結晶の育成方法。
前記溶融塩は、40mol%以上のアルカリ金属またはアルカリ土類金属のフッ化物、10mol%以上の酸性酸化物、5mol%以上のタングステン化合物を含む溶融塩である、請求項17または18に記載のサファイア単結晶育成用坩堝の製造方法。
【発明を実施するための形態】
【0030】
以下、図面を参照して本発明に好適な実施形態を詳細に説明する。
【0031】
まず、
図1を参照して本発明の実施形態に係るサファイア単結晶育成用坩堝1の形状について、説明する。
【0032】
ここではサファイア単結晶育成用坩堝1として、CZ法、EFG法、HEM法等を用いたサファイア単結晶育成用の坩堝が例示されている。
【0033】
図1に示すように、サファイア単結晶育成用坩堝1は、坩堝形状の母材3と、母材3の少なくとも内周3aにコーティングされたタングステンのコーティング層5を有している。
【0034】
以下、サファイア単結晶育成用坩堝1を構成する部材の形状、組成、およびサファイア単結晶育成用坩堝1の製造方法について説明する。
【0035】
<母材3>
母材3を構成する材料としては、サファイア(アルミナ)溶融温度に耐え高温強度が高い金属材料として、モリブデンを主成分とする材料が好適に用いられる。なお、ここでいう主成分とは組成比率が最も大きい元素を意味する。
【0036】
母材3の具体的な材料は以下のものを例示できる。
【0037】
まず、母材3を構成するモリブデンの純度が99.9質量%以上で、残部は不可避不純物である材料が母材3の材料として挙げられる。母材3をこのような材料にすることにより、仮に溶融アルミナの坩堝内周面における浸食が生じた場合でも、このレベルの高純度材であればごくわずかの不純物汚染で済み、着色などの不具合を回避できるという効果を有する。
【0038】
次に、モリブデンより高融点であるタングステンをモリブデンに添加し、モリブデンより高温強度を高くしたタングステンモリブデン合金も母材3の材料として挙げられる。
【0039】
さらにランタンやその酸化物をドープしたランタンドープモリブデン合金も母材3の材料として挙げられる。ランタンドープモリブデン合金は圧延や鍛造など熱間あるいは冷間にて塑性加工を施した材料、あるいはその塑性加工した材料を再結晶温度以上で熱処理した材料のどちらでも良い。このような構造とすることにより、耐熱性をより向上できる。
【0040】
なお、コーティング層5の形成、即ちタングステンめっきの形成に用いられる溶融塩(詳細は後述)は酸化物を溶解する特性があるが、母材3に含まれるランタン酸化物はコーティング層5の形成中に溶融塩に溶けだすことはない。これは、コーティングの際に母材3を溶融塩に浸してから、タングステンの析出が開始するまでの時間が数秒と、非常に短いためである。一度めっきを開始した後は、析出したタングステンがランタン酸化物の保護膜となり、ランタン酸化物の漏出を防ぐので、母材3の性能を損なうことはない。また、めっき前に母材3に溶射等によって中間層を設けることによっても、酸化物の漏出を防ぐことができる。
【0041】
このように、サファイア単結晶育成用坩堝1はコーティング層5を有しているため、後述するように、サファイア育成時の熱による相互拡散で、コーティング層5のタングステンと母材3のモリブデンが合金化しても、コーティング層5の表面にランタンが析出することがなく、ランタン酸化物がコーティング層5の表面に出てきて、サファイアの品質を劣化させることはない。即ち、ランタン酸化物はコーティング層5の存在によって、母材3のモリブデン合金中に残るため、サファイアと反応したり、サファイアの結晶化へ悪影響を及ぼしたりする恐れはない。
【0042】
このように、サファイア単結晶育成用坩堝1は、コーティング層5の存在により母材3中の添加物とサファイアとの反応を防止できるという優れた特徴もあるため、母材3の材料として、モリブデン材に高温強度を改善するために異種材質を添加したTZM(Mo−Ti−Zr−C合金)やHfCが分散したモリブデンを用いることも可能である。
【0043】
なお、母材3にランタンを添加する場合のランタン添加量は酸化物換算で0.1質量%以上、5.0質量%の範囲内であることが望ましい。これは、ランタン添加量が0.1質量%未満であると高温での耐熱性の向上は得られず、ランタン添加量が5.0質量%を超えると、塑性加工に必要な密度が得られなくなるためである。より望ましいランタン添加量は0.5質量%以上、2.0質量%以下である。
【0044】
さらに、母材3の寸法は例えば厚みが2.5〜6mm、高さおよび直径が300〜500mm程度であるが、将来サファイア単結晶がさらに大型化した場合に伴う坩堝のさらなる大型化を妨げるものではない。
【0045】
<コーティング層5>
コーティング層5は溶融したサファイアと母材3の反応を防ぎ、坩堝に耐熱性を付与する材料である。
【0046】
前記の通り、コーティング層5はタングステンのめっき層(溶融塩タングステンめっき層)である。ここで、本実施形態でタングステンのめっき層を採用した理由について、以下に説明する。
【0047】
前述のように、従来のタングステンをモリブデンにコーティングする方法としては溶射とCVDが知られている。このうち、溶射は厚膜化が容易であること、大面積に被覆できるため、坩堝の大型化に対応可能であること、コストが低いことが利点として挙げられる。しかしながら、溶射は表面粗さが大きくなること、および緻密な膜が得難いことが欠点として挙げられる。
【0048】
一方で、CVDは表面粗さが小さく、緻密な膜を得られるという利点があるが、厚膜化、大型化が困難でコストが高いという欠点があった。
【0049】
このように、溶射とCVDは互いに相反する利点・欠点を有し、コーティング層5に要求される全ての特性を充足するのは困難であった。
【0050】
そこで、本出願人は鋭意検討した結果、コーティング層5を所定の要件を満たすめっき層とすることにより、溶射とCVDの利点を兼ね備えたコーティング層5を形成可能であることを見出したため、めっきを採用することにした。
【0051】
溶射、CVD、めっきにおける利点、欠点をまとめると、以下のようになる。なお、表中の「A」は他の方法と比較して特に優れていることを意味し、「B」は他の方法と比較して優れていることを意味し、「C」は他の方法と比較して劣っていることを意味する。
【0053】
一方で、めっき層としてのコーティング層5は以下の要件を満たすのが望ましい。
【0054】
(組成)
本実施形態ではコーティング層5は金属元素中で最も融点の高い純タングステン、即ち、タングステンと不可避不純物で構成された層であり、具体的には、99.9質量%以上の純度のタングステン(残部は不可避不純物)を使用することが望ましい。これは、純度が99.9質量%未満の場合、サファイアと不純物の反応で、得られるサファイアの品質への悪影響があることと、純度が低くなるほど融点が下がること、および後述する膜密度が低下するためである。
【0055】
なお、コーティング層5の純度は、例えばコーティングを溶解し、ICP−AES(Inductively Coupled Plasma - Atomic Emission Spectroscopy)を用いてJIS H1403に準じて化学分析を行うことにより求められるが、酸素のように、ICP−AESで測定できない元素については、後述するEPMA(Electron Probe Micro Analyzer)等の他の複数の測定方法により不可避不純物を定量する。そのため、ここでいう不純物濃度とタングステン濃度は、合算で100質量%にならない場合を含む。
【0056】
なお、本実施形態においては、コーティング層5中の不純物濃度として、特に酸素濃度に着目している。これは後述のように酸素がアルミナ溶融の際に影響を及ぼすためだけではなく、めっきの品質に関連が深いと考えているためである。
【0057】
即ち、溶融塩中ではタングステンはWO
42−の形態で存在すると考えられ、めっきによる析出の際には、WO
42−から酸素が脱離してタングステンの価数が+6からゼロ、すなわち金属タングステンWとなり、それがコーティング層5となると考えられている。
【0058】
そのため、何らかの要因で酸素の脱離が不完全のまま析出すると、コーティング層に酸素が多く含まれると考え、酸素濃度に着目した。
【0059】
(膜厚)
コーティング層5の膜厚は5μm以上、100μm以下であるのが望ましい。これは、膜厚が5μm未満の場合、サファイア単結晶生成時の加熱によってアルミナがコーティング層5に浸透したり、母材3のモリブデンがコーティング層に拡散したりすることにより、コーティング層5に求められる特性(耐熱性等)が失われるためである。
【0060】
また、コーティング層5の膜厚が100μmを超えると、後述する溶融塩電解めっきでコーティング層5を作製するのに多大な時間がかかり、工業的に製造するのが困難となるためである。
【0061】
なお、コーティング層5の膜厚は好ましくは10μm以上、100μm未満であり、より好ましくは10μm以上、50μm未満である。
【0062】
コーティング層5の膜厚は、例えばサファイア単結晶育成用坩堝1を切断して樹脂埋めを行い、顕微鏡で観察することにより、求められる。
【0063】
(酸素濃度)
上記の通り、コーティング層5は99.9質量%以上の純度のタングステンで構成されるのが望ましいが、コーティング層5に含まれる不純物としての酸素濃度は0.1質量%未満である必要がある。これは、酸素濃度が0.1質量%以上になるとコーティング層5に含まれる酸素とタングステンの酸化物が、アルミナを溶融する際の高温環境下(2050℃以上)で昇華し、コーティング層5の剥離を引き起こすためである。
【0064】
(表面粗さ)
生成されたサファイア単結晶を、坩堝を破壊せずに取り出し可能にするためには、コーティング層5は、表面粗さがRa(算術平均粗さ)0.03μm以上、20μm未満であるのが望ましい。
【0065】
これは、算術平均粗さが0.03μm未満のコーティング層を得るためには機械研磨が必要となり、コスト上昇につながるためである。また、Ra20μmを超えるコーティング層5の形成は工業的に困難であり、形成したとしてもコーティング層5の品質が安定しなくなり、コーティング層5が剥離する恐れがあるためである。
【0066】
後述する溶融塩によるタングステンめっきでは、めっき処理を行う段階でLi
2WO
4−Na
2WO
4−K
2WO
4−LiCl−NaCl−KCl−KF溶融塩ではRa5.0μmの膜を、KF−B
2O
3−WO
3溶融塩によるめっきではRa8.0μm〜10μm程度の膜を付けることが可能である。めっき時に逆電解を繰り返すことでRaの数値を制御することができ、Ra3.0μm〜10μm程度のめっき膜を作ることができる。さらに、逆電解と機械研磨を組み合わせることで、Raを0.03μmにまで下げることができるが、コスト上昇につながる。以上より、低コストでめっきできる表面粗さはRa3.0μm以上、10μm未満がより望ましい。
なお、表面粗さは公知の表面粗さ測定器で測定可能である。
【0067】
(膜密度)
コーティング層5の膜密度は、空隙率が5%以下であることが望ましい。
【0068】
これは、空隙率が5%を超えると、サファイア溶解時にコーティング層5へのアルミナの浸透が生じ、単結晶育成後にサファイアをコーティング層5から剥離するのが困難となるためである。
【0069】
なお、ここでいう空隙率とは、コーティング層5の膜厚方向に対して垂直な断面における空隙の面積率を意味し、コーティング層5を研磨し、SEM写真を撮影し、写真の画像解析を行い、空隙のサイズ、面積を特定することにより測定可能である。
【0070】
(被覆部分)
上記の通り、コーティング層5は、アルミナ溶融の際に少なくともアルミナと接触する部分に設けられている必要があり、具体的には母材3の少なくとも内周3aにコーティングされている(
図1、2では母材3の内周3aにのみコーティング層5が設けられている)。
【0071】
ただし、アルミナと接触する部分にコーティング層5が設けられていれば、必ずしも内周3aを完全にコーティングする必要はない。そのため、例えば
図2に示すように、母材の開放端部(上端部3c)が露出した状態、具体的には母材3の底面3bから上端部3cまでの高さH1が、底面3bからコーティング層5の上端までの高さ(めっき高さH2)よりも大きくてもよい。
【0072】
特に、上端部3cにめっきを行うと、後述するように、上端部3cは、電解めっきが他の部分よりも早く進行し、膜全体の表面粗さが大きくなる場合があるため、この場合は上端部3cが露出した状態でめっきする(即ち上端部3cをめっきしない)のが好ましい。
【0073】
<製造方法>
本実施形態におけるサファイア単結晶育成用坩堝1の製造方法は、上記の形状、組成を有するサファイア単結晶育成用坩堝1が製造できるものであれば、特に限定されるものではないが、以下のようなものを例示することができる。
【0074】
以下、
図3を参照して製造方法の一例を説明する。
【0075】
(S1:母材3の成形)
まず、母材3の原料を用意し、坩堝形状に成形する(
図3のS1)。
【0076】
原料は、母材3を純Moとする場合はFsss(Fisher Sub-Sieve Sizer)粒度で4〜5μm、純度99.9質量%以上のモリブデン粉末を用いるのが望ましい。なお、母材3をタングステンモリブデン合金とする場合はモリブデン粉末に加えてタングステン粉末が原料として必要になる。さらに母材3をランタンドープモリブデン合金とする場合はモリブデン粉末に加えてランタン酸化物等の粉末が原料として必要になる。
【0077】
成形方法としては、以下の方法が例示される。
具体的には、原料粉末を所望する成形体の形状のラバー内に充填し、開放口を止め具でシールした後ラバー内を真空引きする。真空引きを終えた後、ラバーをCIP(Cold Isostatic Pressing、冷間等方圧加圧)装置内に装填し、所定の手順で水圧を掛けて成形を行い、その後に粉末成形体をバッチ式或いは連続式水素焼結炉で、焼結を行う。その後、必要に応じて塑性加工を行い、坩堝形状に仕上げる。
【0078】
(S2:溶融塩浴の作製)
次に、めっきを行うための溶融塩浴を作製する(
図3のS2)。
【0079】
前記の通り、本実施形態ではタングステンのめっきを行うが、タングステンは水よりもイオン化傾向が大きいため、水溶液による電解めっきはできない。
そのため、溶融塩浴を用いる必要がある。
【0080】
溶融塩浴の組成としては、電解によりタングステンを析出可能で、かつ坩堝表面に生成した酸化物層を溶解除去可能な組成であることが望ましい。
【0081】
このような溶融塩としてはフッ化物と酸性酸化物、タングステン化合物の混合塩が挙げられる。以下、混合塩を構成する各物質について具体的に説明する。
【0082】
タングステン化合物はタングステン源となる物質であり、必須である。具体的には管理のしやすさから6価の酸化物であるWO
3やNa
2WO
4が好ましいが、WO
2やW
3O等の酸化物も原料として用いることは可能である。また、タングステン化合物としては、製造が極めて困難であるものの、酸化物だけでなくK
3WF
6やK
3WCl
6等のフルオライド、クロライドも適用可能である。
【0083】
フッ化物は坩堝表面に析出した酸化物や、WO
3を溶解する役割を担う物質であり、モリブデンとタングステンの間で金属結合を形成することが可能であるため、添加するのが望ましい。これは、母材3を構成するモリブデンはその表面に酸化物を形成しやすく、母材3の表面に酸化物が存在すると、皮膜中への酸素の混入と密着性の低下を招くためである。
【0084】
具体的なフッ化物としては、KFが望ましい。これは、KFは水に溶解するため、めっき後の坩堝を水洗するだけで取り除くことができ、かつ入手しやすいという利点があるためである。ただし、フッ化物はKFに限定されるものではなく、NaFやLiF、CaF
2などのアルカリまたはアルカリ土類金属のフッ化物を用いることも可能である。
【0085】
酸性酸化物は溶融塩中のタングステンをオキシフルオライドへと変換し易くし、還元反応を進みやすくする役割を担うため、添加するのが望ましい。
【0086】
具体的な酸性酸化物としては、コストおよび薬品管理上はB
2O
3が好ましいが、KPO
3を用いることもできる。
【0087】
また、混合塩中の各物質の混合比は、フッ化物を40mol%以上、酸性酸化物を10mol%以上、タングステン酸化物を5mol%以上含む、任意の比率で3種類の化合物を混合したものが好ましい。
【0088】
なお、具体的な溶融塩の組成としては、KF−B
2O
3−WO
3やKF−KPO
3−WO
3などが挙げられる。
【0089】
(S3:電解めっき)
次に、
図4に示すように、作製した溶融塩11を母材3と接触させ、母材3を作用極とし、銅やタングステンなどの導体を対極13として電源15を用いて電位を印加し、溶融塩電解めっきを行う(
図3のS3)。
【0090】
なお、電解の際には、
図4に示すように、溶融塩11の浴中に母材3を浸漬して行ってもよいが、
図5に示すように、母材3内を溶融塩11で満たし、母材3が溶融塩11の保持と作用極を兼ねるようにめっきを行なってもよい。このようにめっきを行うことにより、
図2に示すように、上端部3cが露出した状態でめっきすることができる。なお、
図4に示す方法であっても、母材3のめっきしたくない部分をマスクする等すれば、上端部3cが露出した状態にめっきすることは可能である。
【0091】
また、めっき条件は以下の条件とするのが望ましい。
まず、電流密度は0.1A/dm
2 以上、10A/dm
2 以下(10A/m
2 以上、1000A/m
2 以下)であるのが望ましい。これは、電流密度が10A/dm
2 を超えると、成膜速度は速くなるが、反応が均一に起こりにくくなるため、密着性の低下や、粒子径の不均一が生じるためである。一方で、電流密度が0.1A/dm
2 未満の場合、表面は滑らかに仕上がるが、成膜速度が遅すぎて所定の膜厚を得るまでに時間がかかるためである。なお、最適条件は3A/dm
2(300A/m
2)程度である。
【0092】
次に、めっき時間は電流密度にもよるが、10分以上、500分以下とするのが望ましい。これはめっき時間が500分を超えると電流効率が落ちてくることと、表面粗さが増大する傾向にあるためである。また、めっき時間が10分未満ではめっき時間が短すぎ、十分な膜厚を形成できない場合があるためである。
【0093】
まためっきの際は、
図4、5のいずれの場合も、処理室17全体をN
2、Arなどの不活性ガスで置換した雰囲気下でめっきを行うのが望ましい。これは、大気雰囲気等の環境下でめっきを行うと、めっきの際に雰囲気ガス中の酸素がモリブデンと反応してモリブデンが酸化してしまい、その反応によって生成するMoO
3は簡単に昇華してしまうためである(MoO
3の昇華はコーティング層5の剥離を引き起こす恐れがある)。
【0094】
また、電解の際の溶融塩の加熱温度は、溶融塩がKF−B
2O
3系の塩である場合は800℃〜900℃程度であり、溶融塩がLi
2WO
4系の塩である場合は500℃〜600℃程度であるが、溶融塩の組成によって望ましい範囲が異なるため、必ずしも上記温度範囲に限定されない。
以上が電解めっきの詳細である。
【0095】
なお、電解めっきの回数は1回には限られず、坩堝の使用後、即ちサファイア単結晶育成後(アルミナ溶融後)に再度めっきを行うことも可能である。
【0096】
具体的には、サファイア単結晶の育成時の加熱によりコーティング層5と母材3の間で相互拡散が生じてコーティング層5中のタングステン量が減少した場合に、再度めっき処理を施すことによって、コーティング層5の剥離性を回復させることができる。
【0097】
また、電解めっき後に逆電解を行うことにより、コーティング層5の表面粗さを調整することも可能である。
【0098】
(S4:溶融塩の排出)
めっきが終了すると、母材3を溶融塩11から分離し、内部の溶融塩11を排出する(
図3のS4)。この際、溶融塩11を冷却すると固化してしまうので、めっき時の温度から温度を下げずにそのまま排出するのが望ましい。
【0099】
(S5:洗浄)
最後に、サファイア単結晶育成用坩堝1を洗浄し、表面に付着した溶融塩11を除去する(
図3のS5)。洗浄は例えば水で行うが、水温が低くなるほど付着した溶融塩11を除去しにくくなるため、50℃以上の温水で洗浄するのが望ましい。
【0100】
なお、コーティング層5の表面粗さを調整したい場合は、洗浄後にコーティング層5を研磨してもよい。
以上がサファイア単結晶育成用坩堝1の製造方法の説明である。
【0101】
このように、本実施形態によれば、サファイア単結晶育成用坩堝1はモリブデンを主成分とする坩堝形状の母材3と、母材3の少なくとも内周に設けられ、タングステンと不可避不純物からなり、酸素濃度が0.1質量%未満のコーティング層5(めっき層)を有する。
【0102】
そのため、サファイア単結晶育成用坩堝1はサファイア単結晶を得るために最適化された構造である。
【実施例】
【0103】
以下、実施例に基づき、本発明をより具体的に説明する。
【0104】
(実施例1)
電解めっきによってコーティング層5を形成したサファイア単結晶育成用坩堝1を作製してアルミナを溶融させ、冷却後サファイアの取り出しを試みた。具体的な手順は以下の通りである。
【0105】
まず、母材3として直径80mm、厚さ2mm、深さ80mm、純度99.9質量%のモリブデン坩堝を用意した。
【0106】
次に、溶融塩として、KF − B
2O
3 − WO
3(モル比67:26:7)の混合塩を作製した。
【0107】
次に、作製した混合塩をAr雰囲気下で溶解してめっき前の溶融塩液面高さ(
図2のH2に相当)は60mmとしたのち、タングステン電極を対極として3A/dm
2の電流密度
(定電流制御)で溶融塩の温度を550℃としてタングステンめっきを施した。
【0108】
電解終了後に溶融塩と坩堝を分離し、坩堝に付着した混合塩を水洗により除去し、サファイア単結晶育成用坩堝1を得た。
【0109】
次に、表面粗さによるサファイアの剥離性を調査するため、コーティング層5の研磨を行い、Raを0.03μm〜8.5μmとした。
【0110】
次に、得られたサファイア単結晶育成用坩堝1を用いてアルミナを10時間溶融し、冷却後のサファイアの剥離の容易さを確認した。溶融したアルミナの液面高さは全て40mmとなるようにアルミナを投入した。
【0111】
結果を表2に示す。
なお、表2における酸素量、表面粗さ、空隙率は以下の条件で測定した。
【0112】
(酸素量)
装置名:島津製作所製 EPMA−1720H
試験条件:加速電圧:15kV ビーム電流:20nA ビーム径:Φ10μm
試験方法:まず、試料の準備として,コーティング層5と垂直な断面をダイヤモンドパウダー3μmで研磨した。次に、断面をEPMAで観察してタングステン層の位置を特定した上で,その層の酸素量を定量した。具体的には,分光結晶LSAで酸素のKα線を測定し,分光結晶PETでタングステンのMα線を測定した。また、モリブデンのLα線も測定してコーティング層へのMoの拡散がないこと(5μm未満)も確認した。最後に酸素のKα線の測定値からZAF(原子番号・吸収・螢光補正)法で酸素定量値を求めた。
【0113】
(表面粗さ)
装置名:小坂研究所製 Surf corder SE2300
測定区間:4mm
【0114】
(空隙率)
視野100μm×100μmの組織写真を光学顕微鏡で観察・撮影し、写真中の空隙部を画像解析で数値化することにより測定した。
【0115】
【表2】
【0116】
表2から明らかなように、コーティング層5の酸素量が0.1質量%以上になると、アルミナの溶融の際にW
3O等の酸化物成分の揮発が活発化し、コーティング層5が揮発した。
【0117】
また、コーティング層5の表面粗さはRa0.03μm〜16.2μmの間でサファイアの剥離性に変化は見られなかったが、Ra20μm以上ではサファイアがめっき膜の凹凸に食い込み、剥離が困難となった。
【0118】
以上の結果から、コーティング層5の酸素含有量は0.1%未満とするのが望ましいことが分かった。
【0119】
また、表面粗さはRa0.03μm〜16.2μmとするのが望ましいことが分かった。
【0120】
ただし、めっきによるコーティング層5の表面粗さをRa3μm未満にするためには、物理研磨が必要であったため、研磨に要するコストを考慮すると、Raは3μm以上、16.2μm以下であるのが望ましいことが分かった。
【0121】
(実施例2)
溶融塩としてLi
2WO
4 − Na
2WO
4 − K
2WO
4 − LiCl − NaCl − KCl − KF溶融塩(モル比3:18:3:13:52:6)を用い、他の条件は実施例1と同様とし、電解の際に母材3を周期60Hz、振幅2mmで振盪させた場合とさせなかった場合とで、めっき膜中の酸素濃度の違いを測定した。
【0122】
その結果、電解の際に母材3を振盪させた場合の酸素濃度は0.1質量%未満であったが、振盪させなかった場合の酸素濃度は2.8質量%となり、0.1質量%を超えてしまった。
【0123】
この結果から、電解の際に母材3を振盪させることにより、酸素濃度を0.1質量%未満に制御可能であることが分かった。
【0124】
(実施例3)
空隙率が異なるコーティング層5を形成したサファイア単結晶育成用坩堝1を作製してアルミナを溶融させ、冷却後サファイアの取り出しを試みた。具体的な手順は以下の通りである。
【0125】
まず、母材3として直径80mm、厚さ2mm、深さ80mm、純度99.9質量%のモリブデン坩堝を用意し、溶融塩として、実施例1と同様のKF − B
2O
3 - WO
3溶融塩の混合塩を用意した。
【0126】
次に、混合塩をAr雰囲気下で加熱して溶解させ、めっき前の溶融塩液面高さを60mmとしたのち、タングステン電極を対極として3A/dm
2の電流密度で溶融塩の温度を550℃としてタングステンめっきを施した。
【0127】
ここでは、膜密度の違いによるサファイア剥離性を調査するため、電流密度を本電解と同じ条件とした予備電解の時間を0.5時間〜2時間に設定し、めっき膜の密度を制御した(予備電解の時間が長いほど、膜密度が大きくなるため)。
【0128】
さらに、低膜密度の比較用として、溶射で50μmの皮膜をつけたモリブデン坩堝を作製した。溶射膜の密度は一般的に60〜70%である。これに対しめっき膜は非常に緻密なタングステン層が形成されており、めっき層断面の空隙率は5%以下であった。
【0129】
なお、溶融したアルミナの液面高さは全て40mmとなるようアルミナを投入した。
【0130】
結果を表3に示す。なお、溶射膜には、ブラストのためのAl
2O
3が混入することとなるため、溶射膜の酸素量は表3には示していない。また、表面粗さ、膜厚、酸素量等の測定条件は実施例1と同様である。
【0131】
【表3】
【0132】
また、表3のNo8、10、12の試料については、坩堝を、中心軸を通り、かつ軸方向に平行な面で切断して樹脂埋めおよび研磨を行い、SEMを用いて表面形状を観察した。結果を
図6〜
図8に示す。なお、
図6がNo.8に、
図7がNo.10に、
図12がNo.12にそれぞれ対応している。
【0133】
めっきでタングステン膜(コーティング層5)を作製した試料は、
図6および
図7に示すように、密な膜が形成されており、表3に示すように、良好なサファイア剥離性を示した。一方で、溶射でタングステン膜を付けたモリブデン坩堝は、
図8に示すように、被膜の膜密度がめっき膜よりも低いため、溶融したAl
2O
3が皮膜に食い込み、坩堝を破壊せずに冷却後のサファイアを剥離することができなかった。
【0134】
(実施例4)
電解めっきによって坩堝内面のめっき高さが異なるコーティング層5を形成したサファイア単結晶育成用坩堝1を作製してアルミナを溶融させ、冷却後サファイアの取り出しを試みた。具体的な手順は以下の通りである。
【0135】
まず、母材3として、直径80mm、厚さ2mm、深さ80mm、純度99.9質量%のモリブデン坩堝を用意し、溶融塩として実施例1と同様のKF − B
2O
3 − WO
3溶融塩の混合塩を用意した。
【0136】
次に、混合塩をAr雰囲気下で加熱して溶解したのちに、タングステン電極を対極として3A/dm
2の電流密度で溶融塩の温度を550℃としてタングステンめっきを施した。
【0137】
この際、坩堝内面の上端部3cへの被覆有無によるサファイア剥離性を調査するため、坩堝と塩の接触形態によって坩堝内面の上端部3cへの被覆有無を制御した。具体的には,めっき前の溶融塩液面高さ(
図3のH2に対応)を50、60、70mm(坩堝内面のみ塩と接触)と80mm(坩堝全体を塩に浸漬)して,めっきを行なった。溶融したアルミナの液面高さは全て40mmとなるよう投入した。
結果を表4に示す。
【0138】
【表4】
【0139】
なお、溶融塩液面高さ80mm(表4の試験No.16)の場合,内面だけでなく外面や内面の上端部3cにもコーティング層5が被覆された。
【0140】
これは、坩堝全体を塩に浸漬することなく上端部3cにめっきを施すべく溶融塩液面の調整を種々繰り返したが,液面調整だけでは上端部3cへのめっきは困難であり、坩堝全体を浸漬したときのみ上端部3cにめっきができたためである。
【0141】
この際、試験No.16の上端部3cは内外面に比べて,めっき膜厚が大きくなった。しかしながら、サファイアと接する内面は,膜厚が小さくなり、さらに表面粗さが大きくなった。また、内面の表面粗さRa16.2μm以下が得られなかった。
【0142】
これは、上端部3cは内外面と比べて電界強度が高くなり局所的に電流密度も高くなったため、上端部3cにめっきが集中して厚くなり、本来めっきをしたい内面のめっきに悪影響を及ぼして、薄く表面が粗い膜が形成されためと考えられる。また、試験No.16はサファイア剥離性も不良であった。そのほかの坩堝(表4の試験No.13〜15)はめっきの密着性が良好でサファイア剥離性も良好であった。
【0143】
(実施例5)
実施例2において、母材3としてMoと酸化物換算で1.0質量%のランタンと不可避不純物からなり、圧延によって断続的に酸化物を加工組織に沿って分散させた板材を準備した。この板材を坩堝形状に成形してコーティング層5を形成した。溶融塩の組成、温度、電流密度、めっき時間等の処理条件は、実施例2と同様である。
【0144】
得られた坩堝のコーティング層5付近の断面のSEM写真を模した図を
図9に示す。
【0145】
図9に示すように、母材3がランタンを含む場合であっても緻密で良好なW層を、母材3にめっきできた。
【0146】
次に、得られた坩堝のコーティング層5および母材3をEPMAにより分析した。
結果を
図10〜
図13に示す。
【0147】
図10〜
図13から明らかなように、得られた坩堝は、母材3中のランタン酸化物を保持したまま、表面に高純度のWをめっきできている(コーティング層5が形成されている)ことが分かった。
【0148】
次に、コーティング層5を形成した坩堝を用いてサファイア単結晶の成長を試みた。また比較のため、ランタン酸化物を添加した母材3のみで構成された坩堝(すなわちコーティング層5を有さない坩堝)もコーティング層5以外は同じ条件で作製し、サファイア単結晶の成長を試みた。
【0149】
その結果、ランタン酸化物を添加した母材3のみで構成された坩堝では、ドープしたLa
2O
3がサファイアと反応してランタン、アルミの複合酸化物を形成したため、サファイアが坩堝との接触部分で単結晶化しない(変色を生じる)という問題があった。
【0150】
一方で、コーティング層5を形成した坩堝にはこのような問題が生じず、サファイアの品質に問題のない育成を行うことができた。すなわちコーティング層5を形成した坩堝ではモリブデンに添加したランタン酸化物とサファイアとが反応することなく、サファイアを溶融することができ、また、坩堝とサファイアの密着が起こらず、坩堝の再利用が可能であった。
この結果から以下の点がわかった。
【0151】
従来の技術ではモリブデンに酸化物を添加した酸化物分散型(Oxide Dispersion Strengthened:ODS)合金は、サファイアとモリブデンに添加した酸化物が反応するためにサファイアの結晶完全性などの品質を低下させたり、反応によってモリブデン坩堝が壊れたりといった不具合があった。しかしながら、本発明のコーティング層5は上述してきたように、アルミナと母材3中のモリブデンとの相互作用を抑制すると同時に、アルミナと母材3中の添加酸化物との反応をも抑制するため、ODS合金を用いたモリブデン坩堝にコーティング層5を形成することにより、当該坩堝をサファイア単結晶育成用の坩堝に適用できることが分かった。