(58)【調査した分野】(Int.Cl.,DB名)
前記対象物の前記ガンマ線スペクトルが前記第1のクラスに属しているかどうかを判定する前記ステップは、前記第1のクラスに属している前記基準ガンマ線スペクトルの注目する領域内で実行される請求項1に記載の方法。
前記対象物の前記ガンマ線スペクトルが前記第1のクラスに属していると判定される場合、前記計算された距離に基づいて前記対象物における注目する前記1つまたは複数の放射線核種発生源の強度を推定するステップをさらに含む請求項4から8のいずれか一項に記載の方法。
前記対象物の前記ガンマ線スペクトルを前処理してから前記対象物の前記ガンマ線スペクトルが前記第1のクラスに属しているかどうかを判定するステップをさらに含み、前記前処理は、
a.強度正規化、
b.スペクトル標準化
のうちの1つまたは複数を含む請求項1から9のいずれか一項に記載の方法。
前記生成するステップは、前記対象物の前記ガンマ線スペクトルが前記第1のクラスに属していると判定された場合に前記出力信号を生成するステップを含む請求項1から11のいずれか一項に記載の方法。
それぞれのクラス内の前記基準ガンマ線スペクトルは、注目するただ1つの固有の放射線核種発生源の基準ガンマ線スペクトルである請求項1から12および請求項15から17のいずれか一項に記載の方法。
コンピュータ装置に対象物から取得されたガンマ線スペクトルを処理する方法を実行させるように前記コンピュータ装置によって実行可能なコンピュータプログラムコードであって、前記コンピュータプログラムコードは、
a.前記対象物の前記ガンマ線スペクトルが、複数のクラスのうちの第1のクラスまたは第2のクラスに属すかどうかを、注目する1つまたは複数の放射性核種発生源に関連する最適な負荷係数を使用して判定するためのコードであって、前記第1のクラスおよび第2のクラスが注目する前記1つまたは複数の放射性核種発生源の基準ガンマ線スペクトルを含み、前記最適な負荷係数がフィッシャー線形判別分析を使用して求められる、コードと、
b.前記判定の結果に応じて出力信号を生成するためのコードと
を含むコンピュータプログラムコード。
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明の目的は、既存の配置構成の1つまたは複数の不利点を実質的に克服するか、または少なくとも改善することである。
【課題を解決するための手段】
【0008】
本発明の第1の態様によれば、対象物から取得されたガンマ線スペクトルを処理する方法が提供され、この方法は、対象物のガンマ線スペクトルが、複数のクラスのうちの第1のクラスに属すかどうかを、注目する1つまたは複数の放射性核種発生源に関連する最適な負荷係数を使用して判定するステップであって、第1のクラスが注目する1つまたは複数の放射性核種発生源の基準ガンマ線スペクトルを含み、最適な負荷係数がフィッシャー線形判別分析を使用して求められる、ステップと、この判定の結果に応じて出力信号を生成するステップとを含む。この文脈において、「クラス」は、注目する1つまたは複数の放射性核種発生源のガンマ線スペクトルであることなどの、一般的特性を持つガンマ線スペクトルの組を指す。「注目する発生源」は、本明細書では「バックグラウンド(background:バックグラウンド放射線)」と称される「ヌル(null)」発生源を含む。「基準」ガンマ線スペクトルは、すでに取得されているスペクトルの組、つまり「ライブラリ」に属すガンマ線スペクトルである。クラスは、対象物から取得されているガンマ線スペクトルなどの、他のガンマ線スペクトルとともに基準ガンマ線スペクトルを含むことができる。この文脈において、「複数の」クラスは、2つまたはそれ以上のクラス、例えば、2、3、4、...を指すものとする。
【0009】
下記のオプションは、第1の態様と併せて、個別に、または任意の適当な組合せで使用されうる。
【0010】
最適な負荷係数は、フィッシャー線形判別分析を使用して求めることができ、この分析はそれぞれのクラス内の基準ガンマ線スペクトルについてクラス間散乱行列およびクラス内散乱行列を計算するステップと、クラス間散乱行列およびクラス内散乱行列の最大の一般化固有値に対応する一般化固有ベクトルから最適な負荷係数を計算するステップとを含む。
【0011】
あるいは、最適な負荷係数は、フィッシャー線形判別分析を使用して求めることができ、この分析は学習データライブラリからの基準ガンマ線スペクトルを少なくとも2つのクラスに割り当て、その際に注目する1つまたは複数の放射線核種発生源に対応する基準ガンマ線スペクトルを第1のクラスに割り当てるステップと、それぞれのクラス内の基準ガンマ線スペクトルについてクラス間散乱行列およびクラス内散乱行列を計算するステップと、クラス間散乱行列およびクラス内散乱行列の最大の一般化固有値に対応する一般化固有ベクトルから最適な負荷係数を計算するステップとを含む。
【0012】
対象物のガンマ線スペクトルが第1のクラスに属しているかどうかを判定するステップは、第1のクラスに属しているガンマ線スペクトルの注目する領域内で実行されうる。
【0013】
対象物のガンマ線スペクトルが第1のクラスに属しているかどうかを判定するステップは、最適な負荷係数によって射影される対象物のガンマ線スペクトルと最適な負荷係数によって射影されるさらなる放射性核種発生源のさらなるガンマ線スペクトルを含む第2のクラスとの間の距離を計算するステップと、計算された距離を使用して対象物のガンマ線スペクトルが第1のクラスに属しているかどうかを判定するステップとを含みうる。
【0014】
この判定するステップは、計算された距離がしきい値距離を超えるかどうかを判定するステップを含みうる。
【0015】
計算された距離は、マハラノビス距離とすることができる。計算された距離は、ユークリッド距離とすることができる。
【0016】
第1の態様による方法は、第2のクラス内の平均総カウントを判定するステップと、平均総カウントとのべき法則関係を使用して第2のクラスの標準偏差を推定するステップと、しきい値距離を第2のクラスの所定の数の標準偏差として判定するステップとを使用して、しきい値距離を判定するステップをさらに含むことができる。
【0017】
第1の態様による方法は、対象物のガンマ線スペクトルが第1のクラスに属していると判定される場合、計算された距離に基づいて対象物内の注目する1つまたは複数の放射性核種発生源の強度を推定するステップをさらに含むことができる。
【0018】
第1の態様による方法は、対象物のガンマ線スペクトルを前処理してから対象物のガンマ線スペクトルが第1のクラスに属しているかどうかを判定するステップをさらに含むことができる。前処理は、強度正規化、およびスペクトル標準化のうちの1つまたは複数を含みうる。
【0019】
第1の態様による方法は、それぞれのクラス内の基準ガンマ線スペクトルを前処理してから散乱行列を計算するステップをさらに含みうる。前処理は、強度正規化、およびスペクトル標準化のうちの1つまたは複数を含みうる。
【0020】
生成するステップは、対象物のガンマ線スペクトルが第1のクラスに属していると判定される場合に出力信号を生成するステップを含むことができる。
【0021】
第1のクラス内の基準ガンマ線スペクトルは、注目するただ1つの放射線核種発生源の基準スペクトルであってよい。第2のクラス内の基準ガンマ線スペクトルは、注目する1つの放射線核種発生源とは別の注目する放射線核種発生源のみの基準スペクトルであってよい。
【0022】
この方法は、注目する放射線核種発生源の組のうちのそれぞれについて判定するステップと生成するステップとを繰り返すステップをさらに含むことができる。
【0023】
これらのクラスは、ユーザーによって定義されうる。1つのユーザー定義クラスは、少なくとも1つの人工ガンマ線スペクトルを含みうる。
【0024】
クラスの数は、2より大きいものとしてよい。それぞれのクラス内の基準ガンマ線スペクトルは、注目するただ1つの固有の放射線核種発生源の基準スペクトルであってよい。
【0025】
第1の態様による方法は、生成した出力信号に応答してアラームを作動させるステップをさらに含みうる。
【0026】
第1の態様による方法は、対象物が検出ゾーンを通過するときに対象物のガンマ線スペクトルを取得するステップをさらに含みうる。取得するステップは、検出ゾーン内で対象物が停止することなく実行されうる。対象物のガンマ線スペクトルは、約10秒未満で取得されうる。これは、携帯型ガンマ線検出器を使って取得されうる。
【0027】
一実施形態において、対象物から取得されたガンマ線スペクトルを処理する方法が提供され、この方法は、フィッシャー線形判別分析を使用して注目する1つまたは複数の放射性核種発生源に関連する最適な負荷係数を求めるステップと、対象物のガンマ線スペクトルが、複数のクラスのうちの第1のクラスに属すかどうかを、最適な負荷係数を使用して判定するステップであって、第1のクラスが注目する1つまたは複数の放射性核種発生源の基準ガンマ線スペクトルを含む、ステップと、この判定の結果に応じて出力信号を生成するステップとを含む。この実施形態では、求めるステップは、それぞれのクラス内の基準ガンマ線スペクトルについてクラス間散乱行列およびクラス内散乱行列を計算するステップと、クラス間散乱行列およびクラス内散乱行列の最大の一般化固有値に対応する一般化固有ベクトルから最適な負荷係数を計算するステップとを含むことができ、対象物のガンマ線スペクトルが第1のクラスに属しているかどうかを判定するステップは、最適な負荷係数によって射影される対象物のガンマ線スペクトルと最適な負荷係数によって射影されるさらなる放射性核種発生源のさらなるガンマ線スペクトルを含む第2のクラスとの間の距離を計算するステップと、計算された距離を使用して対象物のガンマ線スペクトルが第1のクラスに属しているかどうかを判定するステップとを含み、この判定するステップは、計算された距離がしきい値距離を超えるかどうかを判定するステップを含み、このしきい値距離は、第2のクラス内の平均総カウントを判定するステップと、平均総カウントとのべき法則関係を使用して第2のクラスの標準偏差を推定するステップと、しきい値距離を第2のクラスの所定の数の標準偏差として判定するステップとによって判定される。
【0028】
本発明の第2の態様によれば、装置が実現され、この装置は対象物からガンマ線信号を取得するように構成されたガンマ線検出器と、取得されたガンマ線信号をエネルギービンに分割し、それによりガンマ線スペクトルを生成するように構成された多チャンネル分析装置と、生成したガンマ線スペクトルを格納するように構成されたメモリと、対象物のガンマ線スペクトルを処理する方法をプロセッサに実行させるコンピュータプログラムコードを実行するように構成されたプロセッサとを備え、コンピュータコードは、対象物のガンマ線スペクトルが、複数のクラスのうちの第1のクラスに属すかどうかを、注目する1つまたは複数の放射性核種発生源に関連する最適な負荷係数を使用して判定するためのコードであって、第1のクラスが注目する1つまたは複数の放射性核種発生源の基準ガンマ線スペクトルを含み、最適な負荷係数がフィッシャー線形判別分析を使用して求められる、コードと、この判定の結果に応じて出力信号を生成するためのコードとを含む。
【0029】
装置は、第1の態様の方法を実行するのに適しているか、または実行するように適合されうる。第1の態様の方法は、第2の態様の装置を使用して実施されうる。
【0030】
本発明の第3の態様によれば、コンピュータ装置に対象物から取得されたガンマ線スペクトルを処理する方法を実行させるようにコンピュータ装置によって実行可能なコンピュータプログラムコードが提供され、前記コードは、対象物のガンマ線スペクトルが、複数のクラスのうちの第1のクラスに属すかどうかを、注目する1つまたは複数の放射性核種発生源に関連する最適な負荷係数を使用して判定するためのコードであって、第1のクラスが注目する1つまたは複数の放射性核種発生源の基準ガンマ線スペクトルを含み、最適な負荷係数がフィッシャー線形判別分析を使用して求められる、コードと、この判定の結果に応じて出力信号を生成するためのコードとを含む。
【0031】
コンピュータプログラムコードは、第1の態様の方法において使用するのに適しているものとしてよい。第2の態様の装置で使用するように適合されうる。
【0032】
本発明の第4の態様によれば、コンピュータプログラムが記録されているコンピュータ可読記憶媒体が提供され、プログラムはコンピュータ装置に対象物から取得されたガンマ線スペクトルを処理する方法を実行させるようにコンピュータ装置によって実行可能であり、前記コードは、対象物のガンマ線スペクトルが、複数のクラスのうちの第1のクラスに属すかどうかを、注目する1つまたは複数の放射性核種発生源に関連する最適な負荷係数を使用して判定するためのコードであって、第1のクラスが注目する1つまたは複数の放射性核種発生源の基準ガンマ線スペクトルを含み、最適な負荷係数がフィッシャー線形判別分析を使用して求められる、コードと、この判定の結果に応じて出力信号を生成するためのコードとを含む。
【0033】
コンピュータ可読記憶媒体は、第2の態様の装置のメモリであってよい。記録されているコンピュータプログラムは、第2の態様の装置のコンピュータコードであってよい。記録されているコンピュータプログラムは、第3の態様のコンピュータコードであってよい。
【0034】
次に、本発明の1つまたは複数の実施形態は、例としてのみ添付図面を参照しつつ説明される。
【発明を実施するための形態】
【0036】
本開示は、その全体の内容が参照により本明細書に組み込まれている、本発明の出願人による、以前のPCT出願第PCT/AU2010/001509号、名称「Anomaly detection of radiological signatures」に関する。
【0037】
放射性核種の検出および識別のための本開示のアプローチは、放射線核種発生源の基準ガンマ線スペクトルを取得し、対象物の取得されたガンマ線スペクトル(対象スペクトル)を基準スペクトルと比較するものである。対象スペクトルが、注目する放射線核種発生源の基準ガンマ線スペクトルを含む第1のクラスに属していると判定された場合、対象物は注目する放射線核種発生源を含むものとしてみなされる。開示されているアプローチでは、フィッシャー線形判別分析(FLDA)を使用して、対象スペクトルが注目する放射性核種発生源の基準ガンマ線スペクトルを含む第1のクラスに属するかどうかを判定する。さらに、これにより、例えば対象物がチェックポイントを通過しているときに、この判定を高速に実行することが可能になる。これにより、対象物が受け入れ可能なものであるかどうか、例えば、チェックポイントを通過することを許可すべきかどうかをすばやく判定することができる。主成分分析(PCA)を採用するアプローチでは、データの最高の分散に関して順序付けられた負荷係数を生成する。第1の少数の負荷係数でデータにおける分散の大部分を説明することができるけれども、これらは、クラス間の最適化された分離距離を表すことはできない。FLDA技術の利点は、クラス間の分離距離を最大化する、最適化された負荷係数を判定することを可能にする点にある。
【0038】
開示されているアプローチの一特徴は、それぞれの対象スペクトルが分類性能を改善するためにスペクトルを操作する機能によって前処理されうることである。これらの機能は、限定はしないが、強度正規化およびスペクトル標準化を含むことができる。
【0039】
開示されているアプローチは、ガンマ線スペクトルを取得するために使用されるデバイスを較正するステップを含むことができる。時間の経過とともに、スペクトルの光電ピークがドリフトすることがあり、較正により、光電ピークの正しいエネルギー値を復元する。較正は、対象ガンマ線スペクトルに、および/または基準ガンマ線スペクトルに適用されうる。対象ガンマ線スペクトルまたは基準ガンマ線スペクトルまたはその両方の較正は、ガンマ線スペクトルを取得するために使用されるデバイスを標準化することを目的としているものとしてよい。較正は、定期的、例えば、スペクトルが取得される毎に、またはスペクトル5個おきに、または10、15、15、20、25、30、35、40、45、または50個おきに実施されうる。あるいは、較正は、規則正しい時間間隔で、例えば、1時間おきに、または2、3、4、5、6、12、24、または48時間おきに実施されうる。
【0040】
ガンマ線スペクトルは、ガンマ線検出器によって取得されうる。これは、例えば、タリウム活性化ヨウ化ナトリウム(NaI(Tl))ベースのガンマ線検出器とすることができる。ガンマ線検出器は、代替的に、高純度ゲルマニウム(HPGe)、テルル化カドミウム(CdTe)、テルル化カドミウム亜鉛(CZT)、および臭化ランタン(LaBr)などの他の物質をベースとしてもよい。NaI(Tl)ベースの検出器は、国境監視用途でタリウム活性化ヨウ化ナトリウムベースの分光法放射線ポータルモニター(RPM)内に使用することができる。NaI(Tl)ベースの検出器は、開示されている放射線核種検出システムのハンドヘルド構成、バックパック構成、または他の何らかの携帯型構成で使用されうる。未処理の取得されたガンマ線信号(対象物または基準サンプルのいずれかの)は、信号増幅器に送られ、そこで信号が増幅されうる。(増幅された)ガンマ線信号(対象物または基準サンプルのいずれかの)は多チャンネル分析装置に送られ、そこで信号が多数のビン(またはエネルギー範囲)に分割されうる。ビンの値は、スペクトルと総称される。ビンは、カウント(計数)がそれに起因する、ガンマ線スペクトルのエネルギー区間の最小増分を表す。典型的には、多チャンネル分析装置は、約1024個のデータビンに値を生成するけれども、分析装置に応じてこの数より多い場合も少ない場合もあり、例えば、128から16384ビンまでの範囲、128から512ビンまでの範囲、512から2048ビンまでの範囲、2048から8192ビンまでの範囲、8192から16384ビンまでの範囲、512から4096ビンまでの範囲、256から8192ビンまでの範囲とすることができる。ビンの数は、有利には2の整数べき乗(integral power of two)に等しい。典型的には、ビンは、40keVから3000keVまでの範囲内のエネルギー値を対象とするが、これらの端点(endpoint)は、分析装置に応じてより多いか、またはより少ない場合があり、例えば、それぞれ30keVおよび2700keVであり得る。この範囲は、30keVから2700keVまで、35keVから2700keVまで、40keVから2700keVまで、30keVから3000keVまで、35keVから3000keVまで、40keVから3000keVまで、30keVから4000keVまで、35keVから4000keVまで、および40keVから4000keVまでのうちの1つとしてよい。
【0041】
スペクトル内の値の数は減らすことができる、つまり、スペクトルはリビニングされる(rebinned)ことができる。リビニング(rebinning)は、計算速度を改善することができる。一般に、取得されたスペクトルにおける、それぞれの区間、またはビンは、同一の幅を有する。スペクトルをリビニングするステップは、それぞれのエネルギービンの幅を均一に増やし、それによって、全エネルギー範囲にわたってビンの総数を減らし、新規に定義されたビン内のカウントの数を増やすことを伴いうる。しかし、リビニングは、一次関数に必ずしも限定されない。リビニングされたスペクトルは、例えば、エネルギーの二乗、またはエネルギーの他の何らかの適当な関数に比例しうる、不均一なビン幅を含みうる。より高いエネルギーにおけるエネルギービンは、より高いエネルギービンが十分なカウントを有することを確実にするため、より低いエネルギービンより大きいものとしてよい。リビニングされたスペクトルは、ユーザー定義ビン幅も含むことができ、これはエネルギー範囲上で変化しうる。リビニングされたスペクトルのエネルギービンの数は、それぞれのスペクトル内の変数の数である。スペクトル内の変数の数が多いほど、処理方法の計算時間が長くなる。スペクトルは、異なる関数に従ってリビニングされうる。これは、異なる検出器(同じタイプの、例えば、NaIベースの)からのスペクトルを組み合わせることを可能にしうる。基準スペクトルおよび対象スペクトルのリビニングは、すべてのスペクトルが同じエネルギービンを使用するようなリビニングであるものとしてよい。
【0042】
上述のように、(リビニングされた)対象スペクトルは、前処理されうる。前処理は、強度正規化およびスペクトル標準化のうちのいずれか、または両方を伴いうる。
【0043】
強度正規化では、対象スペクトルは、最高のカウント数を持つエネルギービン内の値によって正規化される。強度正規化は、例えば国境監視用途において国境通関手続き地で生じうる広い範囲の検出器取得時間の影響、および国境監視用途においてRPMの検出ゾーンを通過する対象物の通過速度の変化の影響を取り除く。
【0044】
スペクトル標準化では、対象スペクトルは、すべてのエネルギービンにわたって平均0、分散1となるように変換されスケーリングされる。
【0045】
学習データライブラリは、注目すべき放射線核種発生源の知られているサンプルから取得された基準ガンマ線スペクトルを含む。これらの発生源は、自然界に存在する放射性物質(NORM)、または良性(許容可能)であると知られているか、もしくは脅威となる(許容不可能な)人工放射線核種であってよい。基準スペクトルは、このような放射線核種、遮蔽されるか、またはマスクされた放射線核種、および脅威となるこれらの組合せの混合物も含みうる。
【0046】
学習データライブラリ内の基準ガンマ線スペクトルは、対象スペクトルと同様にして前処理されている場合がある。これは、対象スペクトルとの、より重要な比較をもたらしうる。
【0047】
開示されているアプローチは、対象物が特定の放射線核種を含んでいるかどうかを比較的高速に判定することを可能にする。国境監視用途では、対象物は、人、トラックもしくは乗用車もしくは客車、または他の何らかの車両もしくはその一部であるか、またはそれによって運搬されうる。したがって、開示されている方法で、対象物が特定の放射線核種を含むと判定された場合、出力信号が生成されることができる。その放射線核種が異常である(問題となる)場合、アラームが作動しうる。いくつかの場合において、対象物が特定の放射線核種を含まないことを示す出力信号を、この方法でそう判定される場合に生成することが有用なこともある。いくつかの場合において、生成される出力は、放射線核種の一群のうちのどれが対象物中に存在するのかを指示しうる。注目する特定の放射線核種の存在に応じて、好適なアラーム、例えば、警報音(例えば、ホーン、サイレン、または同様の音)、視覚警報(例えば、光、適宜点滅光)、対象物の通過を防ぐための防壁の作動(例えば、ブームゲートを下げる、ロードスパイクを隆起させる、ゲートを閉じる)、対象物の運転者への指図の作動(例えば、STOP標識の点灯、前記運転者への音による指図の作動)、または他の何らかのタイプのアラームを作動させることができる。生成される信号は、信号を認識し応答することを目的として別のシステムに供給されうる論理状態であってもよい。これらのタイプのアラームのうちの複数を作動させることができる。これらは同時に作動させることができる。これらは非同時的に作動させることができる。これらは順次作動させることができる。これにより、開示されている装置は、警報音デバイス、視覚警報デバイス、および作動可能なバリアなどの物理的アラームデバイスのうちの1つまたは複数を備えることができる。開示されている方法は、それに応じて、対象物が異常な放射線核種として識別されたときに作動可能なバリアを作動させるステップを含むことができる。
【0048】
代替的動作モードは、対象物が異常放射性核種を含まないときのみ(つまり、正常なまたは許容可能な放射性核種のみに対して)信号を生成することである。この場合、信号に応答して作動可能なバリアを取り外すか、または引っ込めて、異常な物質を運んでいない車両を通すことができる。
【0049】
図1は、本発明の実施形態が実施されうる装置1のブロック図である。検出器10は、対象物、例えば、検出ゾーン30を通過している車両20からガンマ線スペクトルを取得するように配備された、分光法ポータル検出器、例えばNaI(Tl)ベースの検出器である。装置1は、基準スペクトルを取得するための基準検出器40を備えることもできるが、これは、いくつかの実施形態では、省くこともできる。このような実施形態では、主検出器(検出器10)は、基準スペクトルと対象スペクトルの両方を取得することができる。例えば、「バックグラウンド」の基準スペクトルは、検出ゾーン30内に対象物がない場合に取得されうる。基準検出器40が使用される場合、これはポータル検出器10から離れた場所にあってもよい。基準検出器40は、もし存在すれば、検出ゾーン30から遮蔽されうる。
【0050】
増幅器50は、検出器10からのデータを増幅するために、検出器10に結合されると共に、もし存在すれば基準検出器40に結合される。増幅器50は、次いで、増幅器50からの増幅データの初期ビニングを行うために、多チャンネル分析装置60に結合される。多チャンネル分析装置60は、分析装置60からのスペクトルがメモリ70内に格納されうるように、コンピュータシステム80のメモリに結合される。メモリ70は、更に、基準スペクトルの学習データライブラリを含んでいる。メモリ70は、メモリ70内に格納されているデータを処理して対象物に所定の放射性核種発生源が含まれるかどうかを判定するために、コンピュータシステム80の一部でもある、プロセッサ90に結合される。出力信号100は、対象物20が1つまたは複数の異常な放射性核種を含むと判定される場合に生成される。出力信号100は、出力信号100を認識し、アラームを作動させるなどの適切な処置を講じるように構成された別のシステム(図示せず)に付与される論理状態である。アラームは、視覚的出力(例えば、光、適宜点滅光、またはSTOP標識の点灯)、可聴音出力(例えば、運転者へのホーン、サイレンもしくは類似の音、または口頭による指図)のうちの1つまたは複数の形態を同時にまたは順次にとることができる。
【0051】
図1aは、本発明の実施形態が実施されうる代替的装置1aのブロック図である。装置1aは、
図1の装置1に類似しているが、対象物が1つまたは複数の異常な放射性核種を含むと判定された場合に車両20の通過を防ぐことができる作動可能なバリア110を加えたものである。作動可能なバリア110は、通常開放状態(つまり、車両20の通過を許可する状態)であり、バリア110を作動させてバリア110を閉じると、車両20の通過が妨げられるか、または防がれる。装置1aでは、出力信号100は、車両20が検出ゾーン30を通過するのを防ぐようにバリア110を作動させる。バリア110の作動は、以下の、ブームゲートを下げる、ロードスパイクを隆起させる、ゲートを閉じるのうちの1つまたは複数の形態をとることが可能である。
【0052】
動作時に、車両20は検出ゾーン30を通過する。これは、典型的には、車両20が前進運動を停止することを伴わず、一般的に、約5から約80秒を要する。検出器10は、この期間に車両20からガンマ線光子を取得し、信号を増幅する増幅器50に渡される、結果信号を生成する。次いで、増幅された信号は、増幅された対象信号の初期ビニングを実行し、ビニングされた対象スペクトルをメモリ70に送って格納する多チャンネル分析装置60に渡される。検出器10は、学習データライブラリを作成する際に使用する基準スペクトルを取得するためにも使用されうる。いかなる場合も、基準スペクトルは、対象スペクトルについて上で説明されているように、前処理され、メモリ70に格納される。
【0053】
メモリ70に格納されている前処理されたスペクトルは、以下で説明されているように、プロセッサ90によって処理され、これにより決定基準を得る。次いで、プロセッサ90は、この決定基準から、対象物が異常な放射性核種を含むかどうかを判定し、そうであれば、出力信号100を生成する。次いで、出力信号100に応答して適切な処置を講じることができ、例えば、車両20の通過を防ぐために、車両20がさらなる調査のため迂回されるか、アラームが作動されるか、または、
図1aの装置1aにおいて、作動可能なバリア110が作動されることができる。
【0054】
上で述べたように、装置1または1aの代替的動作モードは、対象物が異常な放射性核種を含んでいないと判定されたときのみ出力信号100を生成するというものである。この動作モードでは、作動可能なバリア110は、通常閉鎖状態(つまり、車両20の通過を防ぐか、または妨げる状態)となり、バリア110を作動させてバリアを開くと、車両20の通過が許可されるか、または通過しやすくなる。バリア110は、出力信号100に応答して作動し、これにより、異常な放射性核種を乗せていない車両20が通過するのを許可する。そこで、装置1aの動作は、バリア110への出力信号100を生成するステップを含むことができ、このバリア110は車両20が異常な放射性核種を含むと識別されたときに車両20の通過を防ぐか、または妨げ、車両20が異常な放射性核種を含まないと識別されたときに車両20の通過を許可する。
【0055】
装置1は、カメラまたは類似の写真記録デバイス(図示せず)を備えることもできる。このようなデバイスは、検出ゾーンを通過するすべての車両の画像を記録するため、または異常な放射性核種発生源が検出されたときのみ検出ゾーンを通過する車両の画像を記録するために使用されうる。カメラは、検出ゾーンを通過するすべての車両の画像をオペレータに送信するため、または異常な発生源が検出されたときのみ検出ゾーンを通過する車両の画像を前記オペレータに送信するために使用されうる。この場合、カメラからの信号は、オペレータに画像を表示するためにビデオディスプレイに送信されうる。開示されている方法は、検出ゾーンを通過するそれぞれの車両について、または異常な発生源として、もしくは異常な発生源を含むものとして識別された検出ゾーンを通過するそれぞれの車両について車両もしくは一部(例えば、そのナンバープレート)の画像を、検出し、記録し、および/または送信するステップを含みうる。
【0056】
対象ガンマ線スペクトルを取得する際に、車両20は検出ゾーン30を通過し、その上で検出器10がガンマ線スペクトルを取得することができる。車両20は、検出ゾーン30を、約1から約12km/h、または約1から8、1から5、5から10、1から3、3から5、または2から4km/h、例えば、約1、1.5、2、2.5、3、3.5、4、4.5、5、6、7、8、9、10、11、または12km/hの平均速度で通過しうる。車両20が検出ゾーン30を通過する時間は、約5から約80秒、または約5から50、5から20、5から15、10から80、50から80、20から50、または5、5から15、15から20、5から10、10から15、または7から12秒、例えば、約5、6、7、8、9、10、11、12、13、14、15、20、25、30、35、40、45、50、55、60、65、70、75、または80秒とすることができる。検出ゾーンは、約5から約25メートルの長さ、または約5から20、5から15、5から10、10から25、15から25、または10から10メートル、例えば、約5、10、15、20、または25メートルとすることができる。車両20は、トラックまたは乗用車または客車または他の何らかの車両もしくはその一部とすることができる。
【0057】
コンピューティングシステム80のプロセッサ90によって実行される処理方法は、フィッシャー線形判別分析(FLDA)を使用する。N個の観測値の組(x
1,x
2,...x
N)について、それぞれの観測値は長さnのベクトルであり、それぞれの観測値が2つのクラスc
0およびc
1のうちの一方に属している2クラス問題については、FLDAが下記のように定式化される。
【0058】
2つのクラスの平均は、μ
0およびμ
1とラベル付けされ、クラス共分散はΣ
0およびΣ
1とラベル付けされる。クラス内散乱行列S
Wは
【0062】
と定義され、式中、N
iは、クラスc
i内の観測値の数であり、μは、N個の観測値すべての平均である。
【0063】
「負荷係数」のn×1の射影ベクトルwを使用するそれぞれの観測値xの射影は、2つのクラスの平均をスカラーw
Tμ
0およびw
Tμ
1に変換する。クラス内散乱行列S
Wおよびクラス間散乱行列S
Bは、それぞれ、スカラーw
TS
Wwおよびw
TS
Bwに変換される。
【0064】
射影ベクトルwの関数としての2つの射影されたクラス間の「分離距離」Jは、射影されたクラス間散乱行列と射影されたクラス内散乱行列との間の比として、下記のように定義される。
【0066】
FLDAによれば、「最適な」射影ベクトルw
optは、2つの射影されたクラス間の分離距離Jを最大化する射影ベクトルである。最適な射影ベクトルw
optは、S
BおよびS
Wの最大の(非無限大の)一般化固有値λに対応するS
BおよびS
Wの一般化固有ベクトルであることが示されうる。S
Wが非特異であるとすれば、これは、
【0068】
の最大の(非無限大の)固有値λに対応する
【0070】
の固有ベクトルを見つけることと同等であり、下記式のようになる。
【0072】
一実装では、注目している放射性核種発生源は、
241Am、
133Ba、
57Co、
60Co、
137Cs、高濃縮ウラン(HEU)、
237Np、兵器級プルトニウム(WGPu)、
232Th、
40K、
226Ra、および劣化ウラン(DU)、および「バックグラウンド」である。他の実装は、注目するさらに多くの発生源を含むか、または注目するさらに少ない発生源を含みうる。注目するそれぞれの発生源は、良性であるか、または異常であるかのいずれかであることが知られている。学習データライブラリは、注目する発生源のそれぞれの複数の基準スペクトルを含む。基準スペクトルは、ガンマ線検出器によって取得される。それぞれの基準スペクトルは、上で説明されているように学習データライブラリ内に格納される前に前処理される。
【0073】
一実装では、学習データライブラリ内に表される注目する発生源の組のそれぞれは、次いで現在の発生源とみなされる。学習データライブラリ内の基準スペクトルは、現在の発生源に対応する基準スペクトルが第1のクラス(クラス0)に割り当てられ、他の発生源に対応する基準スペクトルが第2のクラス(クラス1)に割り当てられるように、2つのクラスの間に割り当てられる。それぞれのクラスの平均μ
iおよび共分散Σ
iは、クラス内散乱行列およびクラス間散乱行列として判定される。次いで式4を使用して、2つの射影されたクラス間の分離距離Jを最大化する最適な射影ベクトルw
optを判定する。次いで、判定された最適な射影ベクトルw
optは、現在の発生源と関連して格納される。
【0074】
対象スペクトルがクラス0(注目する現在の発生源である)またはクラス1(注目する現在の発生源ではない)に属すかどうかを判定するために、前処理された対象スペクトルxが注目する現在の発生源に関連付けられている最適な射影ベクトルw
optによって射影され、これにより射影された対象スペクトルw
Toptxが得られる。次いで、射影された対象スペクトルと射影されたクラス1との間の距離を計算する。距離がしきい値距離より大きい場合、対象スペクトルは、クラス0に属すと判定され、対象物は注目する現在の発生源のサンプルを含むとみなされる。そうでなければ、対象スペクトルは、クラス1に属すと判定される。
【0075】
注目するすべての発生源が考慮された後、対象物が注目する少なくとも1つの異常な発生源を含むとみなされたかどうかに応じて出力信号100が生成される。
【0076】
図2aは、本発明の一実施形態による基準スペクトルの学習データライブラリを処理する方法200を例示する流れ図である。一実装では、以下で説明されているように、方法200は、取得された対象スペクトルを処理する前に一度だけ実行され、メモリ70と呼応してコンピューティングシステム80のプロセッサ90によって実行の際に制御される。
【0077】
方法200は、ステップ210から開始し、プロセッサ90は、上で説明されているように、440個のビンにリビニングされた、学習データライブラリ内のそれぞれの基準スペクトルを前処理する。続くステップ215で、プロセッサ90は、現在の発生源としてまだ選択されていなかった注目する発生源の組から発生源を選択する。現在の発生源に対応する基準スペクトルのみを含むクラス(クラス0)と他のすべての発生源に対応する基準スペクトルを含むクラス(クラス1)の2つのクラスが理論上構成される。続くステップ220で、プロセッサ90は、それぞれのクラスの平均μ
iおよび共分散Σ
i、クラス内散乱行列S
W、ならびにクラス間散乱行列S
Bを計算する。ステップ225がその後に続き、プロセッサ90は、式4を使用して2つのクラスの間の分離距離を最大化する最適な射影ベクトル(本明細書では最適な負荷係数とも称される)w
optを判定する。次いで、方法200は、ステップ230に進み、プロセッサ90は、判定された最適な負荷係数w
opt、ならびにクラス1の平均μ
1およびΣ
1を、現在の発生源に関連して格納する。方法200は、ステップ235で続行し、プロセッサ90は、まだ選択されていない注目する発生源の組の中に任意の発生源があるかどうかを判定する。もしそうならば(「Y」)、方法200は、ステップ215に戻る。そうでなければ(「N」)、方法200は、ステップ240で終了する。
【0078】
方法200の変更形態において、プロセッサ90は、それぞれの基準スペクトルの全体に対してではなく、「注目する領域」として知られているそれぞれの基準スペクトルの一部分に対してステップ220および225の計算を実行する。一実装では、注目する領域は、現在の発生源のスペクトル内の第1ピークを囲むスペクトルのその部分である。例えば、662keVに第1ピークを持つ放射性核種の場合、注目する領域は620keVから700keVまでの範囲である。他の実装では、注目する領域は、それぞれのスペクトルの複数の互いに素なセクションを含む。変更形態におけるステップ230で、プロセッサ90は、現在の発生源に対する他のパラメータとともに注目する領域の端点を格納する。
【0079】
図2bは、本発明の実施形態による対象スペクトルを処理する方法250を例示する流れ図である。以下で説明されているように、方法250は、メモリ70と呼応してコンピューティングシステム80のプロセッサ90によってその実行の際に制御される。
【0080】
方法250は、ステップ260から開始し、プロセッサ90は、上で説明されているように、440個のビンにリビニングされた、対象スペクトルを前処理する。続くステップ265で、プロセッサ90は、現在の発生源としてまだ選択されていなかった注目する発生源の組から発生源を選択する。続くステップ270で、プロセッサ90は、方法200のステップ230で格納された、現在の発生源と関連する最適な負荷係数w
opt、ならびにクラス1の平均μ
1およびΣ
1をロードする。ステップ275がその後に続き、プロセッサ90は、最適な負荷係数w
optを使用して、対象スペクトルがクラス0(注目する現在の発生源である)に属しているのか、またはクラス1(注目する現在の発生源ではない)に属しているのかを判定する。対象スペクトルがクラス0に属していると判定された場合、対象物は現在の発生源のサンプルを含むとみなされる。
【0081】
ステップ275の一実装では、プロセッサ90が射影された対象スペクトルw
Toptxと射影されたクラス1との間のマハラノビス距離Dを、方法200のステップ230で現在の発生源に関連して格納されたクラス1の平均μ
1および共分散Σ
1を使用して計算する。
【0083】
次いで、対象スペクトルxは、マハラノビス距離Dが射影されたクラス1からのしきい値距離より大きい場合にクラス0に属すと判定される。
【0084】
ステップ275の代替的実装において、プロセッサ90は、射影された対象スペクトルw
Toptxと射影されたクラス1との間のユークリッド距離dを、クラス1の平均μ
1を使用して計算する。
【0086】
次いで、対象スペクトルxは、ユークリッド距離dが射影されたクラス1からのしきい値距離より大きい場合にクラス0に属すと判定される。
【0087】
ステップ275で使用されるしきい値距離は、学習データライブラリから、またはクラス1からの基準スペクトルの別の組から得られる。ステップ275の一実装では、しきい値距離は、クラス1内の平均総カウントとのべき法則の関係によって定義され、つまり、クラス1内のすべての基準スペクトルのすべてのビンにわたるすべてのカウントの総和の平均によって定義される。例えば、クラスの標準偏差yは、下記の式により平均総カウントgに関係付けられうる。
【0089】
式7では、Aは正の数であり、Bは0から1までの範囲内の数である。クラス0については、Bは典型的にはおおよそ0.5である。クラス1については、Bは典型的には0.4から0.9までの範囲内である。この実装では、しきい値距離は、クラス1の標準偏差の数値に、典型的には1から10、例えば5に設定される。ステップ275の別の実装では、しきい値距離は、ユーザー定義値である。
【0090】
方法250は、ステップ280で続行し、プロセッサ90は、まだ選択されていない注目する発生源の組の中に任意の発生源があるかどうかを判定する。もしそうならば(「Y」)、方法250は、ステップ265に戻る。そうでないならば(「N」)、プロセッサ90は、ステップ285で、上で説明されているように対象の判定された内容に応じて出力信号100を生成する。次いで、方法250は終了する。方法250は、「識別」方法として分類されうる。
【0091】
基準スペクトルを処理するために方法200の変更形態が使用された場合、方法250の補完的変更形態で、最適な負荷係数とともにステップ270で現在の発生源に関連付けられている注目する領域の端点および現在の発生源に関連付けられているパラメータをロードし、「注目する領域」内でステップ275の計算を実行する。
【0092】
注目する発生源のうちの1つが「バックグラウンド」であり、方法250を実行しても対象物が注目する発生源のどれかを含むことを示さない場合、この結果は対象物が学習データライブラリ内に現在入っていない放射性核種発生源を含むことを示すものとみなすことができる。
【0093】
代替的一実施形態では、FLDAの目的に関する2つのクラスがユーザーによって事前定義される。一例では、第1のクラスは、特殊核物質(核分裂性の放射性核種)に対応する基準スペクトルを含み、第2のクラスは、NORMに対応する基準スペクトルを含む。代替的実施形態により学習データライブラリを処理するために、ユーザー定義に従ってステップ215で2つのクラスが形成されることを除き、方法200が使用されうる。ステップ220、225、および230は、1回だけ実行され、ステップ235は、必要ない。代替的実施形態により対象スペクトルを処理するために、ステップ270および275が1回だけ実行され、ステップ265および280は不要であることを除き、方法250が使用されうる。例では、代替的実施形態の下での対象スペクトルの処理の結果は、対象スペクトルが特殊核物質またはNORMであるかどうかを示す信号になる。この代替的実施形態は、「分類」方法、または「異常検出」方法として分類されうる。
【0094】
代替的実施形態の第2の例は、第1のクラス(脅威に対応する)が少なくとも1つの「人工的」ガンマ線スペクトルを含むことを除き、第1の例に類似している。一実装における人工スペクトルは、加法性ガウス雑音成分を伴う定数値である。別の実装では、人工スペクトルは、加法性ガウス雑音成分を伴う準線形スペクトルである。第2のクラスは、NORMに対応する基準スペクトルを含む。第2の例は、対象物が異なる強度または遮蔽材料などのさまざまな条件の下での脅威を含むと結論するために脅威(または非NORM)スペクトルの事前の知識が不要であるという点で第1の例に勝る利点を有する。
【0095】
上で定式化されたようなフィッシャー線形判別分析は、2クラス問題から多クラス問題に容易に一般化できる。代替的発明のさらなる例において、それぞれのクラスは、固有の放射線核種に対応する基準スペクトルのみを含むように定義される。次いで、クラスの数は、学習データライブラリ内で表される放射線核種の数と同じだけあってよい。次いで、ステップ275は、対象スペクトルが属していると判定されるクラスの数を返す。
【0096】
対象物が注目する現在の発生源のサンプルを含むとみなされる場合、方法250のステップ275で計算された、射影されたクラス1から対象スペクトルまでの距離は、強度の小さな値に関してはほぼ線形であり、強度のより大きな値に関しては対数的に変化する傾向を有する対象物内の注目する現在の発生源の強度との関係を示す。したがって、クラス1からの対象スペクトルの計算された距離を方法250のオプションの処理ステップで使用して、対象物内の注目する現在の発生源の強度を推定することができる。式7を使用してクラス1内の平均総カウントから計算された標準偏差yを使用して、対象物内の注目する現在の発生源の推定される強度に対する誤差評価を行うことができる。
【0097】
図3aおよび
図3bは、全体として、
図2aおよび
図2bの処理方法200および250を実行するため、
図1の装置1または
図1aの装置1a内でコンピューティングシステム80として使用されうる汎用コンピュータシステム300の概略ブロック図である。
【0098】
図3aに示されているように、コンピュータシステム300は、コンピュータモジュール301、キーボード302、マウスポインタデバイス303、スキャナ326、カメラ327、およびマイクロホン380などの入力デバイス、ならびにプリンタ315、表示デバイス314、およびスピーカー317を含む出力デバイスによって形成される。外部変調器-復調器(モデム)トランシーバデバイス316は、接続321を介して通信ネットワーク320に、また通信ネットワーク320から通信するためコンピュータモジュール301によって使用されうる。ネットワーク320は、インターネットをまたはプライベートWANなどの、ワイドエリアネットワーク(WAN)とすることができる。接続321が電話回線の場合、モデム316は、従来の「ダイヤルアップ」モデムであり得る。あるいは、接続321が高容量(例えば、ケーブル)接続の場合、モデム316は、ブロードバンドモデムであり得る。ワイヤレスモデムが、ネットワーク320へのワイヤレス接続のために使用され得る。
【0099】
コンピュータモジュール301は、典型的には、少なくとも1つのプロセッサユニット305、および例えば半導体ランダムアクセスメモリ(RAM)と半導体読取り専用メモリ(ROM)とから形成されたメモリユニット306を備える。メモリユニット306は、コンピュータシステム80のメモリ70により識別され、プロセッサユニット305は、コンピュータシステム80のプロセッサ90により識別されうる。
【0100】
モジュール301は、ビデオディスプレイ314、スピーカー317およびマイク380に結合するオーディオビデオインターフェース307と、キーボード302、マウス303、スキャナ326、カメラ327、およびオプションによりジョイスティック(図示せず)用のI/Oインターフェース313と、外部モデム316およびプリンタ315用のインターフェース308とを含む多数の入出力(I/O)インターフェースも備える。いくつかの実装では、モデル316は、コンピュータモジュール301内に、例えばインターフェース308内に組み込むことができる。コンピュータモジュール301は、接続323を介して、コンピュータシステム300をローカルエリアネットワーク(LAN)と称される、ローカルコンピュータネットワーク322に結合することを可能にするローカルネットワークインターフェース311も有する。図にも示されているように、ローカルネットワーク322は、典型的にはいわゆる「ファイアウォール」デバイスまたは類似の機能を有するデバイスを備えることになる接続324を介して、ワイドネットワーク320に結合することもできる。インターフェース311は、Ethernet(登録商標)回路カード、Bluetooth(登録商標)ワイヤレス配置構成、またはIEEE802.11ワイヤレス配置構成によって形成されうる。
【0101】
インターフェース308および313は、シリアル接続とパラレル接続のいずれか一方または両方に対応することができ、前者は典型的にはユニバーサルシリアルバス(USB)規格に従って実装され、対応するUSBコネクタ(図示せず)を有する。記憶デバイス309が用意され、これは典型的にはハードディスクドライブ(HDD)310を含む。フロッピー(登録商標)ディスクドライブおよび磁気テープドライブ(図示せず)などの他の記憶デバイスも使用することができる。光ディスクドライブ312は、典型的には、不揮発性のデータソースとして動作するように構成される。次いで、例えば光ディスク(例えば、CD-ROM、DVD)、USB-RAM、およびフロッピー(登録商標)ディスクなどの携帯型メモリデバイスをシステム300への適切なデータソースとして使用することができる。
【0102】
コンピュータモジュール301のコンポーネント305から313は、典型的には、相互接続されたバス304を介して、結果として当業者に知られているコンピュータシステム300の従来の動作モードで通信する。説明されている配置構成を実施することができるコンピュータの例として、IBM-PCおよびその互換機、Sun Sparcstations、Apple Mac(登録商標)、またはそれらから発展した同様のコンピュータシステムが挙げられる。
【0103】
上で説明されている、方法200および250は、コンピュータシステム300内で実行可能な1つまたは複数のソフトウェアアプリケーションプログラム333として実装されうる。特に、方法200および250のステップは、コンピュータシステム300内で実行されるソフトウェア333における命令331によって実行される。ソフトウェア命令331は、1つまたは複数のコードモジュールとして形成され、それぞれ1つまたは複数の特定のタスクを実行することができる。ソフトウェアは、2つの個別の部分に分割することもでき、第1の部分および対応するコードモジュールが方法200および250を実行し、第2の部分および対応するコードモジュールが第1の部分とユーザーとの間のユーザーインターフェースを管理する。
【0104】
ソフトウェア333は、一般的に、コンピュータ可読媒体からコンピュータシステム300内にロードされ、次いで、典型的には、
図3aに例示されているようなHDD310、またはメモリ306内に格納され、その後、ソフトウェア333はコンピュータシステム300によって実行されうる。いくつかの場合において、アプリケーションプログラム333が1つまたは複数のCD-ROM325上に符号化された形でユーザーに提供され、メモリ310または306に格納される前に対応するドライブ312を介して読み出されうる。あるいは、ソフトウェア333は、ネットワーク320もしくは322からコンピュータシステム300によって読み出されるか、または他のコンピュータ可読媒体からコンピュータシステム300内にロードされうる。それに加えて、または代替的に、例えば、学習データライブラリまたは学習データライブラリを準備する際に使用される基準スペクトルなどのデータは、メモリ310もしくは306内に格納されうるか、またはCDもしくは他のコンピュータ可読媒体から、またはインターネット経由で、または他の何らかの手段によって、前記メモリ内にロードされうる。コンピュータ可読記憶媒体は、実行および/または処理のために命令および/またはデータをコンピュータシステム300に供給するステップに加わる任意の記憶媒体を指す。このような記憶媒体の例として、フロッピー(登録商標)ディスク、磁気テープ、CD-ROM、ハードディスクドライブ、ROMまたは集積回路、USBメモリ、光磁気ディスク、またはPCMCIAカードおよび同様のカードなどのコンピュータ可読カードが挙げられ、そのようなデバイスがコンピュータモジュール301に内蔵されるか、外付けであるかを問わない。ソフトウェア、アプリケーションプログラム、命令および/またはデータをコンピュータモジュール301に供給することに加わることもできるコンピュータ可読伝送媒体の例として、無線または赤外線伝送チャネル、さらには別のコンピュータもしくはネットワーク接続デバイスとのネットワーク接続、電子メール伝送およびウェブサイトおよび同様のものに記録された情報を含むインターネットもしくはイントラネットが挙げられる。
【0105】
アプリケーションプログラム333の第2の部分および上で述べられている対応するコードモジュールは、ディスプレイ314上にレンダリングされるか、または他の何らかの形で表現される1つまたは複数のグラフィカルユーザーインターフェース(GUI)を実装するために実行されうる。典型的にはキーボード302およびマウス303を操作することで、コンピュータシステム300およびアプリケーションのユーザーは、GUIに関連するアプリケーションに制御コマンドおよび/または入力を供給するように機能的に適応可能な形でインターフェースを操作することができる。スピーカー317を介した音声プロンプト出力及びマイク380を介したユーザー音声コマンド入力を使用するオーディオインターフェースなどの、他の形態の機能的に適応可能なユーザーインターフェースも実装することができる。
【0106】
図3bは、プロセッサ305および「メモリ」334の詳細な概略ブロック図である。メモリ334は、
図3aのコンピュータモジュール301によってアクセス可能なすべてのメモリデバイス(HDD310および半導体メモリ306を含む)の論理的集合体を表す。
【0107】
コンピュータモジュール301の初期電源投入時に、パワーオンセルフテスト(POST)プログラム350が実行される。POSTプログラム350は、典型的には、半導体メモリ306のROM349内に格納される。ROM349などのハードウェアデバイスに永久的に格納されているプログラムは、ときにはファームウェアと称される。POSTプログラム350は、コンピュータモジュール301内のハードウェアを調べて、適切に機能しているか確認し、典型的にはプロセッサ305、メモリ(309、306)、および典型的にはROM349にも格納される基本入出力システムソフトウェア(BIOS)モジュール351を正しい動作をしているかチェックする。POSTプログラム350が正常に実行された後、BIOS351がハードディスクドライブ310を作動させる。ハードディスクドライブ310が作動すると、ハードディスクドライブ310に常駐しているブートストラップローダープログラム(bootstrap loader program)352がプロセッサ305によって実行される。これは、オペレーティングシステム353をRAMメモリ306内にロードし、その後、オペレーティングシステム353が動作し始める。オペレーティングシステム353は、プロセッサ管理、メモリ管理、デバイス管理、記憶装置管理、ソフトウェアアプリケーションインターフェース、および一般ユーザーインターフェースを含む、高水準のさまざまな機能を遂行するために、プロセッサ305によって実行可能なシステムレベルアプリケーションである。
【0108】
オペレーティングシステム353は、コンピュータモジュール301上で実行中のそれぞれのプロセスまたはアプリケーションが、別のプロセスに割り当てられたメモリと衝突することなく実行するのに十分なメモリを確実に有するように、メモリ(309、306)を管理する。さらに、システム300内で利用可能な異なる種類のメモリは、それぞれのプロセスを効果的に実行できるように、適切に使用されなければならない。したがって、メモリ集合体334は、メモリの特定のセグメントの割り当て方を例示することを意図されていないが(断りのない限り)、むしろ、コンピュータシステム300によってアクセス可能なメモリの一般的な見かけおよびそのようなものの使用方法を与えることを意図されている。
【0109】
プロセッサ305は、制御ユニット339、算術論理演算ユニット(ALU)340、およびときにはキャッシュメモリとも称されるローカルまたは内部メモリ348を含む多数の機能モジュールを備える。キャッシュメモリ348は、典型的には、レジスタセクション内に多数のストレージレジスタ344〜346を備える。1つまたは複数の内部バス341は、これらの機能モジュールを機能的に相互接続する。プロセッサ305は、典型的には、接続318を使用して、システムバス304を介して外部デバイスと通信するための1つまたは複数のインターフェース342も有する。
【0110】
アプリケーションプログラム333は、条件付き分岐およびループ命令を含みうる命令331の列を含む。プログラム333は、プログラム333の実行時に使用されるデータ332も含みうる。命令331およびデータ332は、メモリロケーション328〜330および335〜337内にそれぞれ格納される。特定の命令は、命令331およびメモリロケーション328〜330の相対的サイズに応じて、メモリロケーション330に示されている命令によって指定されるような単一メモリロケーション内に格納されうる。あるいは、命令は、多数の部分に分割され、これらの命令のそれぞれはメモリロケーション328〜329内に示されている命令セグメントによって表されるような別々のメモリロケーション内に格納される。
【0111】
一般に、プロセッサ305は、中で実行される命令の組を与えられる。次いで、プロセッサ305は、その後の入力を待ち、それに対して別の命令の組を実行することによって応答する。それぞれの入力は、入力デバイス302、303のうちの1つまたは複数によって生成されたデータ、ネットワーク320、322のうちの1つにまたがって外部ソースから受信されたデータ、記憶デバイス306、309のうちの1つから取り出されたデータ、または対応する読取り装置312内に差し込まれている記憶媒体325から取り出されたデータを含む、多数のソースのうちの1つまたは複数から供給することができる。これらの命令の組の実行の結果、場合によっては、データの出力が行われうる。実行は、データまたは変数をメモリ334に格納するステップも伴いうる。
【0112】
開示されている配置構成では、対応するメモリロケーション355〜357内のメモリ334に格納されている、入力変数354を使用する。この配置構成では、対応するメモリロケーション362〜364内のメモリ334に格納されている、出力変数361を生成する。中間変数358は、メモリロケーション359、360、366、および367に格納されうる。
【0113】
プロセッサ305のレジスタセクション344〜346、算術論理演算ユニット(ALU)340、および制御ユニット339は連携して、プログラム333を構成する命令セット内の命令毎に「フェッチ、デコード、および実行」サイクルを実行するために必要なマイクロオペレーションのシーケンスを実行する。それぞれのフェッチ、デコード、実行サイクルは、
(a)メモリロケーション328から命令331をフェッチするか、または読み出すフェッチオペレーションと、
(b)どの命令がフェッチされているかを制御ユニット339が判定するデコードオペレーションと、
(c)制御ユニット339および/またはALU340が命令を実行する実行オペレーションとを含む。
【0114】
この後、次の命令に対するさらなるフェッチ、デコード、および実行サイクルが実行されうる。同様に、制御ユニット339が値をメモリロケーション332に格納するか、または書き込むことで格納サイクルが実行されうる。
【0115】
図2のプロセスにおけるそれぞれのステップまたはサブプロセスは、プログラム333の1つまたは複数のセグメントに関連付けられ、プロセッサ305内のレジスタセクション344〜347、ALU340、および制御ユニット339が連携して、プログラム333の注目されたセグメントに対する命令セット内の命令毎にフェッチ、デコード、および実行サイクルを実行する。
【0116】
方法200および250は、代替的に、この方法の機能または副機能を実行する1つまたは複数の集積回路などの専用ハードウェアで実装されうる。このような専用ハードウェアとしては、グラフィックプロセッサ、デジタルシグナルプロセッサ、フィールドプログラマブルゲートアレイ(FPGA)、または1つもしくは複数のマイクロプロセッサおよび関連するメモリが挙げられる。
【0117】
上記では本発明のいくつかの実施形態のみを説明しており、本発明の範囲および精神から逸脱することなく修正および/または変更を加えることができ、実施形態は例示的であり制限するものではない。
【0118】
本明細書の文脈において、「含む、備える」という言い回しは、「主に、ただし必ずしも単独ではなく含む」、または「有する」または「含む(including)」ことを意味し、および「のみからなる」を意味しない。単数形および複数形など「備える(comprising)」のさまざまな言い回しは、それに応じて変化する意味を有する。