(58)【調査した分野】(Int.Cl.,DB名)
マトリクス状に複数の画素が配置され、各画素は、画素境界に形成された絶縁体の壁構造と、前記画素境界の壁構造の側面に形成した壁電極、および当該壁電極と連続し、壁電極が第一の基板に接する位置から平面方向に伸びる平面電極から成るソース電極と、画素の両側に形成された壁電極と壁電極の間に設けられ、絶縁層を介して前記平面電極と一部が重畳することにより保持容量を形成する第一のコモン電極と、前記画素の両側に形成されたソース電極とソース電極の間に設けられた第二のコモン電極とを有する液晶表示装置において、
前記壁構造の頂部は前記第一の基板に対向する第二の基板の一部に接する部分を持ち、
前記ソース電極には信号電圧が印加され、前記第1のコモン電極と前記第二のコモン電極にはコモン電圧が印加され、
隣接する二つの画素の壁電極の境界となるスリットを前記壁構造の頂部に選択的に配置したことを特徴とする液晶表示装置。
【発明を実施するための形態】
【0016】
以下、本発明の実施の形態を図面に基づいて説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。
【実施例1】
【0017】
先ず、
図14に、本発明が適用される液晶表示装置の等価回路の一例を示す。基板102上に走査線104と信号線103がマトリクス状に配線され、走査線104と信号線103の各交点にはTFT(Thin Film Transistor )素子110を介して画素106が接続されている。走査線104と信号線103には、それぞれ走査駆動回路108および信号駆動回路107が接続され、走査線104および信号線103に電圧を印加する。基板102上には信号線103に平行にコモン線105を配設し、全ての画素にコモン電圧発生回路109からコモン電圧を印加できるようになっている。基板102と基板101との間には液晶組成物が封入されており、全体として液晶表示装置を構成している。
【0018】
図1に本発明の実施例1に係わる一つの画素の平面構造を示し、
図2に一つの画素の断面構造を示す。
図1は、一つの画素の全体とこれに隣接する画素の一部を含んでいる。また、
図2は、
図1のA−A’面の断面構造を示すものである。
【0019】
図2において第一の基板20上には、第一の絶縁層21を介して、信号配線15および第一のコモン電極12を配置し、その上に第二の絶縁層22を形成する。そして、画素の両側の画素境界には絶縁体の壁構造10を設ける。壁構造は、例えば有機膜で形成される。画素両側に配置した壁構造10には、その側面に壁電極111を形成するとともに、壁電極に連続して、壁電極が基板に接する位置から平面方向に伸びる平面電極112を形成する。本実施例では、この壁電極111と平面電極112とが一つのソース電極11となる。第一のコモン電極12とソース電極11の平面電極112とは、第二の絶縁層22を介して、一部が重畳しており、重畳部分が保持容量を形成する。ソース電極11の上層には第三の絶縁層23が設けられ、第三の絶縁層23上であって、壁構造10に設けた両ソース電極11の壁電極111の間に、第二のコモン電極13が配置される。第二のコモン電極13や壁構造10を覆って、第一の配向膜24が形成される。また、第一の基板20の反対側には第一の偏光板25が形成される。そして、これらによりTFT側基板が構成される。
【0020】
もう一方で、第二の基板30上に、ブラックマトリクス(BM:Black Matrix)31、カラーフィルタ(CF)32、保護膜(OC:Over Coat)33を形成する。そして、保護膜33上であって、壁構造に設けた両ソース電極11の間に第三のコモン電極14を配置し、第二の配向膜34を形成することにより、CF側基板が構成される。
そして、TFT側基板とCF側基板とが貼り合わせられ、両基板間に液晶分子29を含む液晶層28が封入される。
【0021】
図1において、壁構造10は、一点鎖線で示すように、画素の両側で長手方向に配置している。そして、壁構造10に沿うように信号配線15が配置され、これと交差するようにゲート配線16が配置されている。壁構造10の側面などにはソース電極11が配置されるとともに、両ソース電極の間には第一のコモン電極12、第二のコモン電極13、第三のコモン電極14が配置されている。第一のコモン電極12とソース電極11の重畳部を斜線で示す。第一のコモン電極12とソース電極11の重畳部は、保持容量として機能する。ゲート配線16上にはポリシリコン層17が配置され、TFTを構成している。符号17は第一のコンタクトホールを、符号18は第二のコンタクトホールを示す。
【0022】
本実施例において、
図2に示したように壁構造10は画素境界をなすBM31の下に分布しており、壁構造10の両壁面にソース電極11を有する。壁構造頂部のスリット26で両壁面のソース電極11は分離されており、両壁面のソース電極11はそれぞれ別の画素に属する。
図1に示すように壁構造10はソース電極11を隔てるスリットと重畳し、なおかつスリットよりも長く分布させている。その結果、スリットは壁構造頂部にのみ配置される。
【0023】
図3は、
図2においてコモン電極とソース電極の間に形成される等電位面36を破線で併記した模式図である。第三のコモン電極14と第二のコモン電極13を画素中央の上下基板に対向して配置しており、更にその下方に第一のコモン電極12を配置している。
図3に破線で示したように、等電位面36の一部は第三のコモン電極14と第二のコモン電極13を囲うように形成されるため、第三のコモン電極14と第二のコモン電極13は壁電極のような性質を示す。画素両側の壁構造頂部にソース電極11を配置し、画素中央に一対のコモン電極13,14を配置したことにより壁電極間の実効的な距離は画素幅の半分になり、例えば画素幅が30μmの場合でも従来のIPS−Pro方式と同等の電圧で駆動することが可能になる。
【0024】
画素の平面形状は
図1に示したように開いたV字状であり、壁構造10は画素の上半分では左側に傾いており、画素の下半分では右側に傾いている。液晶配向方向ADは縦方向としており、画素の上半分では液晶ダイレクタが電圧印加時に時計回りに回転し、下半分では反時計回りに回転する。また、画素の上半分と下半分のいずれにおいても壁構造10の伸長方向と液晶配向方向ADの成す角は5度である。一画素内に液晶配向の異なる2つの部分が形成されるマルチドメイン構造であり、個々のドメインの有する着色の視角依存性が相殺されるため、より無着色な視角特性が得られる。壁構造10の壁面は約85度の傾斜角を有し、このような急峻な傾斜角を有する壁面に配向処理を施すには光配向法が好適である。なお、ここで液晶ダイレクタとは、液晶層内の微小な領域における液晶分子の平均配向方向である。
【0025】
また、
図1に示したように、壁構造10は画素端部において寸断した平面分布とした。例えば液晶層を真空封入法で形成する場合、液晶は主に壁構造10に沿って流動する。壁構造の寸断部では隣の壁構造に移動することも出来るので、真空封入法による液晶層の形成が容易になる。
【0026】
図4(a)は、壁構造10頂部のソース電極11をパターンニングする際にレジスト41を塗布した状態の断面図であり、レジスト41は壁構造頂部でより薄く、平坦部でより厚くなっている。このようなレジスト厚の分布は、液晶層厚と同等以上の高さの壁構造上に塗布した後に、レジストが壁構造頂部から壁構造間に流動することにより生じる。レジストはスピンコートや印刷等の手段で容易に成膜を可能にするため、一般的にこのような流動性を有する。
【0027】
ソース電極11はスリット26以外にも境界を有するが、スリット以外の境界では隣接画素の電極が近接しないため、フォト工程の精度が厳しく要求されることはない。近接する電極との短絡など致命的な欠陥が生じるのはスリットなので、ソース電極のフォト工程ではスリットの加工が特に重要である。本実施例の場合、スリットの分布を壁構造頂部に限定しているため、薄いレジストに合わせてスリットの加工条件を最適化すれば高い歩留まりでスリットの加工が可能である。また、スリットの厚さ方向の分布についても壁構造頂部に限定されるため、焦点深度の浅い露光機を用いた場合でも壁構造頂部に焦点を合わせれば高い歩留まりでスリットの加工ができる。
【実施例2】
【0028】
図5に、本発明の実施例2に係わる一つの画素の平面構造を示す。実施例1では
図1に示したように壁構造10は画素端部で寸断されているが、本実施例では
図5に示したように画素端部で連続している。そのため、一画素内に分布する壁構造10は実施例1よりも長くなっている。これにより、ソース電極11も画素長辺方向に対してより長く形成することが可能になる。画素内の透明な部分を増大して開口率を増大すれば、より高い透過率が得られる。
【0029】
本実施例では壁構造が画素端部で連続しているので、ソース電極を画素長辺方向に対してより長く形成してもスリットは壁構造頂部にのみ分布することになる。そのため、実施例1と同様にして高い歩留まりでスリットの加工が可能である。
【実施例3】
【0030】
図6に本発明の実施例3に係わる一つの画素の平面構造を示し、
図7に一つの画素の断面構造を示す。
図6に示したように壁構造10の幅は
図1に比較して狭く、なお且つ、ソース電極11と壁構造10の境界は一致している。
図7に示したようにソース電極11が壁構造10の壁面上にのみ分布しており、壁構造10の頂部には分布していない。
図6と
図7に示したような壁電極構造は、以下に説明するセルフアラインプロセスで壁構造頂部のスリットを形成することにより実現できる。
【0031】
図4(a)に示したように、レジスト41は壁構造10頂部で薄くなり、平坦部で厚くなる傾向にある。これにプラズマアッシャーを用いてアッシングすれば、
図4(b)に示したようにレジスト41は時間に比例して表面から均等に除去されていく。
図4(b)の破線は塗布時のレジスト表面である。従って、壁構造頂部の厚さを若干超える分だけレジストを除去すれば、
図4(c)に示したように壁構造頂部の電極11が選択的に露出する。この状態でエッチングすれば
図4(d)に示したように壁電極上の電極を選択的に除去でき、
図4(e)は
図4(d)からレジスト41を除去した完成状態を示す。このように、壁構造上に塗布したレジストの膜厚分布を利用すればセルフアラインで壁構造上の電極を除去できる。
【0032】
壁電極上以外の部分については別途マスク露光でパターンニングする必要があり、これには壁構造とマスクの合わせ精度が影響する。しかし、スリットが壁構造頂部だけに分布していれば、以下に説明するように短絡が生じない。
図8は、1つの壁構造とこれに重畳する電極に着目した平面図であり、壁構造はその境界を太線で示しており、電極は斜線でハッチングして示してある。
図8(a)は全面に電極を形成した状態であり、次に
図8(b)に示したように前述のセルフアライメントプロセスで壁構造頂部の電極を除去する。その次に
図8(c)、
図8(d)に示したようにマスク露光を用いて壁構造頂部以外の部分の電極をパターンニングする。
図8(c)は
図8(b)にマスクを重畳した状態を示し、
図8(c)中の破線はマスクの遮光部境界である。
図8(d)は
図8(c)のマスク配置で最終的に形成された壁電極構造であり、壁電極は
図8(c)中に示したマスクの遮光部境界と同様の平面分布となっている。なおこの時マスクの位置合わせずれが生じる可能性があるが、壁構造がスリットから突出した部分の長さをマスクの合わせ精度以上にすることにより、マスクの位置合わせずれが生じても短絡が生じることはない。
【0033】
また、セルフアライメントプロセスを適用することにより、スリット部分でマスクの合わせ精度を考慮した尤度設計が必要なくなり、壁構造の幅をその加工精度で決定される幅まで狭くすることが出来る。例えば、マスクの合わせ精度が基準層に対して1.5μmで、スリットの幅を3.0μmとするならば、壁構造の両壁面上に電極を安定して形成するためには壁構造の幅を9.0μmにしなければならない。一方で壁構造の加工精度は例えば4.0μmなので、セルフアライメントプロセスを用いることにより壁構造の幅を半分以下にすることができる。その結果として開口率を増大でき、より高い透過率を実現することができる。
【0034】
図9に、比較例1の一画素の平面構造を示す。実施例1においてはスリットは壁構造頂部にのみ分布していたが、
図9に示したように、スリット26が壁構造10頂部と平坦部の両方に分布するものである。
図9においてスリットは壁構造頂部と平坦部間で連続して分布しているので、スリット26は壁構造の境界を乗り越えて分布することになる。ソース電極11にスリットを形成する際にレジスト41を塗布した状態の断面を、
図10(a)、(b)に示す。
図10(a)、(b)は、それぞれ壁構造頂部と平坦部における断面図であり、
図9に示した平面図の一転鎖線A−A’、B−B’に対応する。また、
図10(a)、(b)ではスリット形成において実効的なレジスト膜厚を矢印で示してある。
図4と同様に壁構造頂部に相当する
図10(a)でレジスト41は薄くなっており、平坦部に相当する
図10(b)でレジスト41は厚くなっている。そのため壁構造頂部ではオーバーエッチに、平坦部ではアンダーエッチになる傾向にある。
【0035】
壁構造頂部と平坦部のスリットを同じ幅で一括加工するには、
図11に示したようにマスク上のスリット幅を変えることが考えられる。
図11(a)はマスク上のスリット幅と壁構造の関係を示しており、マスクの合わせずれはないものとしている。
図11(b)は
図11(a)に対応する完成状態である。
図11(a)に示したようにマスク上のスリット幅を壁構造頂部では完成寸法よりも狭くし、平坦部では広くすれば良い。ここで、乗り越え部のスリット幅をどう決めるかが課題になるが、これには乗り越え部近傍におけるレジスト厚分布が参考になる。
図10(c)は乗り越え部近傍を含む断面図であり、
図9の一転鎖線C−C’に対応している。
図10(d)は
図10(c)よりレジスト厚の分布を求めた図であり、レジスト厚は乗り越え部に近接する平坦部で最大になる。例えば乗り越え部の前後でレジスト厚分布に対応するようにスリット幅を連続的に変えても良く、具体的には
図11(a)に示したように乗り越え部に近接する平坦部でスリット幅を最大にし、壁構造のある方向に向けて連続的にスリット幅を低減する。これにより、
図11(b)に示したように壁構造頂部と平坦部の両方にスリットを一括形成でき、なお且つ乗り越え部にもスリットを形成できるはずである。
【0036】
ところが、実際には完成時のスリット形状が
図11(b)に比べて大きく異なる例が見出された。これらの一例を
図11(d)に示す。
図11(d)中のオーバーエッチ部43では乗り越え部近傍でスリット幅が大幅に増大しており、
図11(d)中のアンダーエッチ部44では乗り越え部近傍でスリットが消失している。特にアンダーエッチ部44では隣接する2画素のソース電極が短絡するので点欠陥となる。
図11(d)に示したスリット形状は、壁構造に対してスリット加工のためのマスクが
図11(c)に示したように下方向にずれることによって生じる。
図11(c)ではマスク遮光部の境界を破線で示してある。
図11(d)中のオーバーエッチ部43はマスク上でスリット幅が最も広い部分がレジスト膜厚の薄い壁電極上部に位置したことによりオーバーエッチになって生じたものである。
図11(d)中のアンダーエッチ部44はマスク上でスリット幅が狭い部分がレジスト膜厚の厚い乗り越え部に近接する平坦部に位置したことによりアンダーエッチになって生じたものである。
【0037】
このように、液晶層厚と同等の高さの壁構造が存在する場合、マスクの位置合わせ精度を考慮すれば壁構造を乗り越えて分布するスリットを高い歩留まりで一括加工することは出来ない。レジスト厚分布に対応するようにマスク上のスリット幅を変えても、マスクの合わせずれはスリット幅が変動する範囲よりも大きいため、レジスト膜厚変化を設計で想定した通りに補正できなくなるからである。
【0038】
本発明の実施例1の液晶表示装置では、壁構造10の頂部にのみ隣接する二つの画素の壁電極111の境界となるスリット26が分布するようなマスクを用いて、レジストを露光し、壁構造上の透明電極を露出し、露出した壁構造上の透明電極を除去することにより、壁構造10の頂部にのみ隣接する二つの画素の壁電極111の境界となるスリット26が分布する壁電極を形成することができる。
【0039】
壁構造頂部と平坦部の両方にスリットが分布する構造において、実施例3のセルフアライメントプロセスを適用したものである。実施例3で述べたように、セルフアライメントプロセスの利点は壁構造の幅を壁構造の加工精度まで低減して開口率を増大できることである。この場合平坦部のスリットはマスク露光で形成するが、マスクの合わせ精度により短絡が生じる場合がある。
図12は1つの壁構造とこれに重畳する電極に着目した平面図であり、
図12(a)は壁構造上を含む全面に電極を成膜した状態で、
図12(b)はセルフアライメントプロセスで壁構造頂部を選択的にエッチングした状態である。
図12(c)は
図12(b)にマスクを重畳した状態であり、
図12(c)のように合わせずれがない場合には
図12(d)に示したように短絡せずに平坦部のスリットを形成できる。しかし、
図12(e)に示したように上下方向で合わせずれが生じると、
図12(f)に示したように壁構造の上下いずれか一方の平坦部においてスリットが消失し、隣接する2画素のソース電極が短絡する。
【0040】
合わせずれの対策として、マスク露光で形成するスリットを平坦部から壁構造頂部の一部にまで延長することも考えられる。
図13(a)はこのようなマスクを
図12(b)に重畳した状態であり、
図13(b)に示したように合わせずれが無ければこの場合でもオーバーエッチやアンダーエッチを生じずにソース電極を形成することが出来る。しかし、
図13(c)に示したようにマスクの合わせずれが上下方向に生じた場合には、
図13(d)に示したように壁構造の上下端でオーバーエッチ部43が発生し、壁面から電極が消失する。壁面から電極が消失した部分では、液晶層に印加する電界強度が低下するため透過率が低下する。セルフアライメントプロセスの利点は壁構造の幅を壁構造の加工精度まで低減できることであるが、この場合壁構造の幅はレジスト膜厚の厚い平坦部にスリットを形成するためのマスク幅とほぼ同等になる。そのため、マスクの合わせずれが生じると壁面上のITO膜をエッチングすることとなり、壁面から電極が消失する。
【0041】
このように、液晶層厚と同等の高さの壁構造が存在する場合、マスクの位置合わせ精度を考慮すればセルフアライメントプロセスを用いても壁構造を乗り越えて分布するスリットを高い歩留まりで加工することは出来ない。